
Introduction
Linux has always provided a rich programming environment, and it has only grown rich-
er. Two new compilers, egcs and pgcs, joined the GNU project’s gcc, the original Linux
compiler. In fact, as this book went to press, the Free Software Foundation, custodians of
the GNU project, announced that gcc would be maintained by the creators and maintain-
ers of egcs. A huge variety of editors stand alongside the spartan and much-maligned vi
and emacs’ marvelous complexity. Driven largely by the Linux kernel, GNU’s C library
has evolved so dramatically that a new version, glibc (also known as libc6) has emerged
as the standard C library. Linux hackers have honed the GNU project’s always service-
able development suite into powerful tools. New widget sets have taken their place
beside the old UNIX standbys. Lesstif is a free, source-compatible implementation of
Motif 1.2; KDE, the K Desktop Environment based on the Qt class libraries from
TrollTech, answers the desktop challenge posed by the X Consortium’s CDE (Common
Desktop Environment).

What This Book Will Do for You
In this book, we propose to show you how to program in, on, and for Linux. We’ll
focus almost exclusively on the C language because C is still Linux’s lingua franca.
After introducing you to some essential development tools, we dive right in to
system programming, followed by a section on interprocess communication and network
programming.

After a section devoted to programming Linux’s user interface with both text-based and
graphical tools (the X Window system), a section on specialized topics, including shell
programming, security considerations, and using the GNU project’s gdb debugger,
rounds out the technical discussion. We close the book with three chapters on a topic
normally disregarded in programming books: delivering your application to users. These
final chapters show you how to use package management tools such as RPM, how to
create useful documentation, and discuss licensing issues and options. If we’ve done our
job correctly, you should be well prepared to participate in the great sociological and
technological phenomenon called “Linux.”

Intended Audience
Programmers familiar with other operating systems but new to Linux get a solid intro-
duction to programming under Linux. We cover both the tools you will use and the
environment in which you will be working.

0172316072 intro 7/26/99 2:18 PM Page 1

Linux Programming

UNLEASHED
2

Experienced UNIX programmers will find Linux’s programming idioms very familiar.
What we hope to accomplish for this group is to highlight the differences you will
encounter. Maximum portability will be an important topic because Linux runs on an
ever-growing variety of platforms: Intel i386, Sun Sparcs, Digital Alphas, MIPS proces-
sors, Power PCs, and Motorola 68000-based Macintosh computers.

Intermediate C programmers will also gain a lot from this book. In general, program-
ming Linux is similar to programming any other UNIX-like system, so we start you on
the path toward becoming an effective UNIX programmer and introduce you to the pecu-
liarities of Linux/UNIX hacking.

Linux Programming Unleashed,
Chapter by Chapter
This is not a C tutorial, but you will get a very quick refresher. You will need to be able
to read and understand C code and understand common C idioms. Our selection of tools
rarely strays from the toolbox available from the GNU project. The reason for this is
simple: GNU software is standard equipment in every Linux distribution.

The first seven chapters cover setting up a development system and using the standard
Linux development tools:

• gcc

• make

• autoconf

• diff

• patch

• RCS

• emacs

The next section introduces system programming topics. If you are a little rusty on the
standard C library, Chapter 9 will clear the cobwebs. Chapter 10 covers Linux’s file
manipulation routines. Chapter 11 answers the question, “What is a process?” and shows
you the system calls associated with processes and job control. We teach you how to get
system information in Chapter 12, and then get on our editorial soapbox in Chapter 13
and lecture you about why error-checking is A Good Thing. Of course, we’ll show you
how to do it, too. Chapter 14 is devoted to the vagaries of memory management under
Linux.

0172316072 intro 7/26/99 2:18 PM Page 2

INTRODUCTION
3

We spend four chapters on various approaches to interprocess communication using
pipes, message queues, shared memory, and semaphores. Four more chapters show you
how to write programs based on the TCP/IP network protocol. After a general introduc-
tion to creating and using programming libraries in Chapter 24 (including the transition
from libc5 to libc6), we cover writing device drivers and kernel modules in Chapter 25,
because considerable programming energy is spent providing kernel support for the latest
whiz-bang hardware device or system services.

User interface programming takes up the next eight chapters. Two chapters cover charac-
ter-mode programming; first the hard way with termcap and termios, and then the easi-
er way using ncurses. After a quick introduction to X in Chapter 28, Chapter 29 focuses
on using the Motif and Athena widget sets. Programming X using the GTK library is
Chapter 30’s subject, followed by Qt (the foundation of KDE) in Chapter 31, and Java
programming in Chapter 32. For good measure, we also cover 3D graphics programming
using OpenGL.

The next section of the book covers three special-purpose topics. Chapter 34 examines
bash shell programming. We deal with security-related programming issues in Chapter
35, and devote Chapter 36 to debugging with gdb.

The book ends by showing you the final steps for turning your programming project over
to the world. Chapter 37 introduces you to tar and the RPM package management tool.
Documentation is essential, so we teach you how to write man pages and how to use
some SGML-based documentation tools in Chapter 38. Chapter 39, finally, looks at the
vital issue of software licensing.

0172316072 intro 7/26/99 2:18 PM Page 3

4

0172316072 intro 7/26/99 2:18 PM Page 4

The Linux
Programming Toolkit PART

I
IN THIS PART

• Overview 7

• Setting Up a Development System 13

• Using GNU cc 39

• Project Management Using GNU make 53

• Creating Self-Configuring Software with
autoconf 65

• Comparing and Merging Source Files 85

• Version Control with RCS 103

• Creating Programs in Emacs 115

0272316072 part1 7/26/99 2:38 PM Page 5

0272316072 part1 7/26/99 2:38 PM Page 6

IN THIS CHAPTER

• The Little OS That Did 8

• The Little OS That Will 8

• A Brief History of Linux 9

• Linux and UNIX 9

• Programming Linux 10

• Why Linux Programming? 10

1
C

H
A

PT
ER

Overview

by Kurt Wall

0372316072 CH01 7/26/99 2:01 PM Page 7

Linux has arrived, an astonishing feat accomplished in just over eight years! 1998 was
the year Linux finally appeared on corporate America’s radar screens.

The Little OS That Did
It began in March 1998, when Netscape announced that they would release the source
code to their Communicator Internet suite under a modified version of the GNU project’s
General Public License (GPL). In July, two of the world’s largest relational database ven-
dors, Informix and Oracle, announced native Linux ports of their database products. In
August, Intel and Netscape took minority stakes in Red Hat, makers of the market-
leading Linux distribution. IBM, meanwhile, began beta testing a Linux port of DB/2.
Corel Corporation finally ported their entire office suite to Linux and introduced a line of
desktop computers based on Intel’s StrongARM processor and a custom port of Linux.
These developments only scratch the surface of the major commercial interest in Linux.

The Linux Programming Toolkit

PART I
8

Note

As this book went to press, Red Hat filed for an initial public offering (IPO) of
their stock. It is a delicious irony that a company that makes money on a free
operating system is going to become a member of corporate America.

I would be remiss if I failed to mention Microsoft’s famous (or infamous) Halloween
documents. These were leaked internal memos that detailed Microsoft’s analysis of the
threat Linux posed to their market hegemony, particularly their server operating system,
Windows NT, and discussed options for meeting the challenge Linux poses.

The Little OS That Will
As a server operating system, Linux has matured. It can be found running Web servers
all over the world and provides file and print services in an increasing number of busi-
nesses. An independent think tank, IDG, reported that Linux installations grew at a rate
of 212 percent during 1998, the highest growth rate of all server operating systems
including Windows NT. Enterprise-level features, such as support for multi-processing
and large file-system support, continue to mature, too. The 2.2 kernel now supports up to
sixteen processors (up from four in the 2.0 series kernels). Clustering technology, known
as Beowulf, enables Linux users to create systems of dozens or hundreds of inexpensive,
commodity personal computers that, combined, crank out supercomputer level process-
ing speed very inexpensively compared to the cost of, say, a Cray, an SGI, or a Sun.

0372316072 CH01 7/26/99 2:01 PM Page 8

On the desktop, too, Linux continues to mature. The KDE desktop provides a GUI that
rivals Microsoft Windows for ease of use and configurability. Unlike Windows, however,
KDE is a thin layer of eye candy on top of the operating system. The powerful com-
mand-line interface is never more than one click away. Indeed, as this book went to
press, Caldera Systems released version 2.2 of OpenLinux, which contained a graphical,
Windows-based installation procedure! No less than four office productivity suites exist
or will soon be released: Applixware, Star Office, and Koffice, part of the KDE project,
are in active use. Corel is finishing up work on their office suite, although WordPerfect 8
for Linux is already available. On top of the huge array of applications and utilities avail-
able for Linux, the emergence of office applications every bit as complete as Microsoft
Office establishes Linux as a viable competitor to Windows on the desktop.

A Brief History of Linux
Linux began with this post to the Usenet newsgroup comp.os.minix, in August, 1991,
written by a Finnish college student:

Hello everybody out there using minix-
I’m doing a (free) operating system (just a hobby, won’t be
big and professional like gnu) for 386(486) AT clones.

That student, of course, was Linus Torvalds and the “hobby” of which he wrote grew to
what is known today as Linux. Version 1.0 of the kernel was released on March 14,
1994. Version 2.2, the current stable kernel release, was officially released on January 25,
1999. Torvalds wrote Linux because he wanted a UNIX-like operating system that would
run on his 386. Working from MINIX, Linux was born.

Linux and UNIX
Officially and strictly speaking, Linux is not UNIX. UNIX is a registered trademark, and
using the term involves meeting a long list of requirements and paying a sizable amount
of money to be certified. Linux is a UNIX clone, a work-alike. All of the kernel code
was written from scratch by Linus Torvalds and other kernel hackers. Many programs
that run under Linux were also written from scratch, but many, many more are simply
ports of software from other operating systems, especially UNIX and UNIX-like operat-
ing systems.

More than anything else, Linux is a POSIX operating system. POSIX is a family of stan-
dards developed by the Institute of Electrical and Electronic Engineers (IEEE) that define
a portable operating system interface. Indeed, what makes Linux such a high quality
UNIX clone is Linux’s adherence to POSIX standards.

Overview

CHAPTER 1
9

1

O
V

ER
V

IEW

0372316072 CH01 7/26/99 2:01 PM Page 9

Programming Linux
As Linux continues to mature, the need for people who can program for it will grow.
Whether you are a just learning to program or are an experienced programmer new to
Linux, the array of tools and techniques can be overwhelming. Just deciding where to
begin can be difficult. This book is designed for you. It introduces you to the tools and
techniques commonly used in Linux programming. We sincerely hope that what this
book contains gives you a solid foundation in the practical matters of programming. By
the time you finish this book, you should be thoroughly prepared to hack Linux.

Why Linux Programming?
Why do people program on and for Linux? The number of answers to that question is
probably as high as the number of people programming on and for Linux. I think,
though, that these answers fall into several general categories.

First, it is fun—this is why I do it. Second, it is free (think beer and speech). Third, it is
open. There are no hidden interfaces, no undocumented functions or APIs (application
programming interfaces), and if you do not like the way something works, you have
access to the source code to fix it.

Finally, and I consider this the most important reason, Linux programmers are part of a
special community. At one level, everyone needs to belong to something, to identify with
something. This is as true of Windows programmers as it is of Linux programmers, or
people who join churches, clubs, and athletic teams. At another, more fundamental level,
the barriers to entry in this community are based on ability, skill, and talent, not money,
looks, or who you know. Linus Torvalds, for example, is rarely persuaded to change the
kernel based on rational arguments. Rather, working code persuades him (he often says
“Show me the code.”).

I am not supposing or proposing that Linux is a meritocracy. Rather, one’s standing in
the community is based on meeting a communal need, whether it is hacking code, writ-
ing documentation, or helping newcomers. It just so happens, though, that doing any of
these things requires skill and ability, as well as the desire to do them. As you participate
in and become a member of Linux’s programming community, we hope, too, that you
will discover that it is fun and meaningful as well. I think it is. In the final analysis,
Linux is about community and sharing as much as it is about making computers do what
you want.

The Linux Programming Toolkit

PART I
10

0372316072 CH01 7/26/99 2:01 PM Page 10

Summary
This chapter briefly recounted Linux’s history, took a whirlwind tour of the state of
Linux and Linux programming today, and made some reasonable predictions about the
future of Linux. In addition, it examined Linux’s relationship to UNIX and took a brief,
philosophical look at why you might find Linux programming appealing.

Overview

CHAPTER 1
11

1

O
V

ER
V

IEW

0372316072 CH01 7/26/99 2:01 PM Page 11

12

0372316072 CH01 7/26/99 2:01 PM Page 12

IN THIS CHAPTER

• Hardware Selection 14

• Processor/Motherboard 15

• User Interaction Hardware: Video,
Sound, Keyboard, and Mouse 19

• Keyboard and Mouse 23

• Communication Devices, Ports, and
Buses 24

• Storage Devices 29

• External Peripherals 30

• Complete Systems 33

• Laptops 34

• Installation 34

2
C

H
A

PT
ER

Setting Up a
Development
System

by Mark Whitis

0472316072 CH02 7/26/99 2:00 PM Page 13

Hardware Selection
This section is, of necessity, somewhat subjective. Choice of a system depends largely on
the developer’s individual needs and preferences. This section should be used in conjunc-
tion with the Hardware Compatibility HOWTO, as well as the more specialized HOWTO
documents. The latest version is online at http://metalab.unc.edu/LDP/HOWTO/
Hardware-HOWTO.html; if you do not have Net access, you will find a copy on the
accompanying CD-ROM or in /usr/doc/HOWTO on most Linux systems (if you have one
available). The Hardware HOWTO often lists specific devices that are, or are not, sup-
ported, or refers you to documents that do list them. This section will not try to list spe-
cific supported devices (the list would be way too long and would go out of date very
rapidly) except where I want to share specific observations about a certain device based
on my own research or experience.

Internet access is strongly recommended as a prerequisite to buying and installing a
Linux system. The latest versions of the HOWTO documents can be found on the Net at
Linux Online (http://www.linux.org/) in the Support section. The Projects section has
many useful links to major development projects, including projects to support various
classes of hardware devices. If you do not have Net access, the HOWTO documents are
on the accompanying Red Hat Linux CDs (Disc 1 of 2) in the /doc/HOWTO directory.

Considerations for Selecting Hardware
I will try to give you an idea of what is really needed and how to get a good bang for
your buck rather than how to get the most supercharged system available. You may have
economic constraints or you may prefer to have two or more inexpensive systems instead
of one expensive unit. There are many reasons for having two systems, some of which
include the following:

• To have a separate router/firewall

• To have a separate “crash and burn” system

• To have a system that boots one or more other operating systems

• To have a separate, clean system to test installation programs or packages (RPM or
Debian) if you are preparing a package for distribution

• To have a separate untrusted system for guests if you are doing sensitive work

• To have at least one Linux box to act as a server that runs Linux 24 hours a day

Most of the millions of lines of Linux code were probably largely developed on systems
that are slower than the economy systems being sold today. Excessive CPU power can be
detrimental on a development station because it may exacerbate the tendency of some

The Linux Programming Toolkit

PART I
14

0472316072 CH02 7/26/99 2:00 PM Page 14

developers to write inefficient code. If, however, you have the need and economic
resources to purchase a system more powerful than I suggest here, more power to you
(please pardon the pun). A good developer’s time is very valuable, and the extra power
can pay for itself if it saves even a small percentage of your time. The suggestions in this
chapter will be oriented toward a low- to mid-range development workstation. You can
adjust them upward or downward as appropriate. I do not want you to be discouraged
from supporting the Linux platform, in addition to any others you may currently support,
by economic considerations.

Basic development activities, using the tools described in this book, are not likely to
demand really fast CPUs; however, other applications the developer may be using, or
even developing, may put additional demands on the CPU and memory. Editing and
compiling C programs does not require much computing horsepower, particularly since
make normally limits the amount of code that has to be recompiled at any given time.
Compiling C++ programs, particularly huge ones, can consume large amounts of com-
puting horsepower. Multimedia applications demand more computing power than edit
and compile cycles. The commercial Office suites also tend to require large amounts of
memory. If you like to use tracepoints to monitor variables by continuous single step-
ping, that could heavily consume CPU cycles.

Some people will recommend that you choose a system that will meet your needs for the
next two or three years. This may not be a wise idea. The cost of the computing power
and features you will need a year from now will probably drop to the point where it may
be more cost effective for you to buy what you need today, and wait until next year to
buy what you need then. If you do not replace your system outright, you may want to
upgrade it piecemeal as time passes; if that is the case, you don’t want to buy a system
with proprietary components.

Processor/Motherboard
One of the most important features of a motherboard is its physical form factor, or its
size and shape and the locations of key features. Many manufacturers, particularly major
brands, use proprietary form factors, which should be avoided. If you buy a machine that
has a proprietary motherboard and you need to replace it due to a repair or upgrade, you
will find your selection limited (or non-existent) and overpriced. Some manufacturers
undoubtedly use these proprietary designs to lower their manufacturing cost by eliminat-
ing cables for serial, parallel, and other I/O ports; others may have more sinister motives.

The older AT (or baby AT) form factor motherboards are interchangeable, but have very
little printed circuit board real estate along the back edge of the machine on which to

Setting Up a Development System

CHAPTER 2
15

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

0472316072 CH02 7/26/99 2:00 PM Page 15

mount connectors. The case only has holes to accommodate the keyboard and maybe a
mouse connector. The newer ATX standard has many advantages. Although an ATX
motherboard is approximately the same size and shape as a baby AT motherboard (both
are about the same size as a sheet of 8-1/2”×11” writing paper), the ATX design rotates
the dimensions so the long edge is against the back of the machine. An ATX case has a
standard rectangular cutout that accommodates metal inserts, which have cutouts that
match the connectors on a particular motherboard. The large cutout is large enough to
easily accommodate the following using stacked connectors:

• 2 serial ports

• 1 parallel port

• keyboard port

• mouse port

• 2 USB ports

• VGA connector

• audio connectors

Also, ATX moves the CPU and memory where they will not interfere with full-length I/O
cards, although some manufacturers still mount some internal connectors where they will
interfere. Many case manufacturers have retooled. More information about the ATX form
factor can be found at http://www.teleport.com/~atx/. Figure 2.1 illustrates the phys-
ical difference between AT and ATX form factors.

The Linux Programming Toolkit

PART I
16

AT ATX

IO

CPU

Memory

FIGURE 2.1
AT versus ATX
motherboard form
factors.

Onboard I/O
A typical Pentium or higher motherboard will have two serial, one parallel, one key-
board, one mouse, IDE, and floppy ports onboard; all of which are likely to work fine
with Linux. It may have additional ports onboard that will have to be evaluated for com-
patibility, including USB, SCSI, Ethernet, Audio, or Video.

0472316072 CH02 7/26/99 2:00 PM Page 16

Processor
For the purposes of this section, I will assume you are using an Intel or compatible
processor. The use of such commodity hardware is likely to result in a lower-cost system
with a wider range of software available. There are a number of other options available,
including Alpha and Sparc architectures. Visit http://www.linux.org/ if you are inter-
ested in support for other processor architectures.

Cyrix and AMD make Pentium compatible processors. There have been some compatibi-
lity problems with Cyrix and AMD processors, but these have been resolved. I favor
Socket 7 motherboards, which allow you use Intel, Cyrix, and AMD processors inter-
changeably. There are also some other companies that make Pentium compatible
processors that will probably work with Linux but have been less thoroughly tested. IDT
markets the Centaur C6, a Pentium compatible processor, under the unfortunate name
“Winchip,” which apparently will run Linux, but I don’t see the Linux community lining
up to buy these chips. IBM used to make and sell the Cyrix chips under its own name in
exchange for the use of IBM’s fabrication plant; these may be regarded simply as Cyrix
chips for compatibility purposes. Future IBM x86 processors will apparently be based on
a different core. The Pentium II, Pentium III, Xeon, and Celeron chips will simply be
regarded as Pentium compatible CPUs.

There have been some very inexpensive systems made recently that use the Cyrix
MediaGX processor. These systems integrate the CPU, cache, Video, Audio, motherboard
chipset, and I/O onto two chips. The downside is that you cannot replace the MediaGX
with another brand of processor and that the video system uses system memory for video.
This practice slightly reduces the available system memory and uses processor/memory
bandwidth for screen refresh, which results in a system that is about a third slower than
you would expect based on the processor speed. The advantages are the lower cost and
the fact that all Media GX systems are basically the same from a software point of view.
Therefore, if you can get one Media GX system to work, all others should work. Video
support for the Media GX is provided by SuSE (go to http://www.suse.de/XSuSE/
XSuSE_E.html for more info) and there is a MediaGX video driver in the KGI. Audio
support has not been developed at the time of this writing, although it may be available
by the time this book is published.

My primary development machines have been running Linux for a couple years on Cyrix
P150+ processors (equivalent to a 150MHz Pentium) and upgrading the processor is still
among the least of my priorities. Given current processor prices, you will probably want
to shoot for about twice that speed, adjusting up or down based on your budget and avail-
ability.

Setting Up a Development System

CHAPTER 2
17

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

0472316072 CH02 7/26/99 2:00 PM Page 17

The Linux community seems to be waiting with interest to see the processor being devel-
oped by Transmeta, the company that hired Linus Torvalds and some other Linux gurus
(including my friend, Jeff Uphoff). The speculation, which is at least partially corroborat-
ed by the text of a patent issued to the company, is that this processor will have an archi-
tecture that is optimized for emulating other processors by using software translators and
a hardware translation cache. It is suspected that this chip may be a very good platform
for running Linux. Linux might even be the native OS supported on this chip under
which other operating systems and processor architectures are emulated.

BIOS
For a basic workstation, any of the major BIOS brands (AWARD, AMIBIOS, or
Phoenix) may suffice. The AMI BIOS has some problems that complicate the use of I/O
cards that have a PCI-to-PCI bridge such as the Adaptec Quartet 4 port ethernet cards.
The AWARD BIOS gives the user more control than does AMIBIOS or Phoenix. A flash
BIOS, which allows the user to download BIOS upgrades, is desirable and is standard on
most modern systems. Older 386 and 486 systems tend not to have a flash BIOS and
may also have the following problems:

• An older BIOS that may not be Y2K compliant

• May not support larger disk drives

• May not support booting off of removable media

Memory
64MB is reasonable for a typical development system. If you are not trying to run X win-
dows, you may be able to get by with only 8MB for a special purpose machine (such as
a crash and burn system for debugging device drivers). Kernel compile times are about
the same (less than1.5 minutes) with 32MB or 64MB (although they can be much longer
on a system with 8MB). If you want to run multimedia applications (such as a Web
browser), particularly at the same time you are compiling, expect the performance to suf-
fer a bit if you only have 32MB. Likewise, if you are developing applications that con-
sume lots of memory, you may need more RAM. This page was written on a system with
32MB of RAM but one of the other authors’ primary development system has ten times
that amount of memory to support Artificial Intelligence work.

Enclosure and Power Supply
Select an enclosure that matches your motherboard form factor and has sufficient drive
bays and wattage to accommodate your needs. Many case manufacturers have retooled

The Linux Programming Toolkit

PART I
18

0472316072 CH02 7/26/99 2:00 PM Page 18

their AT form factor cases to accommodate the ATX motherboard; if you order an AT
case, you may receive a newer ATX design with an I/O shield that has cutouts for AT
keyboard and mouse ports. For most applications, Mini-Tower, Mid-Tower, or Full-
Tower cases are likely to be the preferred choices. For some applications you may want
server or rack mount designs.

Setting Up a Development System

CHAPTER 2
19

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

NOTE

The power supply connectors are different for AT and ATX power supplies.

If you are building a mission-critical system, be aware that some power supplies will not
restore power to the system after a power outage. You may also be interested in a mini-
redundant power supply; these are slightly larger than a normal ATX or PS/2 power sup-
ply but some high end cases, particularly rack mount and server cases, are designed to
accommodate either a mini-redundant or a regular ATX or PS/2 supply.

User Interaction Hardware: Video,
Sound, Keyboard, and Mouse
The devices described in this section are the primary means of interacting with the user.
Support for video cards and monitors is largely a function of adequate information being
available from the manufacturer or other sources. Monitors usually require only a hand-
ful of specifications to be entered in response to the Xconfigurator program, but support
for a video card often requires detailed programming information and for someone to
write a new driver or modify an existing one. Sound cards require documentation and
programming support, like video cards, but speakers need only be suitable for use with
the sound card itself.

Video Card
If you only need a text mode console, most VGA video adapters will work fine. If you
need graphics support, you will need a VGA adapter that is supported by Xfree86,
SVGAlib, vesafb, and/or KGI.

Xfree86 is a free open-source implementation of the X Windowing System, which is an
open-standard-based windowing system that provides display access to graphical appli-
cations running on the same machine or over a network. Xfree86 support is generally

0472316072 CH02 7/26/99 2:00 PM Page 19

necessary and sufficient for a development workstation. For more information, visit
http://www.xfree86.org/. For drivers for certain new devices, check out XFcom
(formerly XSuSE) at http://www.suse.de/XSuSE/.

SVGAlib is a library for displaying full screen graphics on the console. It is primarily
used for a few games and image viewing applications, most of which have X Windowing
System versions or equivalents. Unfortunately, SVGAlib applications need root privi-
leges to access the video hardware so they are normally installed suid, which creates
security problems.

GGI, which stands for Generic Graphics Interface, tries to solve the problems of needing
root access, resolve conflicts between concurrent SVGAlib and X servers, and provide a
common API for writing applications to run under both X and SVGAlib. A part of GGI,
called KGI, provides low-level access to the framebuffer. GGI has also been ported to a
variety of other platforms so it provides a way of writing portable graphics applications,
although these applications are apparently limited to a single window paradigm.
Documentation is very sparse. This package shows future promise as the common low-
level interface for X servers and SVGAlib and a programming interface for real-time
action games.

OpenGL (and its predecessor GL) has long been the de facto standard for 3D modeling.
OpenGL provides an open API but not an open reference implementation. Mesa provides
an open source (GPL) implementation of an API very similar to OpenGL that runs under
Linux and many other platforms. Hardware acceleration is available for 3Dfx
Voodoo–based cards. For more information on Mesa, visit http://www.mesa3d.org/.
Metrolink provides a licensed OpenGL implementation as a commercial product; visit
http://www.metrolink.com/opengl/ for more information. Frame buffer devices pro-
vide an abstraction for access to the video buffer across different processor architectures.
The Framebuffer HOWTO, at http://www.tahallah.demon.co.uk/programming/
HOWTO-framebuffer-1.0pre3.html, provides more information. Vesafb provides frame
buffer device support for VESA 2.0 video cards on Intel platforms. Unfortunately, the
VESA specification appears to be a broken specification that only works when the CPU
is in real mode instead of protected mode, so switching video modes requires switching
the CPU out of protected mode to run the real mode VESA VGA BIOS code. Such
shenanigans may be common in the MS Windows world and may contribute to the insta-
bility for which that operating system is famous. KGIcon allows the use of KGI support-
ed devices as framebuffer devices.

The Linux Programming Toolkit

PART I
20

0472316072 CH02 7/26/99 2:00 PM Page 20

AGP (Accelerated Graphics Port) provides the processor with a connection to video
memory that is about four times the speed of the PCI bus and provides the video acceler-
ator with faster access to texture maps stored in system memory. Some AGP graphics
cards are supported under Linux.

Setting Up a Development System

CHAPTER 2
21

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

*Tip

Some companies offer commercial X servers for Linux and other UNIX-
compatible operating systems. Among them are Accelerated-X
(http://www.xigraphics.com/) and Metro-X (http://www.metrolink.com/).

*Tip

To determine which video cards and monitors are supported under Red Hat run
/usr/X11/bin/Xconfigurator --help as root on an existing system.

You will probably want at least 4MB of video memory to support 1280×1024 at 16bpp
(2.6MB). You will need 8MB to support 1600×1200 at 32bpp. Some 3D games might
benefit from extra memory for texture maps or other features if they are able to use the
extra memory. The X server will use some extra memory for a font cache and to expand
bitmap. If you want to configure a virtual screen that is larger than the physical screen
(the physical screen can scroll around the virtual screen when you move the cursor to the
edge) be sure to get enough memory to support the desired virtual screen size. The
FVWM window manager will create a virtual desktop that is by default four times the
virtual screen size, and will switch screens if you move the cursor to the edge of the
screen and leave it there momentarily; instead of using extra video memory, this feature
is implemented by redrawing the whole screen. The X server may use system memory
(not video memory) for “backing store” to allow it to redraw partially hidden windows
faster when they are revealed. If you use high resolution or pixel depth (16bpp or 32bpp)
screens, be aware that backing store will place additional demands on system memory.

There are some distinct advantages to installing a video card that supports large resolu-
tion and pixel depth in your Linux system. If you intend to make good use of the X serv-
er, this can be invaluable. Since Linux can easily handle many different processes at

0472316072 CH02 7/26/99 2:00 PM Page 21

once, you will want to have enough screen real estate to view multiple windows. A video
card that can support 1280×1024 resolution will satisfy this nicely. The other advantage
to a good video card is the pixel depth. Not only do the newer window managers run
more smoothly with the better pixel depth, it is also very useful if you want to use your
system for graphics work. Your monitor also has to be able to support the resolution of
your video card—otherwise you could not take full advantage of the capabilities your
system offers. (The following section discusses monitor selection in more detail.) It is
very important that you check the specifications of your hardware when deciding which
video card/monitor combination to use so that the two will work well together. Also, it is
always important to check out the hardware compatibility lists for Linux.

Monitor
Almost any monitor that is compatible with your video card will work under Linux if
you can obtain the specifications, particularly the vertical and horizontal refresh rates or
ranges supported and the video bandwidth. Note that bigger is not always better. What
matters is how many pixels you can put on the screen without sacrificing quality. I prefer
the 17” monitor I have on my development machine at one office to the very expensive
20” workstation monitor that sits next to it. I prefer many 15” monitors to their 17”
counterparts. If you have trouble focusing up close or want to sit very far away from
your monitor, you may need a large monitor, but otherwise a quality smaller monitor
closer to your head may give you equal or better quality at a lower price.

As discussed in the preceding section, the monitor and video card selections are very
closely related. It is good to test your monitor selection for clarity. One of the main con-
tributing factors to the clarity of a monitor is the dot pitch—the smaller the spacing
between pixels, the better. However, this can boost the price of a monitor. The other issue
here, again, is related to the video card. One monitor tested with different video cards
can have quite different results. A video card aimed more for business use (such as a
Matrox Millenium G200) will often produce a crisper image than a video card that is
intended for game use (such as Diamond V550). This is because some cards are opti-
mized for good 2D, 3D, or crisp text, but are not optimized for all three.

I recommend running your monitor at as close to 60Hz as you can even if it can run at
70Hz or higher. In some cases a monitor may look better at 70Hz, particularly if you are
hyped up on massive doses of caffeine and your monitor has short persistence phosphors,
but I find that usually it looks better at 60Hz. The reason for this is the ubiquitous 60Hz
interference from power lines, transformers, and other sources. Not only can this interfer-
ence be picked up in the cables and video circuitry but it also affects the electron beams
in the monitor’s cathode ray tube (CRT) directly. Shielding is possible but expensive and

The Linux Programming Toolkit

PART I
22

0472316072 CH02 7/26/99 2:00 PM Page 22

is not likely to be found in computer video monitors. If your image is visibly waving
back and forth, this is likely to be your problem. If the beat frequency (the difference
between the two frequencies) between the 60hz interference and the refresh rate is close
to zero, the effect will slow and become imperceptible. But if the beat frequency is larger
you will have instabilities that will be either very perceptible or more subtle but irritat-
ing. So a beat frequency of 0.1Hz (60Hz versus 60.1Hz) is likely to be fine but a beat
frequency of 10Hz (60Hz versus 70Hz) is likely to be very annoying.

Some countries use a frequency other than 60Hz for their power grid; in those countries,
you would need to match the refresh rate to the local power line frequency to avoid beat
frequency problems. Incidentally, some monitors deliberately make the image wander
around the screen slightly at a very slow rate to prevent burn-in; as long as this is very
slow, it is imperceptible (your own head movements are likely to be far greater).

The video configuration in Linux gives you much latitude in how you want to set up
your hardware. It is important to remember to have your settings within the specified
ranges for your hardware. Pushing the limits can result in poor performance or even the
destruction of your hardware.

Sound Cards
Linux supports a variety of sound cards, particularly Sound Blaster compatible (but not
all sound cards that claim to be compatible are—some use software assisted emulation),
older ESS chip-based cards (688 and 1688), Microsoft Sound System– based cards, and
many Crystal (Cirrus Logic) based cards. Consult the Hardware Compatibility HOWTO
document, Four Front Technologies Web site (at http://www.4front-tech.com/), or
the Linux kernel sources (browsable on the Net at http://metalab.unc.edu/
linux-source/) for more information. Four Front Technologies sells a package that
includes sound drivers for many cards that are not supported by the drivers shipped with
the kernel. Most newer sound cards seem to be PnP devices. Support for PnP cards is
available using the ISAPnP utilities mentioned above or the Four Front drivers.

Keyboard and Mouse
USB keyboards and mice are not recommended at this time; see “USB and Firewire
(IEEE 1394),” later in this chapter for more details. Normal keyboards that connect to a
standard AT or PS/2 style keyboard port should work fine, although the unusual extra
features on some keyboards may not work. Trackball, Glidepoint, and Trackpad pointing
devices that are built in to the keyboard normally have a separate connection to a serial
or PS/2 mouse port and may be regarded as separate mouse devices when considering

Setting Up a Development System

CHAPTER 2
23

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

0472316072 CH02 7/26/99 2:00 PM Page 23

software support issues. Normal PS/2 and serial mice are supported, including those that
speak Microsoft, Mouse Systems, or Logitech protocols. Mouse support is provided by
the gpm program and/or the X server. Many other pointing devices, including trackballs,
Glidepoints, and Trackpads will work if they emulate a normal mouse by speaking the
same communications protocol; some special features of newer trackpads, such as pen
input and special handling of boarder areas, may not work. Many X applications require
a three-button mouse, but gpm and the X server can be configured to emulate the extra
middle button by chording both buttons on a two-button mouse.

Communication Devices, Ports,
and Buses
This section contains information on various devices that provide communications chan-
nels. These channels can be used to communicate with other computers and with internal
or external peripherals.

The high-speed buses that connect expansion cards to the processor are included here.
Neither the ISA bus nor the PCI bus will be covered in detail, although ISA Plug and
Play devices and PCMCIA cards will have their own subsection since there are some
special considerations. Plain ISA and PCI cards should work fine as long as there is a
driver that supports that specific card. Most IDE controllers will work; for other IDE
devices, see “Storage Devices,” later in this chapter. Devices that connect to a parallel
(printer) port are discussed in their separate categories.

Modems
Most modems, with the exception of brain-dead winmodem types, modems that use the
proprietary Rockwell Protocol Interface (RPI), or modems that depend on a software
component for their functionality will work fine with Linux. Be aware, however, that
there is a real difference between the more expensive professional models and the cheap-
er consumer grade models. Almost any modem will perform well on good quality phone
lines, but on poor quality lines the distinction will become significant. That is why you
will see people on the Net who are both pleased and extremely dissatisfied with the same
inexpensive modems. It requires much more sophisticated firmware and several times as
much processing power to resurrect data from a poor quality connection as it does to
recover data from a good connection.

Serious developers are likely to want a dedicated Internet connection to their small office
or to their home. Some more expensive modems can operate in leased line mode. This
allows you to create a dedicated (permanent) 33.6Kbps leased line Internet connection

The Linux Programming Toolkit

PART I
24

0472316072 CH02 7/26/99 2:00 PM Page 24

over a unconditioned 2 wire (1 pair) dry loop. This can be handy if ISDN and xDSL are
not available in your area. A dry loop is a leased telephone line with no line voltage,
ringing signal, or dial tone that permanently connects two locations. It is sometimes
referred to as a “burglar alarm pair.” These lines are very inexpensive for short distances.
The average person working in a telco business office has no clue what these terms
mean. Expect to pay $200 or more for a modem that supports this feature.

Your chances of finding a pair of leased line modems that will work at 56K are not very
good since only modems with a digital phone line interface are likely to have the soft-
ware to handle 56K answer mode. I used a pair of leased line capable modems for a cou-
ple years over a wire distance of two or three miles, at a cost of about $15 per month;
more information on how to set this up is available on my Web site (http://
www.freelabs.com/~whitis/unleashed/). It is also possible to run xDSL over a rela-
tively short distance dry loop (I now use MVL, a variant of DSL which works better on
longer lines and provides 768Kbps, on the same dry loop) even though xDSL is intended
to be used with one of the modems located in the central office; this costs about $13,000
for 16 lines and the equipment is not, as far as I know, readily available in configurations
that are economically viable for a small number of lines. If you can spread the capital
cost over many lines, xDSL can be very economical compared to ISDN or T1 lines. In
my example, a dry loop costs $15 per month and provides a 768K connection versus $75
per month for an ISDN line or $400 per month for a T1 line (these charges are for local
loop only and do not include IP access).

If you want to support incoming (dial-in or answer mode) 56K connections, you will
need a modem with a digital phone line interface. Normally, ISPs use expensive modem
racks that have a T1 line interface for this purpose, which is only economically viable if
you are supporting dozens of lines. You might be able to find a modem that functions
both as an ordinary modem and as an ISDN terminal adapter and can produce 56K
answer mode modulation over an ISDN line.

If you want to set up a voice mail or interactive voice response (IVR) system, you will
probably want a modem that is capable of voice operation and is compatible with the
vgetty software. Check the Mgetty+Sendfax with Vgetty Extensions (FAQ) document for
voice modem recommendations.

For fax operation, your software choices include HylaFAX, mgetty+sendfax, and efax. A
modem that supports Class 2.0 FAX operation is preferred over one that can only do
Class 1 fax. Class 1 modems require the host computer to handle part of the real time fax
protocol processing and will malfunction if your host is too busy to respond quickly.
Class 2.0 modems do their own dirty work. Class 2 modems conform to an earlier
version of the Class 2.0 specification, which was never actually released as a standard.

Setting Up a Development System

CHAPTER 2
25

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

0472316072 CH02 7/26/99 2:00 PM Page 25

The mgetty+sendfax and efax packages come with Red Hat 5.2. HylaFAX comes on the
Red Hat Powertools CD. All three packages can be downloaded off the Internet.
HylaFAX is more complicated to set up but is better for an enterprise fax server since it
is server based and there are clients available for Linux, Microsoft Windows, MacOS,
and other platforms. Table 2.1 summarizes fax capabilities.

TABLE 2.1 FAX SUPPORT

Class 1 Class 2 Class 2.0

HylaFax Yes Yes Yes

Sendfax No Yes Yes

Efax Yes Yes Support untested

Network Interface Cards
The Tulip chips are considered by many to be the best choice for a PCI-based ethernet
card on a Linux system. They are fairly inexpensive, fast, reliable, and documented.
There have been some problems lately, however. There have been frequent, often slightly
incompatible, revisions to newer chips. The older chips, which were a safer choice, were
discontinued (this is being reversed) and the line was sold to competitor Intel, and there
was a shortage of cards. Many of these problems may be corrected by the time this book
is released, however; check the Tulip mailing list archives for more details. If you need
multiple ethernet interfaces in a single machine, Adaptec Quartet cards provide four
Tulip-based ethernet ports on a single machine. One of my Web pages gives more infor-
mation on using the Quartets under Linux.

For an inexpensive ISA 10MB/s card, the cheap NE2000 clones usually work well.
These cards tie up the CPU a bit more than more sophisticated designs when transferring
data, but are capable of operating at full wire speed. (Don’t expect full wire speed on a
single TCP connection such as an FTP transfer, however—you will need several simulta-
neous connections to get that bandwidth.)

3Com supports their ethernet boards under Linux, and Crystal (Cirrus Logic) offers
Linux drivers for their ethernet controller chips. Most WAN card manufacturers also
seem to provide Linux Drivers. SDL, Emerging Technologies, and Sangoma provide
Linux drivers.

The Linux Programming Toolkit

PART I
26

0472316072 CH02 7/26/99 2:00 PM Page 26

SCSI
Linux supports most SCSI controllers, including many RAID controllers, host adapters,
almost all SCSI disks, most SCSI tape drives, and many SCSI scanners. Some parallel
port–based host adapters are notable exceptions. Advansys supports their SCSI adapters
under Linux; the drivers that ship with the kernel were provided by Advansys. The
Iomega Jaz Jet PCI SCSI controller, which may be available at local retailers, is actually
an Advansys controller and is a good value. It is a good idea not to mix disk drives and
slow devices such as tape drives or scanners on the same SCSI bus unless the controller
(and its driver) and all of the slow devices on the bus support a feature known as “dis-
connect-reconnect”; it is rather annoying to have your entire system hang up for 30 sec-
onds or more while the tape rewinds or the scanner carriage returns. The SCSI HOWTO
has more information on disconnect-reconnect.

Setting Up a Development System

CHAPTER 2
27

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

*Warning

Beware of cheap SCSI controllers, particularly those that do not use interrupts.
In my limited experience with boards of this type, they often did not work at all
or would cause the system to hang for several seconds at a time. This may be
due to bugs in the driver for the generic NCR5380/NCR53c400 driver although in
at least on case the card was defective. The SCSI controllers I had trouble with
came bundled with scanners or were built-in on certain sound boards.

USB and Firewire (IEEE 1394)
USB and Firewire support are being developed. USB support is provided by a package
called UUSBD. It is apparently possible to use a USB mouse if you have a supported
USB controller (although you will need to download and install the code before you can
run X) but keyboards don’t work at the time of this writing. It is probably too early to
plan on using either of these on a development system except for tinkering. Links to
these projects are on linux.org under projects.

Serial Cards (Including Multiport)
Standard PC serial ports are supported, on or off the motherboard. Very old designs that
do not have a 16550A or compatible UART are not recommended but those are likely to
be pretty scarce these days.

0472316072 CH02 7/26/99 2:00 PM Page 27

Most intelligent multiport serial cards are supported, often with direct support from the
manufacturer. Cyclades, Equinox, Digi, and GTEK are some of the companies that sup-
port their multiport boards under Linux. Equinox also makes an interesting variation on a
serial port multiplexor that supports 16 ISA Modems (or cards that look exactly like
modems to the computer) in an external chassis.

Most dumb multiport serial cards also work, but beware of trying to put too many dumb
ports in a system unless the system and/or the ports are lightly loaded. Byterunner
(http://www.byterunner.com) supports their inexpensive 2/4/8 port cards under Linux;
unlike many dumb multiport boards, these are highly configurable, can optionally share
interrupts, and support all the usual handshaking signals.

IRDA
Linux support for IRDA (Infrared Data Association) devices is fairly new, so be prepared
for some rough edges. The Linux 2.2 Kernel is supposed to have included IRDA support,
but you will still need the irda-utils even after you upgrade to 2.2. The IRDA project’s
home page is at http://www.cs.uit.no/linux-irda/. I suspect that most laptops that
support 115Kbps SIR IRDA may emulate a serial port and won’t be too hard to get
working.

PCMCIA Cards
Linux PCMCIA support has been around for a while and is pretty stable. A driver will
need to exist for the particular device being used. If a device you need to use is not listed
in the /etc/pcmcia/config file supplied on the install disks for your Linux distribution,
installation could be difficult.

ISA Plug and Play
Although some kernel patches exist for Plug and Play, support for PnP under Linux is
usually provided using the ISAPnP utilities. These utilities do not operate automatically,
as you might expect for plug and play support. The good news is that this eliminates the
unpredictable, varying behavior of what is often referred to more accurately as “Plug and
Pray.” You run one utility, pnpdump, to create a sample configuration file with the various
configurations possible for each piece of PnP hardware, and then you manually edit that
file to select a particular configuration. Red Hat also ships a utility called sndconfig,
which is used to interactively configure some PnP sound cards. Avoid PnP for devices
that are needed to boot the system, such as disk controllers and network cards (for
machines that boot off the network).

The Linux Programming Toolkit

PART I
28

0472316072 CH02 7/26/99 2:00 PM Page 28

Storage Devices
Linux supports various storage devices commonly used throughout the consumer com-
puter market. These include most hard disk drives and removable media such as Zip,
CD-ROM/DVD, and tape drives.

Hard Disk
Virtually all IDE and SCSI disk drives are supported under Linux. Linux even supports
some older ST506 and ESDI controllers. PCMCIA drives are supported. Many software
and hardware RAID (Reliable Array of Independent Disks) configurations are supported
to provide speed, fault tolerance, and/or very large amounts of disk storage. A full Red
Hat 5.2 with Powertools and Gnome sampler installation and all source RPMs installed,
but not unpacked, will take about 2.5GB of disk space.

Removable Disks
More recent versions of the Linux kernel support removable media including Jaz, LS120,
Zip, and other drives. Using these drives as boot devices can be somewhat problematic.
My attempts to use a Jaz disk as a boot device were thwarted by the fact that the drive
apparently destroyed the boot disk about once a month; this may have just been a defec-
tive drive. Problems with the LS120 included being unable to use an LS120 disk as a
swap device because of incompatible sector sizes. Also be warned that there are software
problems in writing a boot disk on removable media on one computer and using it to
boot another living at a separate device address (for example, an LS120 might be the
third IDE device on your development system but the first on the system to be booted).

CD-ROM/DVD
Almost all CD-ROM drives will work for data, including IDE, SCSI, and even many
older proprietary interface drives. Some parallel port drives also work, particularly the
Microsolutions Backpack drives (which can be used to install more recent versions of
Red Hat). Some drives will have trouble being used as an audio CD player due to a lack
of standardization of those functions; even fewer will be able to retrieve “red book”
audio (reading the digital audio data directly off of an audio CD into the computer for
duplication, processing, or transmission).

Linux has support for many CD changers. The eject command has an option to select
individual disks from a changer. I found that this worked fine on a NEC 4x4 changer.
Recording of CD-R and CD-RW disks is done using the cdrecord program. The UNIX

Setting Up a Development System

CHAPTER 2
29

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

0472316072 CH02 7/26/99 2:00 PM Page 29

CD-Writer compatibility list at http://www.guug.de:8080/cgi-bin/winni/lsc.pl
gives more information on which devices are compatible. Be warned that due to limita-
tions of the CD-R drives, writing CDs is best done on very lightly loaded or dedicated
machines; even a brief interruption in the data stream will destroy data, and deleting a
very large file will cause even fast machines to hiccup momentarily. There are GUI front
ends for burning CD’s available, including BurnIT and X-CD-Roast.

Tape Backup
A wide variety of tape backup devices are supported under Linux, as well as various
other types of removable media. Linux has drivers for SCSI, ATAPI (IDE), QIC, floppy,
and some parallel port interfaces. I prefer to use SCSI DAT (Digital Audio Tape) drives
exclusively even though they can cost as much as a cheap PC. I have used Conner
Autochanger DAT drives, and although I could not randomly select a tape in the changer
under Linux, each time I ejected a tape the next tape would automatically be loaded.
Other autochangers might perform differently.

The Linux Programming Toolkit

PART I
30

*Warning

I caution against the use of compression on any tape device; read errors are
common and a single error will cause the entire remaining portion of the tape
to be unreadable.

External Peripherals
The devices in this section are optional peripherals that are normally installed outside the
system unit. From a software perspective, the drivers for these devices usually run in user
space instead of kernel space.

Printer
Printer support under Linux is primarily provided by the Ghostscript package
(http://www.ghostscript.com/). Support for Canon printers is poor, probably due to
Canon’s failure to make technical documentation available. Canon has refused to make
documentation available for the BJC-5000 and BJC-7000 lines (which are their only
inkjet printers that support resolutions suitable for good quality photographic printing).
Most HP printers (and printers that emulate HP printers) are supported, due to HP

0472316072 CH02 7/26/99 2:00 PM Page 30

making documentation available, except for their PPA-based inkjet printers, for which
they will not release the documentation.

The Canon BJC-5000, Canon BJC-7000, and HP PPA based printers are all partially
brain dead printers that apparently do not have any onboard fonts and rely on the host
computer to do all rasterization. This would not be a problem for Linux systems (except
for the unusual case of a real time system log printer) since Ghostscript is normally used
as a rasterizer and the onboard fonts and other features are not used. Some printers may
be truly brain dead and not have any onboard CPU; these might use the parallel port in a
very nonstandard manner to implement low level control over the printer hardware. The
HP720, HP820Cse, and HP1000 are PPA based printers. Partial support, in the form of a
ppmtopba conversion utility, is available for some PPA printers based on reverse engi-
neering. Some Lexmark inkjet printers might be supported, but many others are
Windows-only printers. I have used a Lexmark Optra R+ laser printer with an Ethernet
interface with Linux. It supports the LPD protocol so it is simply set up as a remote LPD
device.

A Linux box can act as a print server for Windows clients or act as a client for a
Windows printer by using the Samba package. A Linux box can act as a print server for
MacOS clients by using the Netatalk package. A Linux box running the ncpfs package
can apparently serve as a print server for NetWare 2.x, 3.x, or 4.x clients with bindery
access enabled, or print to a remote Netware printer. HP printers with JetDirect ethernet
interfaces support LPD and will work as remote printers under Linux.

Ghostscript can run on almost every operating system that runs on hardware with enough
resources to function as a rasterizer. A single ghostscript driver (or PBM translator) is
sufficient to support a printer on virtually every computer, including those running every
UNIX-compatible operating system, MacOS, OS/2, and Windows 3.1, Windows 95,
Windows 98, Windows NT, and many others. Ghostscript can coexist with, replace, or
already is the native printing rasterizer (if any) on these operating systems and can inte-
grate with the queuing system on almost all of these. Ghostscript can produce PBM
(Portable BitMap) files. The use of a PBM translator can avoid various copyright issues
since it does not have to be linked into a GPLed program. Therefore, the failure of print-
er manufacturers to provide Ghostscript drivers or PBM translators is reprehensible.

Setting Up a Development System

CHAPTER 2
31

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

TIP

More detailed information on printing under Linux can be found in the Linux
Printing HOWTO.

0472316072 CH02 7/26/99 2:00 PM Page 31

Scanners
Support for scanners is a bit sparse, although close to 100 different models from a couple
dozen manufacturers are supported by the SANE package; manufacturers who not only
fail to provide drivers themselves but also withhold documentation are culpable for this
state of affairs.

There have been various projects to support individual or multiple scanners under Linux.
These have been eclipsed by the SANE package(http://www.mostang.com/sane/)
which, no doubt, benefited from its predecessors. The name is a play on, and a potshot
at, TWAIN, which passes for a standard in the Microsoft world. In TWAIN, the driver
itself paints the dialog box that appears when you request a scan. This is not a “sane”
way of doing things. It interferes with non-interactive scanning (such as from a command
line, Web cgi, or production scanning applications), interferes with network sharing of a
device, and interferes with making drivers that are portable across many platforms.
SANE is able to do all of these things.

In SANE, the driver has a list of attributes that can be controlled, and the application sets
those attributes (painting a dialog box or parsing arguments as necessary). SANE has
been ported to a variety of platforms including about 18 different flavors of UNIX and
OS/2. SANE provides a level of abstraction for the low level SCSI interfaces, and
abstractions are being worked on for a few other OS specific features (such as fork())
which interfere with portability to some platforms. SANE has not been ported to the
Windows and MAC platforms, although there is no reason this can’t be done. Some have
questioned the need to do this because the manufacturers ship drivers for these operating
systems with most scanners. However, once SANE has been ported to these operating
systems and a TWAIN to SANE shim has been written, there will be no legitimate reason
for anyone to ever write another TWAIN driver again as long as the port and shim are
distributed under license agreements that allow scanner manufacturers to distribute the
software with their products.

Digital Cameras
There are programs to handle many hand-held digital cameras which will run Linux.
Cameras that support compact flash or floppy disk storage of standard JPEG images
should also work using those media to transfer the image data. A new application called
gPhoto (http://gphoto.fix.no/gphoto/) supports about ten different brands of digital
cameras. Some digital cameras may also be supported under the SANE library.

There are software drivers for a variety of Frame Grabbers, TV tuners, and the popular
Quickcam cameras available on the Net. Consult the relevant section of the Hardware
Compatibility HOWTO for links to these resources.

The Linux Programming Toolkit

PART I
32

0472316072 CH02 7/26/99 2:00 PM Page 32

Home Automation
I will give brief mention to a few gadgets that can be used to control the real world.
There are a couple of programs to control the X10 CM11A (usually sold as part of the
CK11A kit) computer interface module. The X10 system sends carrier current signals
over your household or office power lines to control plug in, wall switch, or outlet mod-
ules that switch individual devices on or off. The X10 carrier current protocol is patented
but well documented; the documentation for the computer interface is available on the
Net. The CM11A may be superseded by the CM14A by the time this gets into print.

Nirvis systems makes a product called the Slink-e, which is an RS-232 device used to
control stereo and video gear using infrared, Control-S, S-link/Control-A1, and Control-
A protocols. It can also receive signals from infrared remotes; this would allow you to
write applications that record and replay remote control signals or respond to remote
controls (handy for presentations). There is no Linux driver available yet, as far as I
know, but the documentation is available from their Web site at
http://www.nirvis.com/. Among other things, this unit can control a Sony 200 disk CD
changer and not just queue up CD’s, but actually poll the track position and the disk seri-
al number (other brands of CD players apparently cannot do this); the company supplies
a Windows based CD player application that works with the Internet CD Database. The
folks at Nirvus have already done the reverse engineering on some of the protocols.

Complete Systems
A number of companies specialize in preinstalled Linux systems. VA Research and
Linux Hardware Solutions are two popular examples; consult the hardware section at
Linux.org for a much more complete list of these vendors.

Corel Computer Corp has versions of their Netwinder systems (which use StrongARM
CPUs) with Linux preinstalled. These are fairly inexpensive systems aimed at the thin
client and Web server market. Cobalt Networks offers the Qube, a Linux-based server
appliance in a compact package that uses a MIPS processor. It appears that SGI will be
supporting Linux on some of their MIPS based workstations.

A few of the major PC brands have recently announced that they will be shipping some
of their servers or workstations reconfigured with Linux, including Dell and Hewlett
Packard. Compaq is now marketing a number of their systems to the Linux community,
although apparently they are not available with Linux preinstalled. IBM has announced
that they will be supporting Linux but it will apparently be up to the authorized reseller
to preinstall it. Rumor has it that many other PC brands will announce preinstalled Linux
systems by the time this book is printed.

Setting Up a Development System

CHAPTER 2
33

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

0472316072 CH02 7/26/99 2:01 PM Page 33

Laptops
Support for laptops is a bit tricky because laptops have short development cycles, often
use very new semiconductors, and the manufacturers rarely provide technical documenta-
tion. In spite of this, there is information on the Net concerning using Linux on approxi-
mately 300 laptop models. Consult the Hardware Compatibility HOWTO document for
links to pages that have the latest information on support for specific laptop models and
features.

The Linux Programming Toolkit

PART I
34

*Note

Linux supports a number of electronic pocket organizers. 3Com’s PalmPilot is
the most popular and best supported.

Linux supports Automatic Power Management (APM). There can be problems with sus-
pend/resume features not working correctly; there can be problems with the graphics
modes being restored properly for X (you may have better luck if you switch to a text
console before suspending) and you may need a DOS partition for the suspend to disk
feature to work. Some laptops do not allow you to have the floppy and the CD-ROM
present simultaneously, which can make installation tricky (although most newer models
probably support booting off of CD-ROM).

Installation
Installation of Red Hat Linux, which is included on 2 CD’s in the back of this book, is
covered in The Official Red Hat Linux Installation Guide, which is available in HTML
on the Net at ftp://ftp.reddat.com/reddat/reddat-5.2/i386/doc/rhmanual/ or on
the enclosed Red Hat Linux CD-ROM in the directory /doc/rhmanual/. If you wish to
use a different distribution, consult the documentation that came with that distribution.

I recommend making a complete log of the machine configuration, the choices made
during the installation, and all commands needed to install any packages you may have
installed later. This is a nuisance at first but becomes very valuable when you want to
install a second system, upgrade, or reinstall a system after a crash or a security compro-
mise. Copy this log file offline and/or offsite or make printouts periodically. I normally
log this information in a file called /root/captains-log as executable shell commands,
as shown in Listing 2.1. If I edit a file, I record the diffs as a “here document” (see the

0472316072 CH02 7/26/99 2:01 PM Page 34

bash man page) piped into “patch.” One very important thing to log is where you down-
loaded code from; I do this as an ncftp or lynx -source command.

LISTING 2.1 SAMPLE CAPTAINS LOG

First, lets introduce some of the commands we will
be using. The commands marked with “***” will be
covered in detail in later chapters. Refer to the
bash man page or the man page
#
cat - copies its input to its output
diff - compares two files ***
patch - applies the changes in a diff ***
ncftp - ftp client program
lynx - text mode web broswer
tar - pack and unpack tar archives
cd - change current directory
make - drives the compilation process ***
echo - display its arguments
echo hello, world - says “hello world”
#
These are some examples of shell magic, see the bash
man page for more details:
- marks a comment line
foo=bar - set variable foo equal to bar
export FOO=bar - similar, but subprocesses will inherit value
echo $(foo) - substitute $(foo) into
xxx | yyy - pipe output of command xxx into command yyy
xxx >yyy - redirect the output of command xxx to file yyy
xxx >>yyy - same, but append to file yyy
xxx <yyy - redirect input of command xxx from file yyy
xxx\ - Line continuation character “\”
yyy - .. continuation of above line, i.e xxxyyy
xxx <<\...EOF... - “here document” - runs the program xxx
line1 - .. taking input from the following
line2 - .. lines in the script up to the line
...EOF... - .. which begins with “...EOF...”;

Gnozzle
###
This is a sample captains-log entry to install
a ficticious package called gnozzle

datestamp produced using “date” command:
Mon Feb 22 21:39:26 EST 1999

Setting Up a Development System

CHAPTER 2
35

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

continues

0472316072 CH02 7/26/99 2:01 PM Page 35

LISTING 2.1 CONTINUED

download it
cd /dist
ncftp -r -D ftp://ftp.gnozzle.com/pub/gnozzle-0.63.tar.gz
or...
#lynx -source http://www.gnozzle.com/gnozzle-0.63.tar.gz \

>gnozzle-0.63.tar.gz

Here we unpack the tarball, after first checking
the directory structure
cd /usr/local/src
tar ztvf gnozzle-0.63.tar.gz
tar zxvf gnozzle-0.63.tar.gz
cd gnozzle-0.63/

Here we create a permanent record of changes we
made using a text editor as a patch command. In this
case, we changed the values of CC and PREFIX in the
file Makefile. The patch has one hunk which spans
lines 1 through 7.

the following patch was made like this:
cp Makefile Makefile.orig
emacs Makefile
diff -u Makefile.orig Makefile
beware of mangled whitespace (especially tabs) when
cutting and pasting.
patch Makefile <<\...END.OF.PATCH...
--- Makefile.orig Mon Feb 22 21:12:41 1999
+++ Makefile Mon Feb 22 21:13:14 1999
@@ -1,7 +1,7 @@
VERSION=0.63
-CC=pcc
+CC=gcc
CFLAGS=-g
-PREFIX=/usr
+PREFIX=/usr/local
BIN=$(PREFIX)/bin
LIB=$(PREFIX)/bin
MAN=$(PREFIX)/man/man1
...END.OF.PATCH...

Here we build the program and install it
make clean
make
make -n install # see what it would do first
make install

Here we create a new file with a couple lines of text
cat >/etc/gnozzle.conf <<\...EOF...

The Linux Programming Toolkit

PART I
36

0472316072 CH02 7/26/99 2:01 PM Page 36

gnozzlelib=/usr/local/lib/gnozzle
allow
...EOF...

Here, we append a couple lines to the magic file,
which is used by the some commands to
guess the type of a file, to add the characteristic
signature of a gnozzle data file.
cat >>/usr/share/magic <<\...EOF...
gnozzle
0 long FEDCBA98 Gnozzle data file
...EOF...

###
Here are some more commands which are useful to create
a logfile of everything which was done, from which you
can extract pertinent details for the captains log.
Their effect may not be apparent unless you have a
Linux box up and running and try them.
the script command runs another shell with all output
redirected to a file. Not to be confused with a
“shell script” which is a sequence of commands
to be executed by the shell. Do not include “script”
commands in a “shell script”.
script install_101.log
PS4=+++
set -v -x
...
do diffs so they can easily be extracted from log:
diff -u Makefile.orig Makefile | sed -e “s/^/+++ /”
...
^D (control-D - end script, and shell)
fgrep +++ install_101.log | sed -e s/^+++//

If you purchased a machine that has Windows 98 preinstalled, you will want to boot
Windows and examine the resource settings (IO, IRQ, and DMA) for all installed hard-
ware. This information can be very valuable during the Linux installation. Doing so may,
however, prevent you from refusing the terms of the Windows 98 License Agreement and
returning it for a refund.

After you have completed the installation program, you may need to do some other
things that are outlined in the Post Installation section of the Red Hat Manual. There are
two steps that I normally do first, however. First, I reorganize the disk layout to undo the
concessions I made to accommodate the limitations of the Red Hat install program. You
may or may not wish to do this; there are problems with the install program during
upgrades as well. Second, I use a script to disable all unwanted daemons (I tell the install

Setting Up a Development System

CHAPTER 2
37

2

S
ETTIN

G
U

P
A

D
EV

ELO
PM

EN
T

S
Y

STEM

0472316072 CH02 7/26/99 2:01 PM Page 37

program to enable all daemons to preserve the information about the starting sequence).
Disabling unnecessary services is one of the most important and simplest things you can
do to secure your computer from attack. The scripts to accomplish both of these tasks are
available on my Linux Web pages.

After installation, you may wish to upgrade or install software packages that Red Hat
does not include because of export controls or licensing reasons. You may wish to
upgrade Netscape to a version that supports 128-bit encryption. You may want to install
Adobe Acrobat Reader software to handle PDF files. You may wish to install SSH to per-
mit secure, encrypted remote logins, file transfers, and remote program execution; use of
SSH may require a license fee for some commercial uses. You may wish to upgrade the
Web server to support SSL. And you probably will want to download any upgrades, par-
ticularly security related ones, from the Red Hat FTP site.

Next, you may wish to install any additional applications you know you will need. To
locate RPM versions of these applications, consult the RPM database at
http://rufus.w3.org/. If you are concerned about security, you may not want to install
any binary packages except from a few well trusted sources; instead, inspect and then
install from source RPM’s or the original source tarballs (archives created with the tar
program).

Summary
Careful selection of hardware will simplify installation. As more manufacturers are
forced by the marketplace to act more responsibly by releasing documentation for their
products or, better yet, direct support for Linux, this will be less of an issue. Also, as the
distributions become more robust the support for more types and makes of hardware are
being supported. As a general rule of thumb it is always a good practice to confirm sup-
port for your hardware using the sources available on the Internet, the HOWTO’s, and
the SuSE’s hardware database. This can save you many headaches and frustrations dur-
ing your install. When installing your development system, it is your turn to further
document your system, lest you find yourself reinventing the wheel. Once you have one
system up and running, you may wish to experiment with hardware that has less stable
support.

The Linux Programming Toolkit

PART I
38

0472316072 CH02 7/26/99 2:01 PM Page 38

IN THIS CHAPTER

• Features of GNU cc 40

• A Short Tutorial 40

• Common Command-line Options 43

• Optimization Options 47

• Debugging Options 48

• GNU C Extensions 49

3
C

H
A

PT
ER

Using GNU cc

by Kurt Wall

0572316072 CH03 7/26/99 2:00 PM Page 39

GNU cc (gcc) is the GNU project’s compiler suite. It compiles programs written in C,
C++, or Objective C. gcc also compiles Fortran (under the auspices of g77). Front-ends
for Pascal, Modula-3, Ada 9X, and other languages are in various stages of development.
Because gcc is the cornerstone of almost all Linux development, I will discuss it in some
depth. The examples in this chapter (indeed, throughout the book unless noted other-
wise), are based on gcc version 2.7.2.3.

Features of GNU cc
gcc gives the programmer extensive control over the compilation process. The compila-
tion process includes up to four stages:

• Preprocessing

• Compilation Proper

• Assembly

• Linking

You can stop the process after any of these stages to examine the compiler’s output at
that stage. gcc can also handle the various C dialects, such as ANSI C or traditional
(Kernighan and Ritchie) C. As noted above, gcc happily compiles C++ and Objective C.
You can control the amount and type of debugging information, if any, to embed in the
resulting binary and, like most compilers, gcc can also perform code optimization. gcc
allows you to mix debugging information and optimization. I strongly discourage doing
so, however, because optimized code is hard to debug: Static variables may vanish or
loops may be unrolled, so that the optimized program does not correspond line-for-line
with the original source code.

gcc includes over 30 individual warnings and three “catch-all” warning levels. gcc is
also a cross-compiler, so you can develop code on one processor architecture that will be
run on another. Finally, gcc sports a long list of extensions to C and C++. Most of these
extensions enhance performance, assist the compiler’s efforts at code optimization, or
make your job as a programmer easier. The price is portability, however. I will mention
some of the most common extensions because you will encounter them in the kernel
header files, but I suggest you avoid them in your own code.

A Short Tutorial
Before beginning an in-depth look at gcc, a short example will help you start using gcc
productively right away. For the purposes of this example, we will use the program in
Listing 3.1.

The Linux Programming Toolkit

PART I
40

0572316072 CH03 7/26/99 2:00 PM Page 40

LISTING 3.1 CANONICAL PROGRAM TO DEMONSTRATE gcc USAGE

1 /*
2 * Listing 3.1
3 * hello.c – Canonical “Hello, world!” program 4 4 */
5 #include <stdio.h>
6
7 int main(void)
8 {
9 fprintf(stdout, “Hello, Linux programming world!\n”);

10 return 0;
11 }

To compile and run this program, type

$ gcc hello.c -o hello
$./hello
Hello, Linux programming world!

The first command tells gcc to compile and link the source file hello.c, creating an exe-
cutable, specified using the -o argument, hello. The second command executes the pro-
gram, resulting in the output on the third line.

A lot took place under the hood that you did not see. gcc first ran hello.c through the
preprocessor, cpp, to expand any macros and insert the contents of #included files. Next,
it compiled the preprocessed source code to object code. Finally, the linker, ld, created
the hello binary.

You can re-create these steps manually, stepping through the compilation process. To tell
gcc to stop compilation after preprocessing, use gcc’s -E option:

$ gcc -E hello.c -o hello.cpp

Examine hello.cpp and you can see the contents of stdio.h have indeed been inserted
into the file, along with other preprocessing tokens. The next step is to compile
hello.cpp to object code. Use gcc’s -c option to accomplish this:

$ gcc -x cpp-output -c hello.cpp -o hello.o

In this case, you do not need to specify the name of the output file because the compiler
creates an object filename by replacing .c with .o. The -x option tells gcc to begin com-
pilation at the indicated step, in this case, with preprocessed source code.

How does gcc know how to deal with a particular kind of file? It relies upon file exten-
sions to determine how to process a file correctly. The most common extensions and
their interpretation are listed in Table 3.1.

Using GNU cc

CHAPTER 3
41

3

U
SIN

G
G

N
U

 C
C

0572316072 CH03 7/26/99 2:00 PM Page 41

TABLE 3.1 HOW gcc INTERPRETS FILENAME EXTENSIONS

Extension Type

.c C language source code

.C, .cc C++ language source code

.i Preprocessed C source code

.ii Preprocessed C++ source code

.S, .s Assembly language source code

.o Compiled object code

.a, .so Compiled library code

Linking the object file, finally, creates a binary:

$ gcc hello.o -o hello

Hopefully, you will see that it is far simpler to use the “abbreviated” syntax we used
above, gcc hello.c -o hello. I illustrated the step-by-step example to demonstrate that
you can stop and start compilation at any step, should the need arise. One situation in
which you would want to step through compilation is when you are creating libraries. In
this case, you only want to create object files, so the final link step is unnecessary.
Another circumstance in which you would want to walk through the compilation process
is when an #included file introduces conflicts with your own code or perhaps with
another #included file. Being able to step through the process will make it clearer which
file is introducing the conflict.

Most C programs consist of multiple source files, so each source file must be compiled
to object code before the final link step. This requirement is easily met. Suppose, for
example, you are working on killerapp.c, which uses code from helper.c. To compile
killerapp.c, use the following command:

$ gcc killerapp.c helper.c -o killerapp

gcc goes through the same preprocess-compile-link steps as before, this time creating
object files for each source file before creating the binary, killerapp. Typing long com-
mands like this does become tedious. In Chapter 4, “Project Management Using GNU
make,” we will see how to solve this problem. The next section will begin introducing
you to the multitude of gcc’s command-line options.

The Linux Programming Toolkit

PART I
42

0572316072 CH03 7/26/99 2:00 PM Page 42

Common Command-line Options
The list of command-line options gcc accepts runs to several pages, so we will only look
at the most common ones in Table 3.2.

TABLE 3.2 gcc COMMAND-LINE OPTIONS

Option Description

-o FILE Specify the output filename; not necessary when compiling
to object code. If FILE is not specified, the default name is
a.out.

-c Compile without linking.

-DFOO=BAR Define a preprocessor macro named FOO with a value of
BAR on the command-line.

-IDIRNAME Prepend DIRNAME to the list of directories searched for
include files.

-LDIRNAME Prepend DIRNAME to the list of directories searched for
library files. By default, gcc links against shared libraries.

-static Link against static libraries.

-lFOO Link against libFOO.

-g Include standard debugging information in the binary.

-ggdb Include lots of debugging information in the binary that
only the GNU debugger, gdb, can understand.

-O Optimize the compiled code.

-ON Specify an optimization level N, 0<=N<= 3.

-ansi Support the ANSI/ISO C standard, turning off GNU exten-
sions that conflict with the standard (this option does not
guarantee ANSI-compliant code).

-pedantic Emit all warnings required by the ANSI/ISO C standard.

-pedantic-errors Emit all errors required by the ANSI/ISO C standard.

-traditional Support the Kernighan and Ritchie C language syntax
(such as the old-style function definition syntax). If you
don’t understand what this means, don’t worry about it.

-w Suppress all warning messages. In my opinion, using this
switch is a very bad idea!

Using GNU cc

CHAPTER 3
43

3

U
SIN

G
G

N
U

 C
C

continues

0572316072 CH03 7/26/99 2:00 PM Page 43

TABLE 3.2 CONTINUED

Option Description

-Wall Emit all generally useful warnings that gcc can provide.
Specific warnings can also be flagged using -W{warning}.

-werror Convert all warnings into errors, which will stop the com-
pilation.

-MM Output a make-compatible dependency list.

-v Show the commands used in each step of compilation.

We have already seen how -c works, but -o needs a bit more discussion. -o FILE tells
gcc to place output in the file FILE regardless of the output being produced. If you do not
specify -o, the defaults for an input file named FILE.SUFFIX are to put an executable in
a.out, object code in FILE.o, and assembler code in FILE.s. Preprocessor output goes to
standard output.

Library and Include Files
If you have library or include files in non-standard locations, the -L{DIRNAME} and
-I{DIRNAME} options allow you to specify these locations and to insure that they are
searched before the standard locations. For example, if you store custom include files in
/usr/local/include/killerapp, then in order for gcc to find them, your gcc invocation
would be something like

$ gcc someapp.c -I/usr/local/include/killerapp

Similarly, suppose you are testing a new programming library, libnew.so (.so is the
normal extension for shared libraries— more on this subject in Chapter 24, “Using
Libraries”) currently stored in /home/fred/lib, before installing it as a standard system
library. Suppose also that the header files are stored in /home/fred/include.
Accordingly, to link against libnew.so and to help gcc find the header files, your gcc
command line should resemble the following:

$gcc myapp.c -L/home/fred/lib -I/home/fred/include -lnew

The -l option tells the linker to pull in object code from the specified library. In this
example, I wanted to link against libnew.so. A long-standing UNIX convention is that
libraries are named lib{something}, and gcc, like most compilers, relies on this conven-
tion. If you fail to use the -l option when linking against libraries, the link step will fail
and gcc will complain about undefined references to “function_name.”

The Linux Programming Toolkit

PART I
44

0572316072 CH03 7/26/99 2:00 PM Page 44

By default, gcc uses shared libraries, so if you must link against static libraries, you have
to use the -static option. This means that only static libraries will be used. The follow-
ing example creates an executable linked against the static ncurses. Chapter 27, “Screen
Manipulation with ncurses,” discusses user interface programming with ncurses:

$ gcc cursesapp.c -lncurses -static

When you link against static libraries, the resulting binary is much larger than using
shared libraries. Why use a static library, then? One common reason is to guarantee that
users can run your program—in the case of shared libraries, the code your program
needs to run is linked dynamically at runtime, rather than statically at compile time. If
the shared library your program requires is not installed on the user’s system, she will get
errors and not be able to run your program.

The Netscape browser is a perfect example of this. Netscape relies heavily on Motif, an
expensive X programming toolkit. Most Linux users cannot afford to install Motif on
their system, so Netscape actually installs two versions of their browser on your system;
one that is linked against shared libraries, netscape-dynMotif, and one that is statically
linked, netscape-statMotif. The netscape “executable” itself is actually a shell script
that checks to see if you have the Motif shared library installed and launches one or the
other of the binaries as necessary.

Error Checking and Warnings
gcc boasts a whole class of error-checking, warning-generating, command-line options.
These include -ansi, -pedantic, -pedantic- errors, and -Wall. To begin with,
-pedantic tells gcc to issue all warnings demanded by strict ANSI/ISO standard C. Any
program using forbidden extensions, such as those supported by gcc, will be rejected.
-pedantic-errors behaves similarly, except that it emits errors rather than warnings.
-ansi, finally, turns off GNU extensions that do not comply with the standard. None of
these options, however, guarantee that your code, when compiled without error using any
or all of these options, is 100 percent ANSI/ISO-compliant.

Consider Listing 3.2, an example of very bad programming form. It declares main() as
returning void, when in fact main() returns int, and it uses the GNU extension long
long to declare a 64-bit integer.

LISTING 3.2 NON-ANSI/ISO SOURCE CODE

1 /*
2 * Listing 3.2
3 * pedant.c - use -ansi, -pedantic or -pedantic-errors

Using GNU cc

CHAPTER 3
45

3

U
SIN

G
G

N
U

 C
C

continues

0572316072 CH03 7/26/99 2:00 PM Page 45

LISTING 3.2 CONTINUED

4 */
5 #include <stdio.h>
6
7 void main(void)
8 {
9 long long int i = 0l;
10 fprintf(stdout, “This is a non-conforming C program\n”);
11 }

Using gcc pedant.c -o pedant, this code compiles without complaint. First, try to
compile it using -ansi:

$ gcc -ansi pedant.c -o pedant

Again, no complaint. The lesson here is that -ansi forces gcc to emit the diagnostic
messages required by the standard. It does not insure that your code is ANSI C[nd]com-
pliant. The program compiled despite the deliberately incorrect declaration of main().
Now, -pedantic:

$ gcc -pedantic pedant.c -o pedant
pedant.c: In function `main’:
pedant.c:9: warning: ANSI C does not support `long long’

The code compiles, despite the emitted warning. With -pedantic- errors, however, it
does not compile. gcc stops after emitting the error diagnostic:

$ gcc -pedantic-errors pedant.c -o pedant
pedant.c: In function `main’:
pedant.c:9: ANSI C does not support `long long’
$ ls
a.out* hello.c helper.h killerapp.c
hello* helper.c killerapp* pedant.c

To reiterate, the -ansi, -pedantic, and -pedantic-errors compiler options do not
insure ANSI/ISO-compliant code. They merely help you along the road. It is instructive
to point out the remark in the info file for gcc on the use of -pedantic:

“This option is not intended to be useful; it exists only to satisfy pedants who would oth-
erwise claim that GNU CC fails to support the ANSI standard. Some users try to use
`-pedantic’ to check programs for strict ANSI C conformance. They soon find that it does
not do quite what they want: it finds some non-ANSI practices, but not all—only those
for which ANSI C requires a diagnostic.”

The Linux Programming Toolkit

PART I
46

0572316072 CH03 7/26/99 2:00 PM Page 46

Optimization Options
Code optimization is an attempt to improve performance. The trade-off is lengthened
compile times and increased memory usage during compilation.

The bare -O option tells gcc to reduce both code size and execution time. It is equivalent
to -O1. The types of optimization performed at this level depend on the target processor,
but always include at least thread jumps and deferred stack pops. Thread jump optimiza-
tions attempt to reduce the number of jump operations; deferred stack pops occur when
the compiler lets arguments accumulate on the stack as functions return and then pops
them simultaneously, rather than popping the arguments piecemeal as each called func-
tion returns.

O2 level optimizations include all first-level optimization plus additional tweaks that
involve processor instruction scheduling. At this level, the compiler takes care to make
sure the processor has instructions to execute while waiting for the results of other
instructions or data latency from cache or main memory. The implementation is highly
processor-specific. -O3 options include all O2 optimizations, loop unrolling, and other
processor-specific features.

Depending on the amount of low-level knowledge you have about a given CPU family,
you can use the –f{flag} option to request specific optimizations you want performed.
Three of these flags bear consideration: -ffastmath, -finline-functions, and
–funroll-loops. –ffastmath generates floating-point math optimizations that increase
speed, but violate IEEE and/or ANSI standards. –finline-functions expands all “sim-
ple” functions in place, much like preprocessor macro replacements. Of course, the com-
piler decides what constitutes a simple function. –funroll-loops instructs gcc to unroll
all loops that have a fixed number of iterations that can be determined at compile time.
Inlining and loop unrolling can greatly improve a program’s execution speed because
they avoid the overhead of function calls and variable lookups, but the cost is usually a
large increase in the size of the binary or object files. You will have to experiment to see
if the increased speed is worth the increased file size. See the gcc info pages for more
details on processor flags.

Using GNU cc

CHAPTER 3
47

3

U
SIN

G
G

N
U

 C
C

NOTE

For general usage, using -O2 optimization is sufficient. Even on small programs,
like the hello.c program introduced at the beginning of this chapter, you will
see small reductions in code size and small increases in performance time.

0572316072 CH03 7/26/99 2:00 PM Page 47

Debugging Options
Bugs are as inevitable as death and taxes. To accommodate this sad reality, use gcc’s -g
and -ggdb options to insert debugging information into your compiled programs to facili-
tate debugging sessions.

The -g option can be qualified with a 1, 2, or 3 to specify how much debugging informa-
tion to include. The default level is 2 (-g2), which includes extensive symbol tables, line
numbers, and information about local and external variables. Level 3 debugging informa-
tion includes all of the level 2 information and all of the macro definitions present. Level
1 generates just enough information to create backtracks and stack dumps. It does not
generate debugging information for local variables or line numbers.

If you intend to use the GNU Debugger, gdb (covered in Chapter 36, “Debugging: GNU
gdb”), using the -ggdb option creates extra information that eases the debugging chore
under gdb. However, this will also likely make the program impossible to debug using
other debuggers, such as the DBX debugger common on the Solaris operating system.
-ggdb accepts the same level specifications as -g, and they have the same effects on the
debugging output. Using either of the two debug-enabling options will, however, dramat-
ically increase the size of your binary. Simply compiling and linking the simple hello.c
program I used earlier in this chapter resulted in a binary of 4089 bytes on my system.
The resulting sizes when I compiled it with the -g and -ggdb options may surprise you:

$ gcc -g hello.c -o hello_g
$ ls -l hello_g
-rwxr-xr-x 1 kwall users 6809 Jan 12 15:09 hello_g*

$ gcc -ggdb hello.c -o hello_ggdb
$ ls -l hello_ggdb
-rwxr-xr-x 1 kwall users 354867 Jan 12 15:09
hello_ggdb*

As you can see, the -g option increased the binary’s size by half, while the -ggdb option
bloated the binary nearly 900 percent! Despite the size increase, I recommend shipping
binaries with standard debugging symbols (created using –g) in them in case someone
encounters a problem and wants to try to debug your code for you.

Additional debugging options include the -p and -pg options, which embed profiling
information into the binary. This information is useful for tracking down performance
bottlenecks in your code. –p adds profiling symbols that the prof program can read, and
–pg adds symbols that the GNU project’s prof incarnation, gprof, can interpret. The -a
option generates counts of how many times blocks of code (such as functions) are
entered. -save-temps saves the intermediate files, such as the object and assembler files,
generated during compilation.

The Linux Programming Toolkit

PART I
48

0572316072 CH03 7/26/99 2:00 PM Page 48

Finally, as I mentioned at the beginning of this chapter, gcc allows you simultaneously to
optimize your code and insert debugging information. Optimized code presents a debug-
ging challenge, however, because variables you declare and use may not be used in the
optimized program, flow control may branch to unexpected places, statements that com-
pute constant values may not execute, and statements inside loops will execute elsewhere
because the loop was unrolled. My personal preference, though, is to debug a program
thoroughly before worrying about optimization. Your mileage may vary.

Using GNU cc

CHAPTER 3
49

3

U
SIN

G
G

N
U

 C
C

NOTE

Do not, however, take “optimize later” to mean “ignore efficiency during the
design process.” Optimization, in the context of this chapter, refers to the com-
piler magic I have discussed in this section. Good design and efficient algorithms
have a far greater impact on overall performance than any compiler optimiza-
tion ever will. Indeed, if you take the time up front to create a clean design and
use fast algorithms, you may not need to optimize, although it never hurts to
try.

GNU C Extensions
GNU C extends the ANSI standard in a variety of ways. If you don’t mind writing bla-
tantly non-standard code, some of these extensions can be very useful. For all of the gory
details, I will direct the curious reader to gcc’s info pages. The extensions covered in this
section are the ones frequently seen in Linux’s system headers and source code.

To provide 64-bit storage units, for example, gcc offers the “long long” type:

long long long_int_var;

NOTE

The “long long” type exists in the new draft ISO C standard.

On the x86 platform, this definition results in a 64-bit memory location named
long_int_var. Another gcc-ism you will encounter in Linux header files is the use of
inline functions. Provided it is short enough, an inline function expands in your code
much as a macro does, thus eliminating the cost of a function call. Inline functions are
better than macros, however, because the compiler type-checks them at compile time. To
use the inline functions, you have to compile with at least -O optimization.

0572316072 CH03 7/26/99 2:00 PM Page 49

The attribute keyword tells gcc more about your code and aids the code optimizer.
Standard library functions, such as exit() and abort(), never return so the compiler can
generate slightly more efficient code if it knows that the function does not return. Of
course, userland programs may also define functions that do not return. gcc allows you
to specify the noreturn attribute for such functions, which acts as a hint to the compiler
to optimize the function.

Suppose, for example, you have a function named die_on_error() that never returns. To
use a function attribute, append __attribute__ ((attribute_name)) after the closing
parenthesis of the function declaration. Thus, the declaration of die_on_error() would
look like:

void die_on_error(void) __attribute__ ((noreturn));

The function would be defined normally:

void die_on_error(void)
{

/* your code here */
exit(1);

}

You can also apply attributes to variables. The aligned attribute instructs the compiler to
align the variable’s memory location on a specified byte boundary.

int int_var __attribute__ ((aligned 16)) = 0;

will cause gcc to align int_var on a 16-byte boundary. The packed attribute tells gcc to
use the minimum amount of space required for variables or structs. Used with structs,
packed will remove any padding that gcc would ordinarily insert for alignment purposes.

A terrifically useful extension is case ranges. The syntax looks like:

case LOWVAL ... HIVAL:

Note that the spaces preceding and following the ellipsis are required. Case ranges are
used in switch() statements to specify values that fall between LOWVAL and HIVAL:

switch(int_var) {
case 0 ... 2:

/* your code here */
break;

case 3 ... 5:
/* more code here */
break;

default:
/* default code here */

}

The Linux Programming Toolkit

PART I
50

0572316072 CH03 7/26/99 2:00 PM Page 50

The preceding fragment is equivalent to:

switch(int_var) {
case 1:
case 2:

/* your code here */
break;

case 3:
case 4:
case 5:

/* more code here */
break;

default:
/* default code here */

}

Case ranges are just a shorthand notation for the traditional switch() statement syntax.

Summary
In this chapter, I have introduced you to gcc, the GNU compiler suite. In reality, I have
only scratched the surface, though; gcc’s own documentation runs to several hundred
pages. What I have done is show you enough of its features and capabilities to enable
you to start using it in your own development projects.

Using GNU cc

CHAPTER 3
51

3

U
SIN

G
G

N
U

 C
C

0572316072 CH03 7/26/99 2:00 PM Page 51

52

0572316072 CH03 7/26/99 2:00 PM Page 52

IN THIS CHAPTER

• Why make? 54

• Writing Makefiles 54

• More About Rules 56

• Additional make Command-line
Options 61

• Debugging make 62

• Common make Error Messages 63

• Useful Makefile Targets 63

4
C

H
A

PT
ER

Project
Management
Using GNU make

by Kurt Wall

0672316072 CH04 7/26/99 1:44 PM Page 53

In this chapter, we take a long look at make, a tool to control the process of building (or
rebuilding) software. make automates what software gets built, how it gets built, and
when it gets built, freeing the programmer to concentrate on writing code.

Why make?
For all but the simplest software projects, make is essential. In the first place, projects
composed of multiple source files typically require long, complex compiler invocations.
make simplifies this by storing these difficult command lines in the makefile, which the
next section discusses.

make also minimizes rebuild times because it is smart enough to determine which files
have changed, and thus only rebuilds files whose components have changed. Finally,
make maintains a database of dependency information for your projects and so can verify
that all of the files necessary for building a program are available each time you start a
build.

Writing Makefiles
So, how does make accomplish these magical feats? By using a makefile. A makefile is
a text file database containing rules that tell make what to build and how to build it. A
rule consists of the following:

• A target, the “thing” make ultimately tries to create

• A list of one or more dependencies, usually files, required to build the target

• A list of commands to execute in order to create the target from the specified
dependencies

When invoked, GNU make looks for a file named GNUmakefile, makefile, or Makefile,
in that order. For some reason, most Linux programmers use the last form, Makefile.

Makefile rules have the general form

target : dependency dependency [...]
command
command
[...]

The Linux Programming Toolkit

PART I
54

0672316072 CH04 7/26/99 1:44 PM Page 54

target is generally the file, such as a binary or object file, that you want created. depen-
dency is a list of one or more files required as input in order to create target. The com-
mands are the steps, such as compiler invocations, necessary to create target. Unless
specified otherwise, make does all of its work in the current working directory.

If this is all too abstract for you, I will use Listing 4.1 as an example. It is the makefile
for building a text editor imaginatively named editor.

LISTING 4.1 SIMPLE MAKEFILE ILLUSTRATING TARGETS, DEPENDENCIES, AND COMMANDS

1 editor : editor.o screen.o keyboard.o
2 gcc -o editor editor.o screen.o keyboard.o
3
4 editor.o : editor.c editor.h keyboard.h screen.h
5 gcc -c editor.c
6
7 screen.o : screen.c screen.h
8 gcc -c screen.c
9
10 keyboard.o : keyboard.c keyboard.h
11 gcc -c keyboard.c
12
13 clean :
14 rm editor *.o

To compile editor, you would simply type make in the directory where the makefile
exists. It’s that simple.

This makefile has five rules. The first target, editor, is called the default target—this is
the file that make tries to create. editor has three dependencies, editor.o, screen.o,
and keyboard.o; these three files must exist in order to build editor. Line 2 (the line
numbers do not appear in the actual makefile; they are merely pedagogic tools) is the
command that make will execute to create editor. As you recall from Chapter 3, “Using
GNU cc,” this command builds an executable named editor from the three object files.
The next three rules (lines 4–11) tell make how to build the individual object files.

Project Management Using GNU make

CHAPTER 4
55

4

U
SIN

G
G

N
U

M
A

K
E

WARNING

The first character in a command must be the tab character; eight spaces will
not suffice. This often catches people unaware, and can be a problem if your
preferred editor “helpfully” translates tabs to eight spaces. If you try to use
spaces instead of a tab, make displays the message “Missing separator” and
stops.

0672316072 CH04 7/26/99 1:44 PM Page 55

Here is where make’s value becomes evident: ordinarily, if you tried to build editor
using the command from line 2, gcc would complain loudly and ceremoniously quit if
the dependencies did not exist. make, on the other hand, after seeing that editor requires
these other files, verifies that they exist and, if they don’t, executes the commands on
lines 5, 8, and 11 first, then returns to line 2 to create the editor executable. Of course,
if the dependencies for the components, such as keyboard.c or screen.h don’t exist,
make will also give up, because it lacks targets named, in this case, keyboard.c and
screen.h.

“All well and good,” you’re probably thinking, “but how does make know when to rebuild
a file?” The answer is stunningly simple: If a specified target does not exist in a place
where make can find it, make (re)builds it. If the target does exist, make compares the
timestamp on the target to the timestamp of the dependencies. If one or more of the
dependencies is newer than the target, make rebuilds the target, assuming that the newer
dependency implies some code change that must be incorporated into the target.

More About Rules
In this section, I will go into more detail about writing makefile rules. In particular, I
cover creating and using phony targets, makefile variables, using environment variables
and make’s predefined variables, implicit rules, and pattern rules.

Phony Targets
In addition to the normal file targets, make allows you to specify phony targets. Phony
targets are so named because they do not correspond to actual files. The final target in
Listing 4.1, clean, is a phony target. Phony targets exist to specify commands that make
should execute. However, because clean does not have dependencies, its commands are
not automatically executed. This follows from the explanation of how make works: upon
encountering the clean target, make sees if the dependencies exist and, because clean
has no dependencies, make assumes the target is up to date. In order to build this target,
you have to type make clean. In our case, clean removes the editor executable and its
constituent object files. You might create such a target if you wanted to create and dis-
tribute a source-code tarball to your users or to start a build with a clean build tree.

If, however, a file named clean happened to exist, make would see it. Again, because it
has no dependencies, make would assume that it is up to date and not execute the com-
mands listed on line 14. To deal with this situation, use the special make target .PHONY.

The Linux Programming Toolkit

PART I
56

0672316072 CH04 7/26/99 1:44 PM Page 56

Any dependencies of the .PHONY target will be evaluated as usual, but make will disregard
the presence of a file whose name matches one of .PHONY’s dependencies and execute the
corresponding commands anyway. Using .PHONY, our sample makefile would look like:

1 editor : editor.o screen.o keyboard.o
2 gcc -o editor editor.o screen.o keyboard.o
3
4 editor.o : editor.c editor.h keyboard.h screen.h
5 gcc -c editor.c
6
7 screen.o : screen.c screen.h
8 gcc -c screen.c
9
10 keyboard.o : keyboard.c keyboard.h
11 gcc -c keyboard.c
12
13.PHONY : clean
14
15 clean :
16 rm editor *.o

Variables
To simplify editing and maintaining makefiles, make allows you to create and use vari-
ables. A variable is simply a name defined in a makefile that represents a string of text;
this text is called the variable’s value. Define variables using the general form:

VARNAME = some_text [...]

To obtain VARNAME’s value, enclose it in parentheses and prefix it with a $:

$(VARNAME)

VARNAME expands to the text on the right-hand side of the equation. Variables are usually
defined at the top of a makefile. By convention, makefile variables are all uppercase,
although this is not required. If the value changes, you only need to make one change
instead of many, simplifying makefile maintenance. So, after modifying Listing 4.1 to
use two variables, it looks like the following:

LISTING 4.2 USING VARIABLES IN MAKEFILES

1 OBJS = editor.o screen.o keyboard.o
2 HDRS = editor.h screen.h keyboard.h
3 editor : $(OBJS)

Project Management Using GNU make

CHAPTER 4
57

4

U
SIN

G
G

N
U

M
A

K
E

continues

0672316072 CH04 7/26/99 1:44 PM Page 57

LISTING 4.2 CONTINUED

4 gcc -o editor $(OBJS)
5
6 editor.o : editor.c $(HDRS)
7 gcc -c editor.c
8
9 screen.o : screen.c screen.h
10 gcc -c screen.c
11
12 keyboard.o : keyboard.c keyboard.h
13 gcc -c keyboard.c
14
15 .PHONY : clean
16
17 clean :
18 rm editor $(OBJS)

OBJS and HDRS will expand to their value each time they are referenced. make actually
uses two kinds of variables—recursively-expanded and simply expanded. Recursively-
expanded variables are expanded verbatim as they are referenced; if the expansion con-
tains another variable reference, it is also expanded. The expansion continues until no
further variables exist to expand, hence the name, “recursively-expanded.” An example
will make this clear.

Consider the variables TOPDIR and SRCDIR defined as follows:

TOPDIR = /home/kwall/myproject
SRCDIR = $(TOPDIR)/src

Thus, SRCDIR will have the value /home/kwall/myproject/src. This works as expected
and desired. However, consider the next variable definition:

CC = gcc
CC = $(CC) -o

Clearly, what you want, ultimately, is “CC = gcc -o.” That is not what you will get, how-
ever. $(CC) is recursively-expanded when it is referenced, so you wind up with an infi-
nite loop: $(CC) will keep expanding to $(CC), and you never pick up the -o option.
Fortunately, make detects this and reports an error:

*** Recursive variable `CC’ references itself (eventually). Stop.

To avoid this difficulty, make uses simply expanded variables. Rather than being expand-
ed when they are referenced, simply expanded variables are scanned once and for all
when they are defined; all embedded variable references are resolved. The definition syn-
tax is slightly different:

CC := gcc -o
CC += -O2

The Linux Programming Toolkit

PART I
58

0672316072 CH04 7/26/99 1:44 PM Page 58

The first definition uses := to set CC equal to gcc -o and the second definition uses += to
append -O2 to the first definition, so that CC’s final value is gcc -o -O2. If you run into
trouble when using make variables or get the “VARNAME references itself” error mes-
sage, it’s time to use the simply expanded variables. Some programmers use only simply
expanded variables to avoid unanticipated problems. Since this is Linux, you are free to
choose for yourself!

Environment, Automatic, and Predefined
Variables
In addition to user-defined variables, make allows the use of environment variables and
also provides “automatic” variables and predefined variables. Using environment vari-
ables is ridiculously simple. When it starts, make reads every variable defined in its envi-
ronment and creates variables with the same name and value. However, similarly named
variables in the makefile override the environment variables, so beware. make provides a
long list of predefined and automatic variables, too. They are pretty cryptic looking,
though. See Table 4.1 for a partial list of automatic variables.

TABLE 4.1 AUTOMATIC VARIABLES

Variable Description

$@ The filename of a rule’s target

$< The name of the first dependency in a rule

$^ Space-delimited list of all the dependencies in a rule

$? Space-delimited list of all the dependencies in a rule that are newer than
the target

$(@D) The directory part of a target filename, if the target is in a subdirectory

$(@F) The filename part of a target filename, if the target is in a subdirectory

In addition to the automatic variables listed in Table 4.1, make predefines a number of
other variables that are used either as names of programs or to pass flags and arguments
to these programs. See Table 4.2.

TABLE 4.2 PREDEFINED VARIABLES FOR PROGRAM NAMES AND FLAGS

Variable Description

AR Archive-maintenance programs; default value = ar

AS Program to do assembly; default value = as

Project Management Using GNU make

CHAPTER 4
59

4

U
SIN

G
G

N
U

M
A

K
E

continues

0672316072 CH04 7/26/99 1:44 PM Page 59

TABLE 4.2 CONTINUED

Variable Description

CC Program for compiling C programs; default value = cc

CPP C Preprocessor program; default value = cpp

RM Program to remove files; default value = “rm -f”

ARFLAGS Flags for the archive-maintenance program; default = rv

ASFLAGS Flags for the assembler program; no default

CFLAGS Flags for the C compiler; no default

CPPFLAGS Flags for the C preprocessor; no default

LDFLAGS Flags for the linker (ld); no default

If you want, you can redefine these variables in the makefile. In most cases, their default
values are reasonable.

Implicit Rules
In addition to the rules that you explicitly specify in a makefile, which are called explicit
rules, make comes with a comprehensive set of implicit, or predefined, rules. Many of
these are special-purpose and of limited usage, so we will only cover a few of the most
commonly used implicit rules. Implicit rules simplify makefile maintenance.

Suppose you have a makefile that looks like the following:

1 OBJS = editor.o screen.o keyboard.o
2 editor : $(OBJS)
3 cc -o editor $(OBJS)
4
5 .PHONY : clean
6
7 clean :
8 rm editor $(OBJS)

The command for the default target, editor, mentions editor.o, screen.o, and key-
board.o, but the makefile lacks rules for building those targets. As a result, make will
use an implicit rule that says, in essence, for each object file somefile.o, look for a cor-
responding source file somefile.c and build the object file with the command gcc -c
somefile.c -o somefile.o. So, make will look for C source files named editor.c,
screen.c, and keyboard.c, compile them to object files (editor.o, screen.o, and key-
board.o), and finally, build the default editor target.

The mechanism is actually more general than what I described. Object (.o) files can be
created from C source, Pascal source, Fortran source, and so forth. make looks for the

The Linux Programming Toolkit

PART I
60

0672316072 CH04 7/26/99 1:44 PM Page 60

dependency that can actually be satisfied. So, if you have files editor.p, screen.p, and
keyboard.p, the Pascal compiler will be invoked rather than the C compiler (.p is the
assumed extension of Pascal source files). The lesson here is that if, for some perverse
reason, your project uses multiple languages, don’t rely on the implicit rules because the
results may not be what you expected.

Pattern Rules
Pattern rules provide a way around the limitations of make’s implicit rules by allowing
you to define your own implicit rules. Pattern rules look like normal rules, except that the
target contains exactly one character (%) that matches any nonempty string. The depen-
dencies of such a rule also use % in order to match the target. So, for example, the rule

%.o : %.c

tells make to build any object file somename.o from a source file somename.c.

Like implicit rules, make uses several predefined pattern rules:

%.o : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

This is the same as the example. It defines a rule that makes any file x.o from x.c. This
rule uses the automatic variables $< and $@ to substitute the names of the first dependen-
cy and the target each time the rule is applied. The variables $(CC), $(CFLAGS), and
$(CPPFLAGS) have the default values listed in Table 4.2.

Comments
You can insert comments in a makefile by preceding the comment with the hash sign (#).
When make encounters a comment, it ignores the hash symbol and the rest of the line fol-
lowing it. Comments can be placed anywhere in a makefile. Special consideration must
be given to comments that appear in commands, because most shells treat # as a
metacharacter (usually as a comment delimiter). As far as make is concerned, a line that
contains only a comment is, for all practical purposes, blank.

Additional make Command-line
Options
Like most GNU programs, make accepts a cornucopia of command-line options. The
most common ones are listed in Table 4.3.

Project Management Using GNU make

CHAPTER 4
61

4

U
SIN

G
G

N
U

M
A

K
E

0672316072 CH04 7/26/99 1:44 PM Page 61

TABLE 4.3 COMMON make COMMAND-LINE OPTIONS

Option Description

-f file Specify an alternatively-named makefile file.

-n Print the commands that would be executed, but
don’t actually execute them.

-Idirname Specify dirname as a directory in which make
should search for included makefiles.

-s Don’t print the commands as they are executed.

-w If make changes directories while executing,
print the current directory names.

-Wfile Act as if file has been modified; use with -n to
see how make would behave if file had been
changed.

-r Disable all of make’s built-in rules.

-d Print lots of debugging information.

-i Ignore non-zero error codes returned by com-
mands in a makefile rule. make will continue
executing even if a command returns a non-zero
exit status.

-k If one target fails to build, continue to build
other targets. Normally, make terminates if a
target fails to build successfully.

-jN Run N commands at once, where N is a
non-zero integer.

Debugging make
If you have trouble using make, the -d option tells make to print lots of extra debugging
information in addition to the commands it is executing. The output can be overwhelm-
ing because the debugging dump will display what make does internally and why. This
includes the following:

• Which files make evaluates for rebuilding

• Which files are being compared and what the comparison results are

• Which files actually need to be remade

• Which implicit rules make thinks it will use

• Which implicit rules make decides to use and the commands it actually executes

The Linux Programming Toolkit

PART I
62

0672316072 CH04 7/26/99 1:44 PM Page 62

Common make Error Messages
This section lists the most common error messages you will encounter while using make.
For complete documentation, refer to the make manual or info pages.

• No rule to make target `target’. Stop The makefile does not contain a
rule telling make how to construct the named target and no default rules apply.

• `target’ is up to date The dependencies for the named target have not
changed.

• Target `target’ not remade because of errors An error occurred while
building the named target. This message only appears when using make’s -k option.

• command: Command not found make could not find command. This usually occurs
because command has been misspelled or is not in $PATH.s

• Illegal option – option The invocation of make included an option that it
does not recognize.

Useful Makefile Targets
In addition to the clean target I mentioned previously, several other targets typically
inhabit makefiles. A target named install moves the final binary, any supporting
libraries or shell scripts, and documentation to their final homes in the filesystem and
sets file permissions and ownership appropriately. An install target typically also com-
piles the program and may also run a simple test to verify that the program compiled cor-
rectly. An uninstall target would delete the files installed by an install target.

A dist target is a convenient way to prepare a distribution package. At the very least, the
dist target will remove old binary and object files from the build directory and create an
archive file, such as a gzipped tarball, ready for uploading to World Wide Web pages and
FTP sites.

For the convenience of other developers, you might want to create a tags target that
creates or updates a program’s tags table. If the procedure for verifying a program is
complex, you will definitely want to create a separate target, named test or check that
executes this procedure and emits the appropriate diagnostic messages. A similar target,
named installtest or installcheck, would be used to validate an installation. Of
course the install target must have successfully built and installed the program first.

Project Management Using GNU make

CHAPTER 4
63

4

U
SIN

G
G

N
U

M
A

K
E

0672316072 CH04 7/26/99 1:44 PM Page 63

Summary
This chapter covered the make command, explaining why it is useful and showing you
how to write simple but useful makefiles. It also discussed some of the subtleties of make
rules and listed some of make’s helpful command-line options. With this foundation, you
should know enough to use make to manage the process of building and maintaining your
software projects.

The Linux Programming Toolkit

PART I
64

0672316072 CH04 7/26/99 1:44 PM Page 64

IN THIS CHAPTER

• Understanding autoconf 66

• Built-In Macros 69

• Generic Macros 76

• An Annotated autoconf Script 77

5
C

H
A

PT
ER

Creating Self-
Configuring
Software with
autoconf

by Kurt Wall

0772316072 CH05 7/26/99 1:42 PM Page 65

Linux’s mixed origins and the variety of Linux distributions available demand a flexible
and adaptable configuration and build environment. This chapter looks at GNU
autoconf, a tool that enables you to configure your software to adapt to the wide assort-
ment of system configurations in which it may be built, including many non-Linux sys-
tems.

Understanding autoconf
Developing software that runs on a number of different UNIX and UNIX-like systems
requires considerable effort. First, the code itself must be portable. Portable code makes
few assumptions about the hardware on which it may be run or the software libraries
available to it. In addition, if it’s C code, to ensure maximum portability, the code has to
stick to strict ISO/ANSI C, or isolate non-standard C to as few modules as possible.

Second, you need to know a lot about the compile and runtime environments of many
different systems and, possibly, hardware architectures. GNU software, while ubiquitous
on Linux systems and available for a mind-boggling array of other operating systems and
hardware platforms, may not always be available on those systems. In addition, the fol-
lowing conditions may exist:

• The C compiler may be pre-ISO

• Libraries may be missing key features

• System services may function differently

• Filesystem conventions will certainly be different

On the hardware side, you may have to deal with big-endian, little-endian, or hybrid data
representation mechanisms. When you get away from Intel’s x86 processors, you have to
deal with, for example, PA-RISC, several varieties of Sparcs, the Motorola chips (in sev-
eral generations) that drive Macintosh and Apple computers, MIPS, Amiga, and, coming
soon to a computer near you, Intel’s Merced or IA64 chip. Finally, you have to write a
generic makefile and provide instructions to your users on how to edit the makefile to fit
local circumstances.

autoconf addresses many of these problems. It generates shell scripts that automatically
configure source code packages to adapt to many different brands of UNIX and UNIX-
like systems. These scripts, usually named configure, test for the presence or absence of
certain features a program needs or can use, and build makefiles based on the results of

The Linux Programming Toolkit

PART I
66

0772316072 CH05 7/26/99 1:42 PM Page 66

these tests. The scripts autoconf generates are self-contained, so users do not need to
have autoconf installed on their own systems in order to build software. All they have to
do is type ./configure in the source distribution directory.

To build a configure script, you create a file named configure.in in the root directory
of your source code tree. configure.in contains a series of calls to autoconf macros
that test for the presence or behavior of features your program can utilize or that it
requires. autoconf contains many predefined macros that test for commonly required
features. A second set of macros allows you to build your own custom tests if none of
autoconf’s built-in macros meet your needs. If need be, configure.in can also contain
shell scripts that evaluate unusual or specialized characteristics. Besides the autoconf
package itself (we cover version 2.12), you will need at least version 1.1 of GNU’s m4, a
macro processor that copies its input to output, expanding macros as it goes (autoconf’s
author, David MacKenzie, recommends version 1.3 or better for speed reasons). The lat-
est versions of both packages can be obtained from the GNU Web site, www.gnu.org,
their FTP site, ftp.gnu.org, or from many other locations around the Web. Most Linux
distributions contain them, too.

Building configure.in
Each configure.in file must invoke AC_INIT before any test and AC_OUTPUT after all the
tests. These are the only two required macros. The following is the syntax for AC_INIT:

AC_INIT(unique_file_in_source_dir)

unique_file_in_source_dir is a file present in the source code directory. The call to
AC_INIT creates shell code in the generated configure script that looks for
unique_file_in_source_dir to make sure that it is in the correct directory.

AC_OUTPUT creates the output files, such as Makefiles and other (optional) output files. Its
syntax is as follows:

AC_OUTPUT([file...[,extra_cmds[,init_cmds]]])

file is a space separated list of output files. Each file is created by copying file.in to
file. extra_cmds is a list of commands appended to config.status, which can be used
to regenerate the configure script. init_cmds will be inserted into config.status imme-
diately before extra_cmds.

Creating Self-Configuring Software with autoconf

CHAPTER 5
67

5

C
R

EA
TIN

G
S

ELF-
C

O
N

FIG
U

R
IN

G
S

O
FTW

A
R

E
W

ITH
a
u
t
o
c
o
n
f

0772316072 CH05 7/26/99 1:42 PM Page 67

Structuring the File
With few exceptions, the order in which you call autoconf macros does not matter (we
note the exceptions as they occur). That said, the following is the recommended order:

AC_INIT

Tests for programs

Tests for libraries

Tests for header files

Tests for typedefs

Tests for structures

Tests for compiler behavior

Tests for library functions

Tests for system services

AC_OUTPUT

The suggested ordering reflects the fact that, for example, the presence or absence of
libraries has consequences for the inclusion of header files, so header files should be
checked after libraries. Similarly, some system services depend on the existence of par-
ticular library functions, which may only be called if they are prototyped in header files.
You cannot call a function prototyped in a header file if the required library does not
exist. The moral is stick with the recommended order unless you know exactly what you
are doing and have a compelling reason to deviate.

A few words on the layout of configure.in may prove helpful. Use only one macro call
per line, because most of autoconf’s macros rely on a newline to terminate commands.
In situations where macros read or set environment variables, the variables may be set on
the same line as a macro call.

A single macro call that takes several arguments may exceed the one-call-per-line rule;
use \ to continue the argument list to the next line and enclose the argument list in the m4
quote characters, [and]. The following two macro calls are equivalent:

AC_CHECK_HEADERS([unistd.h termios.h termio.h sgtty.h alloca.h \
sys/itimer.h])

AC_CHECK_HEADERS(unistd.h termios.h termio.h sgtty.h alloca.h sys/timer.h)

The Linux Programming Toolkit

PART I
68

0772316072 CH05 7/26/99 1:42 PM Page 68

The first example wraps the arguments in [and] and uses \ (which is interpreted by the
shell, not by m4 or autoconf) to indicate line continuation. The second example is simply
a single long line.

Finally, to insert comments into configure.in, use m4’s comment delimiter, dnl. For
example,

dnl
dnl This is an utterly gratuitous comment
dnl
AC_INIT(some_darn_file)

Helpful autoconf Utilities
In addition to autoconf’s built-in macros, covered in some detail in the next section, the
autoconf package contains several helpful scripts to assist in creating and maintaining
configure.in. To kick start the process, the Perl script autoscan extracts information
from your source files about function calls and included header files, outputting
configure.scan. Before renaming or copying this to configure.in, however, manually
examine it to identify features it overlooked. ifnames functions similarly, looking for the
preprocessor directives #if, #elif, #ifdef and #ifndef in your source files. Use it to
augment autoscan’s output.

Built-In Macros
In many cases, autoconf’s built-in macros will be all that you require. Each set of built-
in tests may be further subdivided into macros that test specific features and more gener-
al tests. This section lists and briefly describes most of the built-in tests. For a complete
list and description of autoconf’s predefined tests, see the autoconf info page.

Tests for Alternative Programs
Table 5.1 describes a group of tests that check for the presence or behavior of particular
programs in situations where you want or need to be able to choose between several
alternative programs. The compilation process is complex, so these macros give you flex-
ibility by confirming the existence of necessary programs or making sure, if they do
exist, that they are properly invoked.

Creating Self-Configuring Software with autoconf

CHAPTER 5
69

5

C
R

EA
TIN

G
S

ELF-
C

O
N

FIG
U

R
IN

G
S

O
FTW

A
R

E
W

ITH
a
u
t
o
c
o
n
f

0772316072 CH05 7/26/99 1:42 PM Page 69

TABLE 5.1 ALTERNATIVE PROGRAM TESTS

Test Description

AC_PROG_AWK Checks, in order, for mawk, gawk, nawk, and awk, sets output variable AWK
to the first one it finds

AC_PROG_CC Decides which C compiler to use, sets output variable CC

AC_PROG_CC_C_O Determines whether or not the compiler accepts the -c and -o switches; if
not, defines NO_MINUS_C_MINUS_O

AC_PROG_CPP Sets output variable CPP to the command that executes the C preprocessor

AC_PROG_INSTALL Sets output variable INSTALL to a BSD-compatible install program or to
install-sh

AC_PROG_LEX Looks for flex or lex, setting output variable LEX to the result

AC_PROG_LN_S Sets variable LN_S to ln -s if system supports symbolic links or to ln
otherwise

AC_PROG_RANLIB Set output variable RANLIB to ranlib if ranlib exists, to : otherwise

AC_PROG_YACC Checks, in order, for bison, byacc, and yacc, setting output variable YACC
to bison -y, byacc, or yacc, respectively, depending on which it finds

Generally, the macros in Table 5.1 establish the paths to or confirm the calling conven-
tions of the programs with which they are concerned. In the case of AC_PROG_CC, for
example, you would not want to hard code gcc if it is not available on the target system.
AC_PROG_CC_C_O exists because older compilers (or, at least, non-GNU compilers) do not
necessarily accept –c and –o or use them the same way gcc does. A similar situation
obtains with AC_PROG_LN_S because many filesystem implementations do not support
creating symbolic links.

Tests for Library Functions
Table 5.2 describes tests that look for particular libraries, first to see if they exist, second
to determine any differences in arguments passed to functions in those libraries. Despite
the best laid plans, programming libraries eventually change in such a way that later ver-
sions become incompatible, sometimes dramatically so, with earlier versions. The
macros in Table 5.2 enable you to adjust the build process to accommodate this unfortu-
nate reality. In extreme cases, you can simply throw up your hands in despair and refuse
to build until the target system is upgraded.

The Linux Programming Toolkit

PART I
70

0772316072 CH05 7/26/99 1:42 PM Page 70

TABLE 5.2 LIBRARY FUNCTION TESTS

Test Description

AC_CHECK_LIB Determines if function exists in library lib by attempting to
(lib, function [, link a C program with lib. Executes shell commands action_
action_if_found [, if_found if the test succeeds or adds -llib to the output
action_if_not_found, variable LIB if action_if_found is empty. action_if_not found _

[, other_libs]]]) adds -lother_libs to the link command

AC_FUNC_GETLOADAVG If the system has the getloadavg() function, add the libraries nec-
essary to get the function to LIBS

AC_FUNC_GETPGRP Tests whether or not getprgrp() takes no argument, in which case
it defines GETPGRP_VOID. Otherwise, getpgrp requires a process ID
argument.

AC_FUNC_MEMCMP If memcmp() isn’t available, add memcmp.o to LIBOBJS

AC_FUNC_MMAP Set HAVE_MMAP if mmap() is present

AC_FUNC_SETPGRP Tests whether or not setprgrp() takes no argument, in which case
it defines SETPGRP_VOID. Otherwise, setpgrp requires two process
ID arguments.

AC_FUNC_UTIME_NULL If utime(file, NULL) sets file’s timestamp to the present, define
HAVE_UTIME_NULL

AC_FUNC_VFORK If vfork.h isn’t present, define vfork() to be fork()

AC_FUNC_VRPINTF Defines HAVE_VPRINTF if vprintf() exists

AC_CHECK_LIB is arguably the most useful macro in this group, because it gives you the
option to say, “This program won’t work unless you have the required library.” The other
macros exist to accommodate the divergence between BSD and AT&T UNIX. One
branch had functions or function arguments that differed sharply from the other. Because
Linux has a mixed BSD and AT&T heritage, these macros help you properly configure
your software.

Tests for Header Files
Header tests check for the presence and location of C-style header files. As with the
macros in Table 5.2, these macros exist to allow you to take into account differences

Creating Self-Configuring Software with autoconf

CHAPTER 5
71

5

C
R

EA
TIN

G
S

ELF-
C

O
N

FIG
U

R
IN

G
S

O
FTW

A
R

E
W

ITH
a
u
t
o
c
o
n
f

0772316072 CH05 7/26/99 1:42 PM Page 71

between UNIX and C implementations across systems. Believe it or not, many odd or
old UNIX and UNIX-like systems lack an ANSI-compliant C compiler. Other systems
may lack POSIX-compliant system calls. Table 5.3 describes these tests.

TABLE 5.3 HEADER FILE TESTS

Test Description

AC_DECL_SYS_SIGLIST If signal.h or unistd.h defines sys_syglist, define
SYS_SIGLIST_DECLARED

AC_HEADER_DIRENT Checks for the following header files in order, dirent.h,
sysdir/ndir.h, sys/dir.h, ndir.h, and defines HAVE_DIRENT_H,
HAVE_SYS_NDIR_H, HAVE_SYS_DIR_H or HAVE_NDIR_H, respectively,
depending on which header defines DIR

AC_HEADER_STDC Defines STDC_HEADERS if the system has ANSI/ISO C header files

AC_HEADER_SYS_WAIT If the system has a POSIX compatible sys/wait.h, define output
variable HAVE_SYS_WAIT

AC_HEADER_DIRENT attempts to account for the wide variety of filesystems in use on
UNIX and UNIX-like systems. Since most programs rely heavily on filesystem services,
it is useful to know where their header files live and what functions they make available.
AC_HEADER_STDC determines whether ANSI/ISO-compatible header files are available,
not necessarily whether an compliant compiler is present.

Tests for Structures
The structure tests look for certain structure definitions or for the existence and type of
structure members in header files. Reflecting, again, the UNIX family split, different
implementations provide different data structures. The macros Table 5.4 describes give
you an opportunity to adjust your code accordingly.

TABLE 5.4 STRUCTURE TESTS

Test Description

AC_HEADER_TIME Set output variable TIME_WITH_SYS_TIME if both time.h and
sys/time.h can be included in a program

AC_STRUCT_ST_BLKSIZE Defines output variable HAVE_ST_BLKSIZE if struct stat has a
st_blksize member

AC_STRUCT_ST_BLOCKS Defines output variable HAVE_ST_BLOCKS if struct stat has a mem-
ber st_blocks

The Linux Programming Toolkit

PART I
72

0772316072 CH05 7/26/99 1:42 PM Page 72

Test Description

AC_STRUCT_TIMEZONE Figures out how to get the timezone. Defines HAVE_TM_ZONE if
struct tm has a tm_zone member or HAVE_TZNAME if an array
tzname is found

Tests for typedefs
Table 5.5 describes macros that look for typedefs in the header files sys/types.h and
stdlib.h. These macros enable you to adjust your code for the presence or absence of
certain typedefs that might be present on one system but absent on another.

TABLE 5.5 TYPEDEF TESTS

Test Description

AC_TYPE_GETGROUPS Sets GETGROUPS_T to the gid_t or int, whichever is the base type of
the array passed to getgroups()

AC_TYPE_MODE_T Define mode_t as int if mode_t is undefined

AC_TYPE_PID_T Define pid_t as int if pid_t is undefined

AC_TYPE_SIGNAL Define RETSIGTYPE as int if signal.h does not define signal as
(void*)()

AC_TYPE_SIZE_T Define size_t as unsigned if size_t is undefined

AC_TYPE_UID_T Define uid_t and gid_t as int if uid_t is undefined

Tests of Compiler Behavior
Table 5.6 describes macros that evaluate compiler behavior or peculiarities of particular
host architectures. Given the array of available compilers and the CPUs on which they
run, these macros allow you to adjust your program to reflect these differences and take
advantage of them.

TABLE 5.6 COMPILER BEHAVIOR TESTS

Test Description

AC_C_BIGENDIAN If words are stored with the most significant bit
first, define WORDS_BIGENDIAN

AC_C_CONST If the compiler does not fully support the const
declaration, define const to be empty

Creating Self-Configuring Software with autoconf

CHAPTER 5
73

5

C
R

EA
TIN

G
S

ELF-
C

O
N

FIG
U

R
IN

G
S

O
FTW

A
R

E
W

ITH
a
u
t
o
c
o
n
f

continues

0772316072 CH05 7/26/99 1:42 PM Page 73

TABLE 5.6 CONTINUED

Test Description

AC_C_INLINE If the compiler does not support the keywords
inline, __inline__, or __inline, define inline to be
empty

AC_C_CHAR_UNSIGNED Define CHAR_UNSIGNED if char is unsigned

AC_C_LONG_DOUBLE Define HAVE_LONG_DOUBLE if the host compiler
supports the long double type.

AC_C_CHECK_SIZEOF(type [,cross-size]) Defines output variable SIZEOF_UCtype to be the
size of the C or C++ built in type type

Tests for System Services
Table 5.7 describes macros that determine the presence and behavior of operating system
services and abilities. The services and capabilities that host operating systems provide
varies widely, so your code needs to be able to accommodate the variety gracefully, if
possible.

TABLE 5.7 SYSTEM SERVICES TESTS

Test Description

AC_SYS_INTERPRETER Set shell variable ac_cv_sys_interpreter to yes or no,
depending on whether scripts start with #! /bin/sh

AC_PATH_X Try to find the path to X Window include and library files,
setting the shell variables x_includes and x_libraries to the
correct paths, or set no_x if the paths could not be found

AC_SYS_LONG_FILE_NAMES Define HAVE_LONG_FILE_NAMES if the system supports file-
names longer than 14 characters

AC_SYS_RESTARTABLE_SYSCALLS On systems that support system call restarts of signal
interruptions, define HAVE_RESTARTABLE_SYSCALLS

Strange as it may seem, there are still filesystems, even UNIX filesystems, that limit file-
names to 14 characters, so AC_SYS_LONG_FILE_NAMES allows you to detect such a barbar-
ian filesystem. AC_PATH_X acknowledges that some operating systems do not support the
X Window system.

The Linux Programming Toolkit

PART I
74

0772316072 CH05 7/26/99 1:42 PM Page 74

Tests for UNIX Variants
Tests in this class address vagaries and idiosyncrasies of specific UNIX and UNIX-like
operating systems. As the autoconf author states, “These macros are warts; they will be
replaced by a more systematic approach, based on the functions they make available or
the environments they provide (34). Table 5.8 describes these tests.

TABLE 5.8 UNIX VARIANT TESTS

Test Description

AC_AIX Define _ALL_SOURCE if the host system is AIX

AC_DYNIX_SEQ Obsolete—use AC_FUNC_GETMNTENT instead

AC_IRIX_SUN Obsolete—use AC_FUNC_GETMNTENT instead

AC_ISC_POSIX Defines _POSIX_SOURCE to allow use of POSIX features

AC_MINIX Defines _MINIX and _POSIX_SOURCE on MINIX systems to allow use of
POSIX features

AC_SCO_INTL Obsolete—use AC_FUNC_STRFTIME instead

AC_XENIX_DIR Obsolete—use AC_HEADER_DIRENT instead

“Why,” you might be asking yourself, “should I concern myself with obsolete macros?”
There are two related reasons. First, you may run across configure.in files that contain
the macros. If you do, you can replace them with the proper macros. Second, they are
obsolete because better, more general macros have been created. That is, their existence
reflects the fact that a large body of extant code exists that still relies upon the peculiari-
ties of operating system implementations and the difference between UNIX
implementations.

Creating Self-Configuring Software with autoconf

CHAPTER 5
75

5

C
R

EA
TIN

G
S

ELF-
C

O
N

FIG
U

R
IN

G
S

O
FTW

A
R

E
W

ITH
a
u
t
o
c
o
n
f

TIP

The easiest way to stay up-to-date on macros that have become obsolete is to
monitor the ChangeLog file in the autoconf distribution, available at the GNU
FTP site and many other locations all over the Internet.

0772316072 CH05 7/26/99 1:42 PM Page 75

Generic Macros
The autoconf manual describes the following macros as the building blocks for new
tests. In most cases, they test compiler behavior and so require a test program that can be
preprocessed, compiled, and linked (and optionally executed), so that compiler output
and error messages can be examined to determine the success or failure of the test.

AC_TRY_CPP(includes [,action_if_true [,action_if_false]])

This macro passes includes through the preprocessor, running shell commands
action_if_true if the preprocessor returns no errors, or shell commands
action_if_false otherwise.

AC_EGREP_HEADER(pattern, header, action_if_found [,action_if_not_found])

Use this macro to search for the egrep expression pattern in the file header.
Execute shell commands action_if_found if pattern is found, or
action_if_not_found otherwise.

AC_EGREP_CPP(pattern, program, [action_if_found [,action_if_not_found]])

Run the C program text program through the preprocessor, looking for the egrep
expression pattern. Execute shell commands action_if_found if pattern is
found, or action_if_not_found otherwise.

AC_TRY_COMPILE(includes, function_body, [action_if_found \
[,action_if_not_found]])

This macro looks for a syntax feature of the C or C++ compiler. Compile a test
program that includes files in includes and uses the function defined in
function_body. Execute shell commands action_if_found if compilation suc-
ceeds, or action_if_not_found if compilation fails. This macro does not link. Use
AC_TRY_LINK to test linking.

AC_TRY_LINK(includes, function_body, [action_if_found \
[,action_if_not_found]])

This macro adds a link test to AC_TRY_COMPILE. Compile and link a test program that
includes files in includes and uses the function defined in function_body.
Execute shell commands action_if_found if linking succeeds, or
action_if_not_found if linking fails.

AC_TRY_RUN(program, [action_if_true [, action_if_false \
[, action_if_cross_compiling]]])

This macro tests the runtime behavior of the host system. Compile, link, and exe-
cute the text of the C program program. If program returns 0, run shell commands
action_if_true, otherwise, run action_if_false. action_if_cross_compiling

The Linux Programming Toolkit

PART I
76

0772316072 CH05 7/26/99 1:42 PM Page 76

is executed instead of action_if_found if a program is being built to run another
system type.

AC_CHECK_PROG

Checks whether a program exists in the current path.

AC_CHECK_FUNC

Checks whether a function with C linkage exists.

AC_CHECK_HEADER

Tests the existence of a header file.

AC_CHECK_TYPE

If a typedef does not exist, set a default value.

An Annotated autoconf Script
In this section, we create a sample configure.in file. It does not configure an actually
useful piece of software, but merely illustrates many of the macros we discussed in the
preceding sections, some we did not, and some of autoconf’s other features.

The following is the beginning of a listing, which is shown in pieces throughout this sec-
tion. A discussion appears after each listing to discuss what is happening.

1 dnl Autoconfigure script for bogusapp
2 dnl Kurt Wall <kwall@xmission.com>
3 dnl
4 dnl Process this file with `autoconf’ to produce a `configure’

➥script

Lines 1–4 are a standard header that indicates the package to which configure.in corre-
sponds, contact information, and instructions for regenerating the configure script.

5 AC_INIT(bogusapp.c)
6 AC_CONFIG_HEADER(config.h)

Line 6 creates a header file named config.h in the root directory of your source tree that
contains nothing but preprocessor symbols extracted from your header files. By including
this file in your source code and using the symbols it contains, your program should
compile smoothly and seamlessly on every system on which it might land. autoconf cre-
ates config.h from an input file named config.h.in that contains all the #defines you’ll
need. Fortunately, autoconf ships with an ever-so-handy shell script named autoheader
that generates config.h.in. autoheader generates config.h.in by reading config-
ure.in, a file named acconfig.h that is part of the autoconf distribution, and a

Creating Self-Configuring Software with autoconf

CHAPTER 5
77

5

C
R

EA
TIN

G
S

ELF-
C

O
N

FIG
U

R
IN

G
S

O
FTW

A
R

E
W

ITH
a
u
t
o
c
o
n
f

0772316072 CH05 7/26/99 1:42 PM Page 77

./acconfig.h in your source tree for preprocessor symbols. The good news, before you
start complaining about having to create another file, is that ./acconfig.h only needs to
contain preprocessor symbols that aren’t defined anywhere else. Better still, they can
have dummy values. The file simply needs to contain legitimately defined C-style pre-
processor symbols that autoheader and autoconf can read and utilize. See the file
acconfig.h on the CD-ROM for an illustration.

7
8 test -z “$LDFLAGS” && LDFLAGS=”-I/usr/include” AC_SUBST(CFLAGS)
9
10 dnl Tests for UNIX variants
11 dnl
12 AC_CANONICAL_HOST

AC_CANONICAL_HOST reports GNU’s idea of the host system. It spits out a name of the
form cpu-company-system. On one of my systems, for example, AC_CANONICAL_HOST
reports the box as i586-unknown-linux.

13
14 dnl Tests for programs
15 dnl
16 AC_PROG_CC
17 AC_PROG_LEX
18 AC_PROG_AWK
19 AC_PROG_YACC
20 AC_CHECK_PROG(SHELL, bash, /bin/bash, /bin/sh)
21
22 dnl Tests for libraries
23 dnl
24 AC_CHECK_LIB(socket, socket)
25 AC_CHECK_LIB(resolv, res_init, [echo “res_init() not in

➥libresolv”],
26 [echo “res_init() found in libresolv”])

Line 25 demonstrates how to write custom commands for the autoconf macros. The
third and fourth arguments are the shell commands corresponding to action_if_found
and action_if_not_found. Because of m4’s quoting and delimiting peculiarities, it is
generally advisable to delimit commands that use “ or ‘ with m4’s quote characters ([
and]) to protect them from shell expansion.

27
28 dnl Tests for header files
29 dnl
30 AC_CHECK_HEADER(killer.h)
31 AC_CHECK_HEADERS([resolv.h termio.h curses.h sys/time.h fcntl.h \
32 sys/fcntl.h memory.h])

The Linux Programming Toolkit

PART I
78

0772316072 CH05 7/26/99 1:42 PM Page 78

Lines 31 and 32 illustrate the correct way to continue multiple line arguments. Use the \
character to inform m4 and the shell of a line continuation, and surround the entire argu-
ment list with m4’s quote delimiters.

33 AC_DECL_SYS_SIGLIST
34 AC_HEADER_STDC
35
36 dnl Tests for typedefs
37 dnl
38 AC_TYPE_GETGROUPS
39 AC_TYPE_SIZE_T
40 AC_TYPE_PID_T
41
42 dnl Tests for structures
43 AC_HEADER_TIME
44 AC_STRUCT_TIMEZONE
45
46 dnl Tests of compiler behavior
47 dnl
48 AC_C_BIGENDIAN
49 AC_C_INLINE
50 AC_CHECK_SIZEOF(int, 32)

Line 48 will generate a warning that AC_TRY_RUN was called without a default value to
allow cross-compiling. You may ignore this warning.

51
52 dnl Tests for library functions
53 dnl
54 AC_FUNC_GETLOADAVG
55 AC_FUNC_MMAP
56 AC_FUNC_UTIME_NULL
57 AC_FUNC_VFORK
58
59 dnl Tests of system services
60 dnl
61 AC_SYS_INTERPRETER
62 AC_PATH_X
63 AC_SYS_RESTARTABLE_SYSCALLS

Line 63 will generate a warning that AC_TRY_RUN was called without a default value to
allow cross-compiling. You may ignore this warning.

64
65 dnl Tests in this section exercise a few of `autoconf’s

➥generic macros
66 dnl
67 dnl First, let’s see if we have a usable void pointer type
68 dnl
69 AC_MSG_CHECKING(for a usable void pointer type)

Creating Self-Configuring Software with autoconf

CHAPTER 5
79

5

C
R

EA
TIN

G
S

ELF-
C

O
N

FIG
U

R
IN

G
S

O
FTW

A
R

E
W

ITH
a
u
t
o
c
o
n
f

0772316072 CH05 7/26/99 1:42 PM Page 79

AC_MSG_CHECKING prints “checking” to the screen, followed by a space and the argument
passed, in this case, “for a usable void pointer type.” This macro allows you to mimic the
way autoconf reports its activity to the user, and to let the user know what configure is
doing. It is preferable to an apparent screen lockup.

70 AC_TRY_COMPILE([],
71 [char *ptr;
72 void *xmalloc();
73 ptr = (char *) xmalloc(1);
74],
75 [AC_DEFINE(HAVE_VOID_POINTER)

➥AC_MSG_RESULT(usable void pointer)],
76 AC_MSG_RESULT(no usable void pointer type))

Lines 70–76 deserve considerable explanation. autoconf will embed the actual C code
(71–73) inside a skeletal C program, write the resulting program to the generated con-
figure script, which will compile it when configure runs. configure catches the com-
piler output and looks for errors (you can track this down yourself by looking for
xmalloc in the configure script). Line 75 creates a preprocessor symbol
HAVE_VOID_POINTER (that you would have to put into ./acconfig.h, since it doesn’t exist
anywhere else except your code). If the compilation succeeds, configure will output
#define HAVE_VOID_POINTER 1 to config.h and print the message “usable void point-
er” to the screen; if compilation fails, configure outputs /*#undef HAVE_VOID_POINTER
*/ to config.h and displays “no usable void pointer” to the screen. In your source files,
then, you simply test this preprocessor symbol like so:

#ifdef HAVE_VOID_POINTER
/* do something */
#else
/* do something else */
#endif

77 dnl
78 dnl Now, let’s exercise the preprocessor
79 dnl
80 AC_TRY_CPP(math.h, echo ‘found math.h’, echo ‘no math.h?

➥- deep doo doo!’)

On line 80, if configure finds the header file math.h, it will write “found math.h” to the
screen; otherwise, it informs you that you have a problem.

81
82 dnl
83 dnl Next, we test the linker
84 dnl
85 AC_TRY_LINK([#ifndef HAVE_UNISTD_H
86 #include <signal.h>
87 #endif],

The Linux Programming Toolkit

PART I
80

0772316072 CH05 7/26/99 1:42 PM Page 80

88 [char *ret = *(sys_siglist + 1);],
89 [AC_DEFINE(HAVE_SYS_SIGLIST), AC_MSG_RESULT(got sys_siglist)],
90 [AC_MSG_RESULT(no sys_siglist)])

We perform the same sort of test in lines 85–90 that we performed on lines 70–75.
Again, because HAVE_SYS_SIGLIST is not a standard preprocessor symbol, you have to
declare it in ./acconfig.h.

91 dnl
92 dnl Finally, set a default value for a ridiculous type
93 dnl
94 AC_CHECK_TYPE(short_short_t, unsigned short)

Line 94 simply checks for a (hopefully) non-existent C data type. If it does not exist, we
define short_short_t to be unsigned short. You can confirm this by looking in con-
fig.h for a #define of short_short_t.

95
96 dnl Okay, we’re done. Create the output files and get out of here
97 dnl
98 AC_OUTPUT(Makefile)

Having completed all of our tests, we are ready to create our Makefile. AC_OUTPUT’s job
is to convert all of the tests we perform into information the compiler can understand so
that when your happy end user types make, it builds your program, taking into account
the peculiarities of the host system. To do its job, AC_OUTPUT needs a source file named,
in this case, Makefile.in.

Hopefully, you will recall that in the descriptions of autoconf’s macros, I frequently
used the phrase “sets output variable FOO”. autoconf uses those output variables to set
values in the Makefile and in config.h. For example, AC_STRUCT_TIMEZONE defines
HAVE_TZNAME if an array tzname is found. In the config.h that configure creates, you
will find #define HAVE_TZNAME 1. In your source code, then, you could wrap code that
uses the tzname array in a conditional statement such as:

if(HAVE_TZNAME)
/* do something */

else
/* do something else */

Similarly, Makefile.in contains a number of expressions such as “CFLAGS =
@CFLAGS@”. configure replaces each token of the form @output_variable@ in the
Makefile with the correct value, as determined by the tests performed. In this case,
@CFLAGS@ holds the debugging and optimization options, which, by default,
are -g -O2.

Creating Self-Configuring Software with autoconf

CHAPTER 5
81

5

C
R

EA
TIN

G
S

ELF-
C

O
N

FIG
U

R
IN

G
S

O
FTW

A
R

E
W

ITH
a
u
t
o
c
o
n
f

0772316072 CH05 7/26/99 1:42 PM Page 81

With the template created, type autoconf in the directory where you created config-
ure.in, which should be the root of your source tree. You will see two warnings (on
lines 48 and 63), and wind up with a shell script named configure in your current work-
ing directory. To test it, type ./configure. Figure 5.1 shows configure while it is exe-
cuting.

The Linux Programming Toolkit

PART I
82

FIGURE 5.1
configure while
running.

If all went as designed, configure creates Makefile, config.h, and logs all of its activi-
ty to config.log. You can test the generated Makefile by typing make. The log file is
especially useful if configure does not behave as expected, because you can see exactly
what configure was trying to do at a given point. For example, the log file snippet
below shows the steps configure took while looking for the socket() function (see line
24 of configure.in).

configure:979: checking for socket in -lsocket
configure:998: gcc -o conftest -g -O2 -I/usr/include conftest.c -lsocket
1>&5
/usr/bin/ld: cannot open -lsocket: No such file or directory
collect2: ld returned 1 exit status
configure: failed program was:
#line 987 “configure”
#include “confdefs.h”
/* Override any gcc2 internal prototype to avoid an error. */
/* We use char because int might match the return type of a gcc2

builtin and then its argument prototype would still apply. */
char socket();

int main() {
socket()
; return 0; }

0772316072 CH05 7/26/99 1:42 PM Page 82

You can see that linker, ld, failed because it could not find the socket library, libsocket.
The line numbers in the snippet refer to the configure script line numbers being
executed.

Although it is a bit involved and tedious to set up, using autoconf provides many advan-
tages for software developers, particularly in terms of code portability among different
operating systems and hardware platforms and in allowing users to customize software to
the idiosyncrasies of their local systems. You only have to perform autoconf’s set up
steps once—thereafter, minor tweaks are all you need to create and maintain self-config-
uring software.

Summary
This chapter took a detailed look at autoconf. After a high level overview of autoconf’s
use, you learned about many built-in macros that autoconf uses to configure software to a
target platform. In passing, you also learned a bit about the wide variety of systems that,
while all basically the same, vary just enough to make programming for them a potential
nightmare. Finally, you walked step-by-step through creating a template file, generating a
configure script, and using it to generate a makefile, the ultimate goal of autoconf.

Creating Self-Configuring Software with autoconf

CHAPTER 5
83

5

C
R

EA
TIN

G
S

ELF-
C

O
N

FIG
U

R
IN

G
S

O
FTW

A
R

E
W

ITH
a
u
t
o
c
o
n
f

0772316072 CH05 7/26/99 1:42 PM Page 83

84

0772316072 CH05 7/26/99 1:42 PM Page 84

IN THIS CHAPTER

• Comparing Files 86

• Preparing Source Code Patches 98

6
C

H
A

PT
ER

Comparing and
Merging Source
Files

by Kurt Wall

0872316072 CH06 7/26/99 1:42 PM Page 85

Programmers often need to quickly identify differences between two files, or to merge
two files together. The GNU project’s diff and patch programs provide these facilities.
The first part of this chapter shows you how to create diffs, files that express the differ-
ences between two source code files. The second part illustrates using diffs to create
source code patches in an automatic fashion.

Comparing Files
The diff command is one of a suite of commands that compares files. It is the one on
which we will focus, but first we briefly introduce the cmp command. Then, we cover the
other two commands, diff3 and sdiff, in the following sections.

Understanding the cmp Command
The cmp command compares two files, showing the offset and line numbers where they
differ. Optionally, cmp displays differing characters side-by-side. Invoke cmp as follows:

$ cmp [options] file1 [file2]

A hyphen (-) may be substituted for file1 or file2, so cmp may be used in a pipeline. If
one filename is omitted, cmp assumes standard input. The options include the following:

• -c|--print-chars Print the first characters encountered that differ

• -I N|--ignore-initial=N Ignore any difference encountered in the first N bytes

• -l|--verbose Print the offsets of differing characters in decimal format and the
their values in octal format

• -s|--silent|--quiet Suppress all output, returning only an exit code. 0 means
no difference, 1 means one or more differences, 2 means an error occurred.

• -v|--version Print cmp’s version information

From a programmer’s perspective, cmp is not terribly useful. Listings 6.1 and 6.2 show
two versions of Proverbs 3, verses 5 and 6. The acronyms JPS and NIV stand for Jewish
Publication Society and New International Version, respectively.

LISTING 6.1 JPS VERSION OF PROVERBS 3:5-6

Trust in the Lord with all your heart,
And do not rely on your own understanding.
In all your ways acknowledge Him,
And He will make your paths smooth.

The Linux Programming Toolkit

PART I
86

0872316072 CH06 7/26/99 1:42 PM Page 86

LISTING 6.2 NIV VERSION OF PROVERBS 3:5-6

Trust in the Lord with all your heart
and lean not on your own understanding;
in all your ways acknowledge him,
and he will make your paths straight.

A bare cmp produces the following:

$ cmp jps niv
jps niv differ: char 38, line 1

Helpful, yes? We see that the first difference occurs at byte 38 one line 1. Adding the -c
option, cmp reports:

$ cmp -c jps niv
jps niv differ: char 38, line 1 is 54 , 12 ^J

Now we know that the differing character is decimal 52, a control character, in this case.
Replacing -c with -l produces the following:

$ cmp -l jps niv
38 54 12
39 12 141
40 101 156
41 156 144
42 144 40
43 40 154

...
148 157 164
149 164 56
150 150 12
151 56 12

cmp: EOF on niv

The first column of the preceding listing shows the character number where cmp finds a
difference, the second column lists the character from the first file, and the third column
the character from the second file. Note that the second to last line of the output
(151 56 12) may not appear on some Red Hat systems. Character 38, for exam-
ple, is octal 54, a comma (,) in the file jps, while it is octal 12, a newline, in the file niv.
Only part of the output is shown to save space. Finally, combining -c and -l yields the
following:

$ cmp -cl jps niv
38 54 , 12 ^J
39 12 ^J 141 a
40 101 A 156 n
41 156 n 144 d
42 144 d 40

Comparing and Merging Source Files

CHAPTER 6
87

6

C
O

M
PA

R
IN

G
A

N
D

M
ER

G
IN

G
S

O
U

R
C

E
F

ILES

0872316072 CH06 7/26/99 1:42 PM Page 87

43 40 154 l
...

148 157 o 164 t
149 164 t 56 .
150 150 h 12 ^J
151 56 . 12 ^J

cmp: EOF on niv

Using -cl results in more immediately readable output, in that you can see both the
encoded characters and their human-readable translations for each character that differs.

Understanding the diff Command
The diff command shows the differences between two files, or between two identically
named files in separate directories. You can direct diff, using command line options, to
format its output in any of several formats. The patch program, discussed in the section
“Preparing Source Code Patches” later in this chapter, reads this output and uses it to re-
create one of the files used to create the diff. As the authors of the diff manual say, “If
you think of diff as subtracting one file from another to produce their difference, you
can think of patch as adding the difference to one file to reproduce the other.”

Because this book attempts to be practical, I will focus on diff’s usage from a program-
mer’s perspective, ignoring many of its options and capabilities. While comparing files
may seem an uninteresting subject, the technical literature devoted to the subject is
extensive. For a complete listing of diff’s options and some of the theory behind file
comparisons, see the diff info page (info diff).

The general syntax of the diff command is

diff [options] file1 file2

diff operates by attempting to find large sequences of lines common to file1 and
file2, interrupted by groups of differing lines, called hunks. Two identical files, there-
fore, will have no hunks and two complete different files result in one hunk consisting of
all the lines from both files. Also bear in mind that diff performs a line-by-line compari-
son of two files, as opposed to cmp, which performs a character-by-character comparison.
diff produces several different output formats. I will discuss each them in the following
sections.

The Normal Output Format
If we diff Listings 6.1 and 6.2 (jps and niv, respectively, on the CD-ROM), the output
is as follows:

$ diff jps niv
1,4c1,4

The Linux Programming Toolkit

PART I
88

0872316072 CH06 7/26/99 1:42 PM Page 88

< Trust in the Lord with all your heart,
< And do not rely on your own understanding.
< In all your ways acknowledge Him,
< And He will make your paths smooth.

> Trust in the Lord with all your heart
> and lean not on your own understanding;
> in all your ways acknowledge him,
> and he will make your paths straight.

The output is in normal format, showing only the lines that differ, uncluttered by context.
This output is the default in order to comply with Posix standards. Normal format is
rarely used for distributing software patches; nevertheless, here is a brief description of
the output, or hunk format. The general normal hunk format is as follows:

change_command
< file1 line
< file1 line...

> file2 line
> file2 line...

change_command takes the form of a line number or a comma- separated range of lines
from file1, a one character command, and a line number or comma-separated range of
lines from file2. The character will be one of the following:

• a—add

• d—delete

• c—change

The change command is actually the ed command to execute to transform file1 into
file2. Looking at the hunk above, to convert jps to niv, we would have to change lines
1–4 of jps to lines 1–4 of niv.

The Context Output Format
As noted in the preceding section, normal hunk format is rarely used to distribute soft-
ware patches. Rather, the “context” or “unified” hunk formats diff produces are the pre-
ferred formats to patches. To generate context diffs, use the -c, —context=[NUM], or -C
NUM options to diff. So-called “context diffs” show differing lines surrounded by NUM
lines of context, so you can more clearly understand the changes between files. Listings
6.3 and 6.4 illustrate the context diff format using a simple bash shell script that
changes the signature files appended to the bottom of email and Usenet posts. (No line
numbers were inserted into these listings in order to prevent confusion with the line num-
bers that diff produces.)

Comparing and Merging Source Files

CHAPTER 6
89

6

C
O

M
PA

R
IN

G
A

N
D

M
ER

G
IN

G
S

O
U

R
C

E
F

ILES

0872316072 CH06 7/26/99 1:42 PM Page 89

LISTING 6.3 sigrot.1

#!/usr/local/bin/bash
sigrot.sh
Version 1.0
Rotate signatures
Suitable to be run via cron
#############################

sigfile=signature

old=$(cat num)
let new=$(expr $old+1)

if [-f $sigfile.$new]; then
cp $sigfile.$new .$sigfile
echo $new > num

else
cp $sigfile.1 .$sigfile
echo 1 > num

fi

LISTING 6.4 sigrot.2

#!/usr/local/bin/bash
sigrot.sh
Version 2.0
Rotate signatures
Suitable to be run via cron
#############################

sigfile=signature
srcdir=$HOME/doc/signatures
srcfile=$srcdir/$sigfile

old=$(cat $srcdir/num)
let new=$(expr $old+1)

if [-f $srcfile.$new]; then
cp $srcfile.$new $HOME/.$sigfile
echo $new > $srcdir/num

else
cp $srcfile.1 $HOME/.$sigfile
echo 1 > $srcdir/num

fi

Context hunk format takes the following form:

*** file1 file1_timestamp
--- file2 file2_timestamp

The Linux Programming Toolkit

PART I
90

0872316072 CH06 7/26/99 1:42 PM Page 90

*** file1_line_range ****
file1 line
file1 line...

--- file2_line_range
file2 line
file2 line...

The first three lines identify the files compared and separate this information from the
rest of the output, which is one or more hunks of differences. Each hunk shows one area
where the files differ, surrounded (by default) by two line of context (where the files are
the same). Context lines begin with two spaces and differing lines begin with a !, +, or -,
followed by one space, illustrating the difference between the files. A + indicates a line in
the file2 that does not exist in file1, so in a sense, a + line was added to file1 to cre-
ate file2. A - marks a line in file1 that does not appear in file2, suggesting a subtrac-
tion operation. A ! indicates a line that was changed between file1 and file2; for each
line or group of lines from file1 marked with !, a corresponding line or group of lines
from file2 is also marked with a !.

To generate a context diff, execute a command similar to the following:

$ diff -C 1 sigrot.1 sigrot.2

The hunks look like the following:

*** sigrot.1 Sun Mar 14 22:41:34 1999
--- sigrot.2 Mon Mar 15 00:17:40 1999
**** 2,4 ****
sigrot.sh

! # Version 1.0
Rotate signatures

--- 2,4 ----
sigrot.sh

! # Version 2.0
Rotate signatures

*** 8,19 ****
sigfile=signature

! old=$(cat num)
let new=$(expr $old+1)

! if [-f $sigfile.$new]; then
! cp $sigfile.$new .$sigfile
! echo $new > num
else

! cp $sigfile.1 .$sigfile
! echo 1 > num

Comparing and Merging Source Files

CHAPTER 6
91

6

C
O

M
PA

R
IN

G
A

N
D

M
ER

G
IN

G
S

O
U

R
C

E
F

ILES

0872316072 CH06 7/26/99 1:42 PM Page 91

fi
--- 8,21 ----
sigfile=signature

+ srcdir=$HOME/doc/signatures
+ srcfile=$srcdir/$sigfile

! old=$(cat $srcdir/num)
let new=$(expr $old+1)

! if [-f $srcfile.$new]; then
! cp $srcfile.$new $HOME/.$sigfile
! echo $new > $srcdir/num
else

! cp $srcfile.1 $HOME/.$sigfile
! echo 1 > $srcdir/num
fi**************

The Linux Programming Toolkit

PART I
92

NOTE

To shorten the display, -C 1 was used to indicate that only a single line of con-
text should be displayed. The patch command requires at least two lines of con-
text to function properly. So when you generate context diffs to distribute as
software patches, request at least two lines of context.

The output shows two hunks, one covering lines 2–4 in both files, the other covering
lines 8–19 in sigrot.1 and lines 8–21 in sigrot.2. In the first hunk, the differing lines
are marked with a ! in the first column. The change is minimal, as you can see, merely
an incremented version number. In the second hunk, there are many more changes, and
two lines were added to sigrot.2, indicated by the +. Each change and addition in both
hunks is surrounded by a single line of context.

The Unified Output Format
Unified format is a modified version of context format that suppresses the display of
repeated context lines and compacts the output in other ways as well. Unified format
begins with a header identifying the files compared

--- file1 file1_timestamp
+++ file2 file2_timestamp

followed by one or more hunks in the form

@@ file1_range file2_range @@
line_from_either_file
line_from_either_file...

0872316072 CH06 7/26/99 1:42 PM Page 92

Context lines begin with a single space and differing lines begin with a + or a -, indicat-
ing that a line was added or removed at this location with respect to file1. The follow-
ing listing was generated with the command diff –U 1 sigrot.1 sigrot.2.

--- sigrot.1 Sun Mar 14 2:41:34 1999
+++ sigrot.2 Mon Mar 15 00:17:40 1999
@@ -2,3 +2,3 @@
sigrot.sh
-# Version 1.0
+# Version 2.0
Rotate signatures
@@ -8,12 +8,14 @@
sigfile=signature
+srcdir=$HOME/doc/signatures
+srcfile=$srcdir/$sigfile

-old=$(cat num)
+old=$(cat $srcdir/num)
let new=$(expr $old+1)

-if [-f $sigfile.$new]; then
- cp $sigfile.$new .$sigfile
- echo $new > num
+if [-f $srcfile.$new]; then
+ cp $srcfile.$new $HOME/.$sigfile
+ echo $new > $srcdir/num
else
- cp $sigfile.1 .$sigfile
- echo 1 > num
+ cp $srcfile.1 $HOME/.$sigfile
+ echo 1 > $srcdir/num
fi

As you can see, the unified format’s output is much more compact, but just as easy to
understand without repeated context lines cluttering the display. Again, we have two
hunks. The first hunk consists of lines 2–3 in both files, the second lines 8–12 in
sigrot.1 and lines 8–14 of sigrot.2. The first hunk says “delete ‘# Version 1.0’ from
file1 and add ‘# Version 2.0’ to file1 to create file2.” The second hunk has three sim-
ilar sets of additions and deletions, plus a simple addition of two lines at the top of the
hunk.

As useful and compact as the unified format is, however, there is a catch: only GNU
diff generates unified diffs and only GNU patch understands the unified format. So, if
you are distributing software patches to systems that do not or may not use GNU diff
and GNU patch, don’t use unified format. Use the standard context format.

Comparing and Merging Source Files

CHAPTER 6
93

6

C
O

M
PA

R
IN

G
A

N
D

M
ER

G
IN

G
S

O
U

R
C

E
F

ILES

0872316072 CH06 7/26/99 1:42 PM Page 93

Additional diff Features
In addition to the normal, context, and unified formats we have discussed, diff can also
produce side-by-side comparisons, ed scripts for modifying or converting files, and an
RCS-compatible output format, and it contains a sophisticated ability to merge files
using an if-then-else format. To generate side-by-side output, use diff’s -y or --side-
by-side options. Note, however, that the output will be wider than usual and long lines
will be truncated. To generate ed scripts, use the -e or --ed options. For information
about diff’s RCS and if-then-else capabilities, see the documentation—they are not dis-
cussed in this book because they are esoteric and not widely used.

diff Command-Line Options
Like most GNU programs, diff sports a bewildering array of options to fine tune its
behavior. Table 6.1 summarizes some of these options. For a complete list of all options,
use the command diff --help.

TABLE 6.1 SELECTED diff OPTIONS

Option Meaning

--binary Read and write data in binary mode

-c|-C NUM|--context=NUM Produce context format output, displaying
NUM lines of context

-t|--expand-tabs Expand tabs to spaces in the output

-i|--ignore-case Ignore case changes, treating upper- and
lowercase letters the same

-H|--speed-large-files Modify diff’s handling of large files

-w|--ignore-all-space Ignore whitespace when comparing lines

-I REGEXP|--ignore-

matching-lines=REGEXP Ignore lines that insert or delete lines that
match the regular expression REGEXP

-B|--ignore-blank-lines Ignore changes that insert or delete blank lines

-b|--ignore-space-change Ignore changes in the amount of whitespace

-l|--paginate Paginate the output by passing it through pr

-p|--show-c-function Show the C function in which a change occurs

-q|--brief Only report if files differ, do not output the dif-
ferences

-a|--text Treat all files as text, even if they appear to be
binary, and perform a line-by-line comparison

The Linux Programming Toolkit

PART I
94

0872316072 CH06 7/26/99 1:42 PM Page 94

Option Meaning

-u|-U NUM|--unified=NUM Produce unified format output, displaying
NUM lines of context

-v|--version Print diff’s version number

-y|--side-by-side Produce side-by-side format output

Understanding the diff3 Command
diff3 shows its usefulness when two people change a common file. It compares the two
sets of changes, creates a third file containing the merged output, and indicates conflicts
between the changes. diff3’s syntax is:

diff3 [options] myfile oldfile yourfile

oldfile is the common ancestor from which myfile and yourfile were derived.
Listing 6.5 introduces sigrot.3. It is the same as sigrot.1, except that we added a
return statement at the end of the script.

LISTING 6.5 sigrot.3

#!/usr/local/bin/bash
sigrot.sh
Version 3.0
Rotate signatures
Suitable to be run via cron
#############################

sigfile=signature

old=$(cat num)
let new=$(expr $old+1)

if [-f $sigfile.$new]; then
cp $sigfile.$new .$sigfile
echo $new > num

else
cp $sigfile.1 .$sigfile
echo 1 > num

fi

return 0

Predictably, diff3’s output is more complex because it must juggle three input files.
diff3 only displays lines that vary between the files. Hunks in which all three input files

Comparing and Merging Source Files

CHAPTER 6
95

6

C
O

M
PA

R
IN

G
A

N
D

M
ER

G
IN

G
S

O
U

R
C

E
F

ILES

0872316072 CH06 7/26/99 1:42 PM Page 95

are different are called three-way hunks; two-way hunks occur when only two of the
three files differ. Three-way hunks are indicated with ====, while two-way hunks add a
1, 2, or 3 at the end to indicate which of the files is different. After this header, diff3
displays one or more commands (again, in ed style), that indicate how to produce the
hunk, followed by the hunk itself. The command will be one of the following:

file:la—The hunk appears after line l, but does not exist in file, so it must be
appended after line l to produce the other files.

file:rc—The hunk consists of range r lines from file and one of the indicated
changes must be made in order to produce the other files.

To distinguish hunks from commands, diff3 hunks begin with two spaces. For example,

$ diff3 sigrot.2 sigrot.1 sigrot.3

yields (output truncated to conserve space):

====
1:3c
Version 2.0

2:3c
Version 1.0

3:3c
Version 3.0

====1
1:9,10c
srcdir=$HOME/doc/signatures
srcfile=$srcdir/$sigfile

2:8a
3:8a
====1
1:12c
old=$(cat $srcdir/num)

2:10c
3:10c
old=$(cat num)

...

The first hunk is a three-way hunk. The other hunks are two-way hunks. To obtain
sigrot.2 from sigrot.1 or sigrot.3, the lines

srcdir=$HOME/doc/signatures
srcfile=$srcdir/$sigfile

from sigrot.2 must be appended after line 8 of sigrot.1 and sigrot.3. Similarly, to
obtain sigrot.1 from sigrot.2, line 10 from sigrot.1 must be changed to line 12 from
sigrot.1.

The Linux Programming Toolkit

PART I
96

0872316072 CH06 7/26/99 1:42 PM Page 96

As previously mentioned, the output is complex. Rather than deal with this, you can use
the -m or --merge to instruct diff3 to merge the files together, and then sort out the
changes manually.

$ diff3 -m sigrot.2 sigrot.1 sigrot.3 > sigrot.merged

merges the files, marks conflicting text, and saves the output to sigrot.merged. The
merged file is much simpler to deal with because you only have to pay attention to con-
flicting output, which, as shown in Listing 6.6, is clearly marked with <<<<<<<, |||||||,
or >>>>>>>.

LISTING 6.6 OUTPUT OF diff3’S MERGE OPTION

#!/usr/local/bin/bash
sigrot.sh
<<<<<<< sigrot.2
Version 2.0
||||||| sigrot.1
Version 1.0
=======
Version 3.0
>>>>>>> sigrot.3
Rotate signatures
Suitable to be run via cron
#############################

sigfile=signature
srcdir=$HOME/doc/signatures
srcfile=$srcdir/$sigfile

old=$(cat $srcdir/num)
let new=$(expr $old+1)

if [-f $srcfile.$new]; then
cp $srcfile.$new $HOME/.$sigfile
echo $new > $srcdir/num

else
cp $srcfile.1 $HOME/.$sigfile
echo 1 > $srcdir/num

fi

return 0

<<<<<<< marks conflicts from myfile, >>>>>>> marks conflicts from yourfile, and
||||||| marks conflicts with oldfile. In this case, we probably want the most recent
version number, so we would delete the marker lines and the lines indicating the 1.0 and
2.0 versions.

Comparing and Merging Source Files

CHAPTER 6
97

6

C
O

M
PA

R
IN

G
A

N
D

M
ER

G
IN

G
S

O
U

R
C

E
F

ILES

0872316072 CH06 7/26/99 1:42 PM Page 97

Understanding the sdiff Command
sdiff enables you to interactively merge two files together. It displays the files in side-
by-side format. To use the interactive feature, specify the -o file or --output file to
indicate the filename to which output should be saved. sdiff will display each hunk, fol-
lowed by a % prompt, at which you type one of these commands, followed by Enter:

• l—Copy the left-hand column to the output file

• r—Copy the right-hand column to the output file

• el—Edit the left-hand column, then copy the edited text to the output file

• er—Edit the right-hand column, then copy the edited text to the output file

• e—Discard both versions, enter new text, then copy the new text to the output file

• eb—Concatenate the two versions, edit the concatenated text, then copy it to the
output file

• q—Quit

Editing sdiff is left as an exercise for you.

Preparing Source Code Patches
Within the Linux community, most software is distributed either in binary (ready to run)
format, or in source format. Source distributions, in turn, are available either as complete
source packages, or as diff-generated patches. patch is the GNU project’s tool for
merging diff files into existing source code trees. The following sections discuss
patch’s command-line options, how to create a patch using diff, and how to apply a
patch using patch.

Like most of the GNU project’s tools, patch is a robust, versatile, and powerful tool. It
can read the standard normal and context format diffs, as well as the more compact uni-
fied format. patch also strips header and trailer lines from patches, enabling you to apply
a patch straight from an email message or Usenet posting without performing any
preparatory editing.

patch Command-Line Options
Table 6.2 lists commonly used patch options. For complete details, try patch --help or
the patch info pages.

The Linux Programming Toolkit

PART I
98

0872316072 CH06 7/26/99 1:42 PM Page 98

TABLE 6.2 patch OPTIONS

Option Meaning

-c|--context Interpret the patch file as a context diff

-e|--ed Interpret the patch file as an ed script

-n|--normal Interpret the patch file as a normal diff

-u|--unified Interpret the patch file as a unified diff

-d DIR|--directory=DIR Make DIR the current directory for interpreting
filenames in the patch file

-F NUM|--fuzz=NUM Set the fuzz factor to NUM lines when resolving inexact
matches

-l|--ignore-white-space Consider any sequence of whitespace equivalent to
any other sequence of whitespace

-pNUM|--strip=NUM Strip NUM filename components from filenames in
the patch file

-s|--quiet Work silently unless errors occur

-R|--reverse Assume the patch file was created with the old and new
files swapped

-t|--batch Do not ask any questions

--version Display patch’s version information and exit

In most cases, patch can determine the format of a patch file. If it gets confused, howev-
er, use the -c, -e, -n, or -u options to tell patch how to treat the input patch file. As pre-
viously noted , only GNU diff and GNU patch can create and read, respectively, the
unified format, so unless you are certain that only users with access to these GNU utili-
ties will receive your patch, use the context diff format for creating patches. Also recall
that patch requires at least two lines of context correctly to apply patches.

The fuzz factor (-F NUM or --fuzz=NUM) sets the maximum number of lines patch will
ignore when trying to locate the correct place to apply a patch. It defaults to 2, and can-
not be more than the number of context lines provided with the diff. Similarly, if you are
applying a patch pulled from an email message or a Usenet post, the mail or news client
may change spaces into tabs or tabs into spaces. If so, and you are having trouble apply-
ing the patch, use patch’s -l or --ignore-white-space option.

Sometimes, programmers reverse the order of the filenames when creating a diff. The
correct order should be old-file new-file. If the patch encounters a diff that appears

Comparing and Merging Source Files

CHAPTER 6
99

6

C
O

M
PA

R
IN

G
A

N
D

M
ER

G
IN

G
S

O
U

R
C

E
F

ILES

0872316072 CH06 7/26/99 1:42 PM Page 99

to have been created in new-file old-file order, it will consider the patch file a
“reverse patch.” To apply a reverse patch in normal order, specify -R or --reverse to
patch. You can also use -R to back out a previously applied patch.

As it works, patch makes a backup copy of each source file it is going to change,
appending .orig to the end of the file. If patch fails to apply a hunk, it saves the hunk
using the filename stored in the patch file and adding .rej (for reject) to it.

Creating a Patch
To create a patch, use diff to create a context or unified diff, place the name of the older
file before the newer file on the diff command line, and name your patch file by
appending .diff or .patch to the filename. For example, to create a patch based on
sigrot.1 and sigrot.2, the appropriate command line would be

$ diff -c sigrot.1 sigrot.2 > sigrot.patch

to create a context diff, or

$ diff -u sigrot.1 sigrot.2 > sigrot.patch

to create a unified diff. If you have a complicated source tree, one with several subdirec-
tories, use diff’s -r (--recursive) option to tell diff to recurse into each subdirectory
when creating the patch file.

Applying a Patch
To apply the patch, the command would be

$ patch -p0 < sigrot.patch

The -pNUM option tells patch how many “/”s and intervening filename components to
strip off the filename in the patch file before applying the patch. Suppose, for instance,
the filename in the patch is /home/kwall/src/sigrot/sigrot.1. -p1 would result in
home/kwall/src/sigrot/sigrot.1; -p4 would result in sigrot/sigrot.1; -p strips off
every part but the final filename, or sigrot.1.

If, after applying a patch, you decide it was mistake, simply add -R to the command line
you used to install the patch, and you will get your original, unpatched file back:

$ patch -p0 -R < sigrot.patch

See, using diff and patch is not hard! Admittedly, there is a lot to know about the
various file formats and how the commands work, but actually applying them is very
simple and straightforward. As with most Linux commands, there is much more you
can learn, but it isn’t necessary to know everything in order to be able to use these
utilities effectively.

The Linux Programming Toolkit

PART I
100

0872316072 CH06 7/26/99 1:42 PM Page 100

Summary
In this chapter, you learned about the cmp, diff, diff3, sdiff, and patch commands. Of
these, diff and patch are the most commonly used for creating and applying source
code patches. You have also learned about diff’s various output formats. The standard
format is the context format, because most patch programs can understand it. What you
have learned in this chapter will prove to be an essential part of your Linux software
development toolkit.

Comparing and Merging Source Files

CHAPTER 6
101

6

C
O

M
PA

R
IN

G
A

N
D

M
ER

G
IN

G
S

O
U

R
C

E
F

ILES

0872316072 CH06 7/26/99 1:42 PM Page 101

102

0872316072 CH06 7/26/99 1:42 PM Page 102

IN THIS CHAPTER

• Terminology 104

• Basic RCS Usage 105

• rcsdiff 110

• Other RCS Commands 113

7
C

H
A

PT
ER

Version Control
with RCS

by Kurt Wall

0972316072 CH07 7/26/99 1:41 PM Page 103

Version control is an automated process for keeping track of and managing changes
made to source code files. Why bother? Because one day you will make that one fatal
edit to a source file, delete its predecessor and forget exactly which line or lines of code
you “fixed”; because simultaneously keeping track of the current release, the next
release, and eight bug fixes manually will become too tedious and confusing; because
frantically searching for the backup tape because one of your colleagues overwrote a
source file for the fifth time will drive you over the edge; because, one day, over your
morning cappuccino, you will say to yourself, “Version control, it’s the Right Thing to
Do.” In this chapter, we will examine RCS, the Revision Control System, a common
solution to the version control problem.

RCS is a common solution because it is available on almost all UNIX systems, not just
on Linux. Indeed, RCS was first developed on real, that is, proprietary, UNIX systems,
although it is not, itself, proprietary. Two alternatives to RCS, which is maintained by the
GNU project, are SCCS, the Source Code Control System, a proprietary product, and
CVS, the Concurrent Version System, which is also maintained by the GNU project.

CVS is built on top of RCS and adds two features to it. First, it is better suited to manag-
ing multi-directory projects than RCS because it handles hierarchical directory structures
more simply and its notion of a project is more complete. Whereas RCS is file-oriented,
as you will see in this chapter, CVS is project-oriented. CVS’ second advantage is that it
supports distributed projects, those where multiple developers in separate locations, both
geographically and in terms of the Internet, access and manipulate a single source reposi-
tory. The KDE project and the Debian Linux distribution are two examples of large pro-
jects using CVS’ distributed capabilities.

Note, however, that because CVS is built on top of RCS, you will not be able to master
CVS without some knowledge of RCS. This chapter introduces you to RCS because it is
a simpler system to learn. I will not discuss CVS.

Terminology
Before proceeding, however, Table 7.1 lists a few terms that will be used throughout the
chapter. Because they are so frequently used, I want to make sure you understand their
meaning as far as RCS and version control in general are concerned.

TABLE 7.1 VERSION CONTROL TERMS

Term Description

RCS File Any file located in an RCS directory, controlled by RCS and accessed
using RCS commands. An RCS file contains all versions of a particular
file. Normally, an RCS file has a “.v” extension.

The Linux Programming Toolkit

PART I
104

0972316072 CH07 7/26/99 1:41 PM Page 104

Term Description

Working File One or more files retrieved from the RCS source code repository (the
RCS directory) into the current working directory and available for
editing.

Lock A working file retrieved for editing such that no one else can edit it
simultaneously. A working file is “locked” by the first user against edits
by other users.

Revision A specific, numbered version of a source file. Revisions begin with 1.1
and increase incrementally, unless forced to use a specific revision
number.

The Revision Control System manages multiple versions of files, usually but not neces-
sarily source code files (I used RCS to maintain the various revisions of this book). RCS
automates file version storage and retrieval, change logging, access control, release man-
agement, and revision identification and merging. As an added bonus, RCS minimizes
disk space requirements because it tracks only file changes.

Version Control with RCS

CHAPTER 7
105

7

V
ER

SIO
N

C
O

N
TR

O
L

W
ITH

R
C

S

Basic RCS Usage
One of RCS’s attractions is its simplicity. With only a few commands, you can accom-
plish a great deal. This section discusses the ci, co, and ident commands as well as
RCS keywords.

ci and co
You can accomplish a lot with RCS using only two commands, ci and co, and a dir-
ectory named RCS. ci stands for “check in,” which means storing a working file in the
RCS directory; co means “check out,” and refers to retrieving an RCS file from the RCS
repository. To get started, create an RCS directory:

$ mkdir RCS

All RCS commands will use this directory, if it is present in your current working direc-
tory. The RCS directory is also called the repository. Next, create the source file shown
in Listing 7.1, howdy.c, in the same directory in which you created the RCS directory.

NOTE

The examples used in this chapter assume you are using RCS version 5.7. To
determine the version of RCS you are using, type rcs -V.

0972316072 CH07 7/26/99 1:41 PM Page 105

LISTING 7.1 howdy.c—BASIC RCS USAGE

/* Id
* howdy.c
* Sample code to demonstrate RCS Usage
* Kurt Wall
*/
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

fprintf(stdout, Howdy, Linux programmer!”);
return EXIT_SUCCESS;

}

Execute the command ci howdy.c. RCS asks for a description of the file, copies it to the
RCS directory, and deletes the original. “Deletes the original?” Ack! Don’t worry, you
can retrieve it with the command co howdy.c. Voilá! You have a working file. Note that
the working file is read-only; if you want to edit it, you have to lock it. To do this, use
the -l option with co (co -l howdy.c). -l means lock, as explained in Table 7.1.

$ ci howdy.c
RCS/howdy.c,v <-- howdy.c
enter description, terminated with single ‘.’ or end of file:
NOTE: This is NOT the log message!
>> Simple program to illustrate RCS usage
>> .
initial revision: 1.1
done
$ co -l howdy.c
RCS/howdy.c,v --> howdy.c
revision 1.1 (locked)
done

To see version control in action, make a change to the working file. If you haven’t
already done so, check out and lock the file (co -l howdy.c). Change anything you
want, but I recommend adding “\n” to the end of fprintf()’s string argument because
Linux (and UNIX in general), unlike DOS and Windows, do not automatically add a
newline to the end of console output.

fprintf(stdout, “Howdy, Linux programmer!\n”);

Next, check the file back in and RCS will increment the revision number to 1.2, ask for a
description of the change you made, incorporate the changes you made into the RCS file,
and (annoyingly) delete the original. To prevent deletion of your working files during
check-in operations, use the -l or -u option with ci.

The Linux Programming Toolkit

PART I
106

0972316072 CH07 7/26/99 1:41 PM Page 106

$ ci -l howdy.c
RCS/howdy.c,v <-- howdy.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single ‘.’ or end of file:
>> Added newline
>> .
done

When used with ci, both the -l and -u options cause an implied check out of the file
after the check in procedure completes. -l locks the file so you can continue to edit it,
while -u checks out an unlocked or read-only working file.

In addition to -l and -u, ci and co accept two other very useful options: -r (for “revi-
sion”) and -f (“force”). Use -r to tell RCS which file revision you want to manipulate.
RCS assumes you want to work with the most recent revision; -r overrides this default.
ci -r2 howdy.c (this is equivalent to ci -r2.1 howdy.c), for example, creates revision
2.1 of howdy.c; co -r1.7 howdy.c checks out revision 1.7 of howdy.c, disregarding the
presence of higher-numbered revisions in your working directory.

The -f option forces RCS to overwrite the current working file. By default, RCS aborts a
check-out operation if a working file of the same name already exists in your working
directory. So, if you really botch up your working file, co -l -f howdy.c is a handy
way to discard all of the changes you’ve made and start with a known good source file.
When used with ci, -f forces RCS to check in a file even if it has not changed.

RCS’s command-line options are cumulative, as you might expect, and it does a good job
of disallowing incompatible options. To check out and lock a specific revision of
howdy.c, you would use a command like co -l -r2.1 howdy.c. Similarly, ci -u -r3
howdy.c checks in howdy.c, assigns it revision number 3.1, and deposits a read-only
revision 3.1 working file back into your current working directory.

RCS Keywords
RCS keywords are special, macro-like tokens used to insert and maintain identifying
information in source, object, and binary files. These tokens take the form $KEYWORD$.
When a file containing RCS keywords is checked out, RCS expands $KEYWORD$ to
$KEYWORD: VALUE $.

Id
For example, that peculiar string at the top of Listing 7.1, Id, is an RCS keyword. The
first time you checked out howdy.c, RCS expanded it to something like

$Id: howdy.c,v 1.1 1998/12/07 22:39:01 kwall Exp $

Version Control with RCS

CHAPTER 7
107

7

V
ER

SIO
N

C
O

N
TR

O
L

W
ITH

R
C

S

0972316072 CH07 7/26/99 1:41 PM Page 107

The format of the Id string is

$KEYWORD: FILENAME REV_NUM DATE TIME AUTHOR STATE LOCKER $”

On your system, most of these fields will have different values. If you checked out the
file with a lock, you will also see your login name after the Exp entry.

Log
RCS replaces the Log keyword with the log message you supplied during check in.
Rather than replacing the previous log entry, though, RCS inserts the new log message
above the last log entry. Listing 7.2 gives an example of how the Log keyword is
expanded after several check ins:

LISTING 7.2 THE Log KEYWORD AFTER A FEW CHECK INS

/* $Id: howdy.c,v 1.5 1999/01/04 23:07:35 kwall Exp kwall $
* howdy.c
* Sample code to demonstrate RCS usage
* Kurt Wall
* Listing 7.1
*
* ********************* Revision History *********************
* $Log: howdy.c,v $
* Revision 1.5 1999/01/04 23:07:35 kwall
* Added pretty box for the revision history
*
* Revision 1.4 1999/01/04 14:41:55 kwall
* Add args to main for processing command line
*
* Revision 1.3 1999/01/04 14:40:15 kwall
* Added the Log keyword.
* **
*/
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

fprintf(stdout, “Howdy, Linux programmer!\n”);
return EXIT_SUCCESS;

}

The Log keyword makes it convenient to see the changes made to a given file while
working within that file. Read from top to bottom, the change history lists the most
recent changes first.

The Linux Programming Toolkit

PART I
108

0972316072 CH07 7/26/99 1:41 PM Page 108

Other RCS Keywords
Table 7.2 lists other RCS keywords and how RCS expands each of them.

TABLE 7.2 RCS KEYWORDS

Keyword Description

$Author$ Login name of user who checked in the revision

$Date$ Date and time revision was checked, in UTC format

$Header$ Full pathname of the RCS file, the revision number, date, time,
author, state, locker (if locked)

$Locker$ Login name of the user who locked the revision (if not locked, field
is empty)

$Name$ Symbolic name, if any, used to check out the revision

$RCSfile$ Name of the RCS file without a path

$Revision$ Revision number assigned to the revision

$Source$ Full pathname to the RCS file

$State$ The state of the revision: Exp (experimental), the default; Stab
(stable); Rel (released)

The ident Command
The ident command locates RCS keywords in files of all types. This feature lets you
find out which revisions of which modules are used in a given program release. To illus-
trate, create the source file shown in Listing 7.3.

LISTING 7.3 THE ident COMMAND

/* Id
* prn_env.c
* Display values of environment variables.
* Kurt Wall
* Listing 7.3
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static char rcsid[] = “Id\n”;

int main(void)

Version Control with RCS

CHAPTER 7
109

7

V
ER

SIO
N

C
O

N
TR

O
L

W
ITH

R
C

S

continues

0972316072 CH07 7/26/99 1:41 PM Page 109

LISTING 7.3 CONTINUED

{
extern char **environ;
char **my_env = environ;

while(*my_env) {
fprintf(stdout, “%s\n”, *my_env);
my_env++;

}
return EXIT_SUCCESS;

}

The program, prn_env.c, loops through the environ array declared in the header file
unistd.h to print out the values of all your environment variables (see man(3) environ
for more details). The statement static char rcsid[] = “Id\n”; takes advantage of
RCS’s keyword expansion to create a static text buffer holding the value of the Id key-
word in the compiled program that ident can extract. Check prn_env.c in using the -u
option (ci -u prn_env.c), and then compile and link the program (gcc prn_env.c -o
prn_env). Ignore the warning you may get that rcsid is defined but not used. Run the
program if you want, but also execute the command ident prn_env. If everything
worked correctly, you should get output resembling the following:

$ ident prn_env
prn_env:

$Id: prn_env.c,v 1.1 1999/01/06 03:04:40 kwall Exp $

The Id keyword expanded as previously described and gcc compiled this into the bina-
ry. To confirm this, page through the source code file and compare the Id string in the
source code to ident’s output. The two strings will match exactly.

ident works by extracting strings of the form $KEYWORD: VALUE $ from source, object,
and binary files. It even works on raw binary data files and core dumps. In fact, because
ident looks for all instances of the $ KEYWORD: VALUE $ pattern, you can also use
words that are not RCS keywords. This enables you to embed additional information into
programs, for example, a company name. Embedded information can be a valuable tool
for isolating problems to a specific code module. The slick part of this feature is that
RCS updates the identification strings automatically—a real bonus for programmers and
project managers.

rcsdiff
If you need to see the differences between one of your working files and its correspond-
ing RCS file, use the rcsdiff command. rcsdiff uses the diff(1) command (discussed

The Linux Programming Toolkit

PART I
110

0972316072 CH07 7/26/99 1:41 PM Page 110

in Chapter 6, “Comparing and Merging Source Files”) to compare file revisions. In its
simplest form, rcsdiff filename, rcsdiff compares the latest revision of filename in
the repository with the working copy of filename. You can also compare specific revi-
sions using the -r option.

Consider the sample program prn_env.c. Check out a locked version of it and remove
the static char buffer. The result should look like the following:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{

extern char **environ;
char **my_env = environ;

while(*my_env) {
fprintf(stdout, “%s\n”, *my_env);
my_env++;

}
return EXIT_SUCCESS;

}

Now, execute the command rcsdiff prn_env.c. RCS complies and displays the follow-
ing:

$ rcsdiff prn_env.c
===
RCS file: RCS/prn_env.c,v
retrieving revision 1.1
diff -r1.1 prn_env.c
11d10
< static char rcsid[] =
➥“$Id: prn_env.c,v 1.1 1999/01/06 03:04:40 kwall Exp kwall $\n”;

As we learned in the Chapter 6, this diff output means that line 11 in revision 1.1 would
have appeared on line 10 of prn_env.c if it had not been deleted. To look at examining
specific revisions using the -r option, check prn_env.c into the repository, check it right
back out with a lock, add a sleep(5) statement immediately above the return statement,
and, finally, check this third revision back in with the -u option. You should now have
three revisions of prn_env.c in the repository.

The general format for comparing specific file revisions using rcsdiff is

rcsdiff [-rFILE1 [-rFILE2]] FILENAME

Version Control with RCS

CHAPTER 7
111

7

V
ER

SIO
N

C
O

N
TR

O
L

W
ITH

R
C

S

0972316072 CH07 7/26/99 1:41 PM Page 111

First, compare revision 1.1 to the working file:

$ rcsdiff -r1.1 prn_env.c
===
RCS file: RCS/prn_env.c,v
retrieving revision 1.1
diff -r1.1 prn_env.c
1c1
< /* $Id: prn_env.c,v 1.1 1999/01/06 03:10:17 kwall Exp $

> /* $Id: prn_env.c,v 1.3 1999/01/06 03:12:22 kwall Exp $
11d10
< static char rcsid[] =
➥“$Id: prn_env.c,v 1.1 1999/01/06 03:04:40 Exp kwall $\n”;
21a21
> sleep(5);

Next, compare 1.2 to 1.3:

$ rcsdiff -r1.2 -r1.3 prn_env.c
===
RCS file: RCS/prn_env.c,v
retrieving revision 1.2
retrieving revision 1.3
diff -r1.2 -r1.3
1c1
< /* $Id: prn_env.c,v 1.1 1999/01/06 03:10:17 kwall Exp $

> /* $Id: prn_env.c,v 1.3 1999/01/06 03:12:22 kwall Exp $
20a21
> sleep(5);

rcsdiff is a useful utility for viewing changes to RCS files or preparing to merge multi-
ple revisions into a single revision.

For you GNU Emacs aficionados, Emacs boasts an advanced version control mode, VC,
that supports RCS, CVS, and SCCS. For example, to check the current file in or out of
an RCS repository, type C-x v v or C-x C-q and follow the prompts. If you want to
place the file you are currently editing into the repository for the first time (called
“registering” a file with RCS), you would type C-x v i. All of Emacs’ version control
commands are prefixed with C-x v. Figure 7.1 illustrates registering a file in an Emacs
session with RCS.

Emacs’ RCS mode greatly enhances RCS’ basic capabilities. If you are a fan of Emacs, I
encourage you to explore Emacs’ VC mode.

The Linux Programming Toolkit

PART I
112

0972316072 CH07 7/26/99 1:41 PM Page 112

Other RCS Commands
Besides ci, co, ident, and rcsdiff, the RCS suite includes rlog, rcsclean, rcsmerge,
and, of course, rcs. These additional commands extend your control of your source code,
allowing you to merge or delete RCS files, review log entries, and perform other admin-
istrative functions.

rcsclean
rcsclean does what its name suggests: it cleans up RCS working files. The basic syntax
is rcsclean [options] [file ...]. A bare rcsclean command will delete all work-
ing files unchanged since they were checked out. The -u option tells rcsclean to unlock
any locked files and removes unchanged working files. You can specify a revision to
delete using the -rM.N format.

$ rcsclean -r2.3 foobar.c

removes the 2.3 revision of foobar.c.

rlog
rlog prints the log messages and other information about files stored in the RCS reposi-
tory. For example, rlog prn_env.c will display all of the log information for all revi-
sions of prn_env.c. The -R option tells rlog to display only filenames. To see a list of
all the files in the repository, for example, rlog -R RCS/* is the proper command (of
course, you could always type ls -l RCS, too). If you only want to see a list of all
locked files, use the -L option, as in rlog -R -L RCS/*. To see the log information on
all files locked by the user named gomer, use the -l option:

$ rlog -lgomer RCS/*

Version Control with RCS

CHAPTER 7
113

7

V
ER

SIO
N

C
O

N
TR

O
L

W
ITH

R
C

S

FIGURE 7.1
Registering a file
with RCS in
Emacs.

0972316072 CH07 7/26/99 1:41 PM Page 113

rcs
The rcs command is primarily an administrative command. In normal usage, though, it
is useful in two ways. If you checked out a file read-only, then made changes you can’t
bear to lose, rcs -l filename will check out filename with a lock without simultane-
ously overwriting the working file. If you need to break a lock on a file checked out by
someone else, rcs -u filename is the command to use. The file will be unlocked, and a
message sent to the original locker, with an explanation from you about why you broke
the lock. As you will recall, each time you check a file in, you can type a check in mes-
sage explaining what has changed or what you did. If you make a typographical error or
some other mistake in the check in message, or would simply like to add additional
information to it, you can use the following rcs command:

$ rcs –mrev:msg

rev is the revision whose message you want to correct or modify and msg is the corrected
or additional information you want to add.

rcsmerge
rcsmerge attempts to merge multiple revisions into a single working file. The general
syntax is

rcsmerge -rAncestor -rDescendant Working_file -p > Merged_file

Both Descendant and Working_file must be descended from Ancestor. The -p option
tells rcsmerge to send its output to stdout, rather than overwriting Working_file. By
redirecting the output to Merged_file, you can examine the results of the merge. While
rcsmerge does the best it can merging files, the results can be unpredictable. The -p
option protects you from this unpredictability.

For more information on RCS, see these man pages: rcs(1), ci(1), co(1),
rcsintro(1), rcsdiff(1), rcsclean(1), rcsmerge(1), rlog(1), rcsfile(1), and
ident(1).

Summary
In this chapter, you learned about RCS, the Revision Control System. ci and co, with
their various options and arguments, are RCS’s fundamental commands. RCS keywords
enable you to embed identifying strings in your code and in compiled programs that can
later be extracted with the ident command. You also learned other helpful but less fre-
quently used RCS commands, including rcsdiff, rcsclean, rcsmerge, and rlog.

The Linux Programming Toolkit

PART I
114

0972316072 CH07 7/26/99 1:41 PM Page 114

IN THIS CHAPTER

• Introduction to Emacs 116

• Features Supporting
Programming 125

• Automating Development with
Emacs Lisp 132

8
C

H
A

PT
ER

Creating Programs
in Emacs

by Kurt Wall and Mark Watson

1072316072 CH08 7/26/99 2:38 PM Page 115

Emacs provides a rich, highly configurable programming environment. In fact, you can
start Emacs in the morning, and, while you are compiling your code, you can catch up
on last night’s posts to alt.vampire.flonk.flonk.flonk, email a software patch, get caring
professional counseling, and write your documentation, all without leaving Emacs. This
chapter gets you started with Emacs, focusing on Emacs’ features for programmers.

Introduction to Emacs
Emacs has a long history, as one might expect of software currently shipping version
20.3 (the version used for this chapter), but we won’t recite it. The name Emacs derives
from the “editing macros” that Richard Stallman originally wrote for the TECO editor.
Stallman has written his own account of Emacs’ history, which can be viewed online at
http://www.gnu.org/philosophy/stallman-kth.html (you will also get a good look at
GNU’s philosophical underpinnings).

The Linux Programming Toolkit

PART I
116

NOTE

The world is divided into three types of people—those who use Emacs, those
who prefer vi, and everyone else. Many flame wars have erupted over the
Emacs versus vi issue.

Commenting on Emacs’ enormous feature set, one wag said: “Emacs is a great
operating system, but UNIX has more programs.” I’m always interested in Emacs
humor. Send your Emacs related wit to kwall@xmission.com with “Emacs
Humor” somewhere in the subject line.

What is true of any programmer’s editor is especially true of Emacs: Time invested in
learning Emacs repays itself many times over during the development process. This
chapter presents enough information about Emacs to get you started using it and also
introduces many features that enhance its usage as a C development environment.
However, Emacs is too huge a topic to cover in one chapter. A complete tutorial is Sams
Teach Yourself Emacs in 24 Hours. For more detailed information, see the GNU Emacs
Manual and the GNU Emacs Lisp Reference Manual, published by the Free Software
Foundation, Inc., and Learning GNU Emacs and Writing GNU Emacs Extensions, pub-
lished by O’Reilly.

1072316072 CH08 7/26/99 2:38 PM Page 116

Starting and Stopping Emacs
To start Emacs, type emacs or emacs filename. If you have X configured and running
on your system, try xemacs to start XEmacs, a graphical version of Emacs, formerly
known as Lucid Emacs. If Emacs was built with Athena widget set support, Emacs will
have mouse support and a pull-down menu. Depending on which command you type,
you should get a screen that looks like Figure 8.1, Figure 8.2, or Figure 8.3.

Creating Programs in Emacs

CHAPTER 8
117

8

C
R

EA
TIN

G
P

R
O

G
R

A
M

S
IN

E
M

A
C

S

FIGURE 8.1
Emacs on a text
mode console.

Menu bar

Editing window

Status bar

Minibuffer

FIGURE 8.2
Emacs, with
Athena (X)
support.

Menu bar

Editing window

Minibuffer

Status bar

1072316072 CH08 7/26/99 2:38 PM Page 117

If you take a notion to, type C-h t to go through the interactive tutorial. It is instructive
and only takes about thirty minutes to complete. We will not cover it here because we do
not want to spoil the fun. The following list explains the notation used in this chapter:

• C-x means press and hold the Ctrl key and press letter x

• C x means press and release the Ctrl key, and then press letter x

• M-x means press and hold the Alt key and press letter x (if M-x does not work as
expected, try Esc x)

• M x means press and release the Alt key, and then press letter x

Due to peculiarities in terminal configuration, the Alt key may not work with all terminal
types or keyboards. If a command preceded with the Alt key fails to work as expected,
try using the Esc key instead. On the so-called “Windows keyboards,” try pressing the
Window key between Alt and Ctrl.

The Linux Programming Toolkit

PART I
118

Menu bar

Editing window

Minibuffer

Status bar

FIGURE 8.3
XEmacs has an
attractive graphi-
cal interface.

Toolbar

1072316072 CH08 7/26/99 2:38 PM Page 118

Moving Around
Although Emacs usually responds appropriately if you use the arrow keys, we recom-
mend you learn the “Emacs way.” At first, it will seem awkward, but as you become
more comfortable with Emacs, you will find that you work faster because you don’t have
to move your fingers off the keyboard. The following list describes how to move around
in Emacs:

• M-b—Moves the cursor to the beginning of the word left of the cursor

• M-f—Moves the cursor to the end of word to the right of the cursor

• M-a—Moves to the beginning of the current sentence

• M-e—Moves to the end of the current sentence

• C-n—Moves the cursor to the next line

• C-p—Moves the cursor to the previous line

• C-a—Moves the cursor to the beginning of the line

• C-e—Moves the cursor the end of the line

• C-v—Moves display down one screen full

• M-v—Moves display up one screen full

• M->—Moves the cursor to the end of the file

• M-<—Moves the cursor to the beginning of the file

If you open a file ending in .c, Emacs automatically starts in C mode, which has features
that the default mode, Lisp Interaction, lacks. M-C-a, for example, moves the cursor to
the beginning of the current function, and M-C-e moves the cursor to the end of the cur-
rent function. In addition to new commands, C mode modifies the behavior of other
Emacs commands. In C mode, for instance, M-a moves the cursor to the beginning of
the innermost C statement, and M-e moves the cursor to the end of the innermost C
statement.

You can also apply a “multiplier” to almost any Emacs command by typing C-u [N],
where N is any integer. C-u by itself has a default multiplier value of 4. So, C-u 10 C-n
will move the cursor down ten lines. C-u C-n moves the cursor down the default four
lines. If your Alt key works like the Meta (M-) key, M-n, where n is some digit, works
as a multiplier, too.

Creating Programs in Emacs

CHAPTER 8
119

8

C
R

EA
TIN

G
P

R
O

G
R

A
M

S
IN

E
M

A
C

S

TIP

To exit any version of Emacs, type C-x C-c.

1072316072 CH08 7/26/99 2:38 PM Page 119

Inserting Text
Emacs editing is simple: just start typing. Each character you type is inserted at the
“point,” which, in most cases, is the cursor. In classic GNU style, however, Emacs’ docu-
mentation muddles what should be a clear, simple concept making an almost pointless
distinction between the point and the cursor. “While the cursor appears to point *at* a
particular character, you should think of point as *between* two characters; it points
before the character that appears under the cursor (GNU Emacs Manual, 15).” Why the
distinction? The word “point” referred to “.” in the TECO language in which Emacs was
originally developed. “.” was the command for obtaining the value at what is now called
the point. In practice, you can generally use the word “cursor” anywhere the GNU docu-
mentation uses “point.”

To insert a blank line after the cursor, type C-x o. C-o inserts a blank line above the cur-
rent line and positions the cursor at the beginning of the line. C-x C-o deletes all but one
of multiple consecutive blank lines.

Deleting Text
Del and, on most PC systems, Backspace, erases the character to the left of the cursor.
C-d deletes the character under the cursor. C-k deletes from the current cursor location
to the end of the line, but, annoyingly, doesn’t delete the terminating newline (it does
delete the newline if you use the multiplier; that is, C-u 1 C-k deletes the line, newline
and all). To delete all the text between the cursor and the beginning of a line, use C-x
Del.

To delete a whole region of text, follow these steps:

1. Move the cursor to the first character of the region.

2. Type C-@ (C-SPACE) to “set the mark.”

3. Move the cursor to the first character past the end of the region.

4. Type C-w to delete, or “wipe,” the region.

If you want to make a copy of a region, type M-w instead of C-w. If you lose track of
where the region starts, C-x C-x swaps the location of the cursor and the mark. In C
mode, M-C-h combines moving and marking: It moves the cursor to the beginning of the
current function and sets a mark at the end of the function.

If you delete too much text, use C-x u to “undo” the last batch of changes, which is usu-
ally just your last edit. The default undo buffer size is 20,000 bytes, so you can continue
the undo operation. To undo an undo, type M-C-x u. To cut and paste, use M-w to copy
a region of text, move to the location in the buffer where you want to insert the text, and
perform a “yank” by typing C-y.

The Linux Programming Toolkit

PART I
120

1072316072 CH08 7/26/99 2:38 PM Page 120

To facilitate yanking and undoing, Emacs maintains a kill ring of your last 30 deletions.
To see this in action, first delete some text, move elsewhere, and then type C-y to yank
the most recently deleted text. Follow that with M-y, which replaces the text yanked with
the next most recently deleted text. To cycle further back in the kill ring, continue typing
M-y.

Search and Replace
Emacs’ default search routine is a non–case-sensitive incremental search, invoked
with C-s. When you type C-s, the minibuffer prompts for a search string, as shown in
Figure 8.4.

Creating Programs in Emacs

CHAPTER 8
121

8

C
R

EA
TIN

G
P

R
O

G
R

A
M

S
IN

E
M

A
C

S

FIGURE 8.4
Minibuffer prompt
for an incremental
search.

In most cases, a non–case-sensitive search will be sufficient, but, when writing C code,
which is case sensitive, it may not have the desired result. To make case-sensitive search-
es the default, add the following line to the Emacs initialization file, ~/.emacs:

(setq case-fold-search nil)

As you type the string, Emacs moves the cursor to the next occurrence of that string. To
advance to the next occurrence, type C-s again. Esc cancels the search, leaving the cur-
sor at its current location. C-g cancels the search and returns the cursor to its original
location. While in a search, Del erases the last character in the search string and backs
the cursor up to its previous location. A failed search beeps at you annoyingly and writes
“Failed I-search” in the minibuffer.

Incremental searches can wrap to the top of the buffer. After an incremental search fails,
another C-s forces the search to wrap to the top of the buffer. If you want to search back-
wards through a buffer, use C-r.

Prompt

1072316072 CH08 7/26/99 2:38 PM Page 121

Emacs also has regular expression searches, simple (non-incremental) searches, searches
that match entire phrases, and, of course, two search-and-replace functions. The safest
search-and-replace operation is M-%, which performs an interactive search and replace.
Complete the following steps to use M-%:

1. Type M-%.

2. Type the search string and press Enter.

3. Type the replacement string and press Enter.

4. At the next prompt, use one of the following:

SPACE or y Make the substitution and move to the next occurrence of search
string

Del or n Skip to the next occurrence of search string

! Perform global replacement without further prompts

. Make the substitution at current location, and then exit the search-
and-replace operation

M- or q Exit the search and replace, and place cursor at its original location

^ Backtrack to the previous match

C-x r Start a recursive edit

Figure 8.5 shows the results of these steps.

Recursive edits allow you to make more extensive edits at the current cursor location.
Type M-C-c to exit the recursive editing session and return to your regularly scheduled
search and replace.

Other search and replace variants include M-x query-replace-regexp, which executes an
interactive search and replace using regular expressions. For the very stout of heart or
those confident of their regular expression knowledge, consider M-x replace-regexp,
which performs a global, unconditional (sans prompts) search and replace using regular
expressions.

The Linux Programming Toolkit

PART I
122

1072316072 CH08 7/26/99 2:38 PM Page 122

Saving and Opening Files
To save a file, use C-x C-s. Use C-x C-w to save the file using a new name. To open a
file into the current buffer, type C-x C-f to “visit” the file, type the filename in the
minibuffer, and press Enter, which opens it in the current buffer. If you only want to
browse a file without editing it, you can open it in read-only mode using C-x C-r, typing
the filename in the minibuffer, and pressing Enter.

Having opened a file in read-only mode, it is still possible to edit the buffer. Like most
editors, Emacs opens a new buffer for each file visited and keeps the buffer contents sep-
arate from the disk file until explicitly told to write the buffer to disk using C-x C-f or
C-x C-w. So, you can edit a read-only buffer by typing C-x C-q, but you won’t be able
to save it to disk unless you change its name.

Emacs makes two kinds of backups of files you edit. The first time you save a file,
Emacs creates a backup of the original file in the current directory by appending a ~ to
the filename. The other kind of backup is made for crash recovery. Every 300 keystrokes
(a default you can change), Emacs creates an auto-save file. If your system crashes and
you later revisit the file you were editing, Emacs will prompt you to do a file recovery, as
shown in Figure 8.6.

Creating Programs in Emacs

CHAPTER 8
123

8

C
R

EA
TIN

G
P

R
O

G
R

A
M

S
IN

E
M

A
C

S

FIGURE 8.5
Search and
replace minibuffer
prompt.

Minibuffer
after Step 1

Minibuffer
after Step 2

Minibuffer
after Step 4

1072316072 CH08 7/26/99 2:38 PM Page 123

Multiple Windows
Emacs uses the word “frame” to refer to separate Emacs windows because it uses “win-
dow” to refer to a screen that has been divided into multiple sections with independently
controlled displays. This distinction dates back to Emacs’ origins, which predate the exis-
tence of GUIs capable of displaying multiple screens. To display two windows, Emacs
divides the screen into two sections, as illustrated in Figure 8.7.

The Linux Programming Toolkit

PART I
124

FIGURE 8.6
Recovering a file
after a crash.

Prompt to perform
file recovery

FIGURE 8.7
Emacs windows.

To create a new window, type C-x 2, which splits the current window into two windows.
The cursor remains in the “active” or current window. The following is a list of com-
mands for moving among and manipulating various windows:

• C-x o—Move to the other window

• C-M-v—Scroll the other window

• C-x 0—Delete the current window

• C-x 1—Delete all windows except the current one

Window 1

Window 2

1072316072 CH08 7/26/99 2:38 PM Page 124

• C-x 2—Split screen into two windows

• C-x 3—Split the screen horizontally, rather than vertically

• C-x 4 C-f—“Visit” a file into the other window

Note that deleted buffers are hidden, not closed, or “killed” in Emacs’ parlance. To close
a buffer, switch to that buffer and type C-x k and press Enter. If the buffer has not been
saved, Emacs prompts you to save it.

Under the X Window system, you can also create new frames, windows that are separate
from the current window, using the following commands:

• C-x 5 2—Create a new frame of the same buffer

• C-x 5 f—Create a new frame and open a new file into it

• C-x 5 0—Close the current frame

When using framed windows, be careful not to use C-x C-c to close a frame, because it
will close all frames, not just the current one, thus terminating your Emacs session.

Features Supporting Programming
Emacs has modes for a wide variety of programming languages. These modes customize
Emacs’ behavior to fit the syntax and indentation requirements of the language.
Supported languages include several varieties of Lisp, C, C++, Fortran, Awk, Icon, Java,
Objective-C, Pascal, Perl, and Tcl. To switch to one of the language modes, type M-x
[language]-mode, replacing [language] with the mode you want. So, to switch to Java
mode, type M-x java-mode.

Indenting Conveniences
Emacs automatically indents your code while you type it. In fact, it can enforce quite a
few indentation styles. The default style is gnu, a style conforming to GNU’s coding
standards. Other supported indentation styles include k&r, bsd, stroustrup, linux, python,
java, whitesmith, ellemtel, and cc.

To use one of the supported indentation styles, type the command M-x c-set-style fol-
lowed by Enter, enter the indentation style you want to use, and press Enter again. Note
that this will only affect newly visited buffers; existing buffers will be unaffected.

Each line that begins with a Tab will force subsequent lines to indent correctly, depend-
ing on the coding style used. When you are using one of Emacs’ programming modes,
pressing Tab in the middle of a line automatically indents it correctly.

Creating Programs in Emacs

CHAPTER 8
125

8

C
R

EA
TIN

G
P

R
O

G
R

A
M

S
IN

E
M

A
C

S

1072316072 CH08 7/26/99 2:38 PM Page 125

Syntax Highlighting
Emacs’ font-lock mode turns on a basic form of syntax highlighting. It uses different col-
ors to mark syntax elements. To turn on font-lock mode, type M-x font-lock-mode and
press Enter. Figure 8.8 illustrates font-lock mode in the C major mode.

The Linux Programming Toolkit

PART I
126

FIGURE 8.8
The effect of font-
lock mode on C
code.

Using Comments
M-; inserts comment delimiters (/* */) on the current line and helpfully positions the
cursor between them. The comment will be placed (by default) at column 32. If the cur-
rent line is longer than 32 characters, Emacs places the comment just past the end of the
line, as illustrated in Figure 8.9.

FIGURE 8.9
Inserting
comments.

1072316072 CH08 7/26/99 2:38 PM Page 126

If you are creating a multi-line comment, an Emacs minor mode, auto-fill, will indent
and line wrap comment lines intelligently. To set this minor mode, use the M-x auto-
fill-mode command. In the middle of an existing comment, M-; aligns the comment
appropriately. If you have a whole region that you want to convert to comments, select
the region and type M-x comment-region.

Although not strictly related to comments, Emacs helps you make or maintain a change
log for the file you’re editing. To create or add an entry to a change log in the current
directory, type C-x 4 a. The default filename is ChangeLog.

Compilation Using Emacs
The command M-x compile compiles code using, by default, make -k. Ordinarily, this
would require the presence of a Makefile in the current directory. If you are using GNU
make, however, you can take advantage of a shortcut. For example, if you are working on
a file named rdline.c and want to compile it, type M-x compile. Then, when the buffer
prompts for a filename, type rdline.o, as illustrated in Figure 8.10. GNU make has an
internal suffix rule that says, in effect, for a given file FILE.o, create it with the make
command “cc -c FILE.c -o FILE.o”.

Creating Programs in Emacs

CHAPTER 8
127

8

C
R

EA
TIN

G
P

R
O

G
R

A
M

S
IN

E
M

A
C

S

FIGURE 8.10
Compiling a
program within
Emacs.

The first time you issue the compile command, Emacs sets the default compile com-
mand for the rest of the session to the make command you enter. If you have not yet
saved the buffer, Emacs asks if you want to. When you compile from within Emacs, it
creates a scratch buffer called the compilation buffer, which lists the make commands
executed, any errors that occur, and the compilation results.

If any error occurs, Emacs includes an error-browsing feature that takes you to the
location of each error. In Figure 8.11, an error occurred while compiling rdline.c.

1072316072 CH08 7/26/99 2:38 PM Page 127

To go to the line where the error occurred, type C-x ` (back quote); Emacs positions the
cursor at the beginning of the line containing the error, as illustrated in Figure 8.12.

The Linux Programming Toolkit

PART I
128

FIGURE 8.11
The compilation
buffer lists compi-
lation messages,
including errors.

Compilation buffer

FIGURE 8.12
C-x ` positions the
cursor on the line
containing the
error.

If there are other errors, C-x ` will take you to each error in the source file.
Unfortunately, the progression is only one way; you cannot backtrack the error list. This
shortcoming aside, Emacs’ error browsing feature is very handy. To close the compila-
tion buffer, use the command C-x 1 to delete all buffers except the current one.

Tag support is another handy Emacs programming feature. Tags are a type of database
that enables easy source code navigation by cross-referencing function names and,
optionally, typedefs, to the files in which they appear and are defined. Tags are especially
useful for locating the definitions of function names or typedefs. The etags program cre-
ates tag files that Emacs understands. To create an Emacs tag file, execute the following
command:

$ etags -t <list of files>

1072316072 CH08 7/26/99 2:38 PM Page 128

This command creates the tags database, TAGS by default, in the current directory. <list
of files> is the files for which you want tags created. The -t option will include type-
defs in the tag file. So, to create a tag file of all the C source and header files in the cur-
rent directory, the command is:

$ etags -f *.[ch]

Once you’ve created the tag file, use the following commands to take advantage of it:

• M-. tagname—Finds the file containing the definition of tagname and opens it in a
new buffer, replacing the previous buffer

• C-x 4 . tagname—Functions like M-., but visits the file into another window

• C-x 5 . tagname—Functions like C-x 4., but visits the file into another frame

Emacs’ tags facility makes it very easy to view a function’s definition while editing
another file. You can also perform search-and-replace operations using tag files. To per-
form an interactive search and replace:

1. Type M-x tags-query-replace and press Enter.

2. Type the search string and press Enter.

3. Type the replacement string and press Enter.

4. Press Enter to accept the default tags table, TAGS, or type another name and press
Enter.

5. Use the commands described for the query-replace operation.

Another help feature allows you to run a region of text through the C preprocessor, so
you can see how it expands. The command to accomplish this feat is C-c C-e. Figure
8.13 illustrates how it works.

Creating Programs in Emacs

CHAPTER 8
129

8

C
R

EA
TIN

G
P

R
O

G
R

A
M

S
IN

E
M

A
C

S

FIGURE 8.13
Running a text
region through the
C preprocessor.

1072316072 CH08 7/26/99 2:38 PM Page 129

In the top window, we define a preprocessor macro named square(x). After marking the
region, type C-c C-e. The bottom window, named *Macroexpansion*, shows how the
preprocessor expanded the function. Pretty neat, huh?

Customization in Brief
In this section, we list a few commands you can use to customize Emacs’ behavior. We
can only scratch the surface, however, so we will forgo long explanations of why the cus-
tomizations we offer work and ask, instead, that you simply trust us that they do work.

Using the ~/.emacs File
Table 8.1 lists the commands and variables that you will find useful for customizing
Emacs. They control various elements of Emacs’ default behavior.

Table 8.1 EMACS COMMANDS AND VARIABLES

Name Type Description

inhibit-default-init Command Disables any site-wide customizations

case-fold-search Command Sets case sensitivity of searches

user-mail-address Variable Contains user’s mail address

The file ~/.emacs ($HOME/.emacs) contains Lisp code that is loaded and executed each
time Emacs starts. To execute a Lisp command, use the syntax

(setq lisp-command-name [arg])

For example, (setq inhibit-default-init t) executes the Emacs Lisp command
inhibit-default-init with a value of “t” (for true). arg may be either Boolean (t =
true, nil = false), a positive or negative digit, or a double quote delimited string.

To set a variable value, the syntax is

(set-variable varname value)

This initializes varname to value. So, (set-variable user-mail-address
some_guy@call_me_now.com) sets the variable user-mail-address to
some_guy@call_me_now.com.

You can also set variables and execute commands on-the-fly within Emacs. First, type
C-x b to switch to another buffer. Press Tab to view a list of the available buffers in the
echo area. Figure 8.14 shows what the buffer list might look like.

The Linux Programming Toolkit

PART I
130

1072316072 CH08 7/26/99 2:38 PM Page 130

Now, type *scratch* and press Enter. Finally, to execute a Lisp command, type, for
example, (setq case-fold-search t), and press C-j. Lisp evaluates the statement
between parentheses, displaying the result on the line below the command, as illustrated
in Figure 8.15.

Creating Programs in Emacs

CHAPTER 8
131

8

C
R

EA
TIN

G
P

R
O

G
R

A
M

S
IN

E
M

A
C

S

FIGURE 8.14
Sample buffer list.

Echo area

Available
buffers

Type buffer
name here

FIGURE 8.15
Screen after exe-
cution of Lisp
command.

Follow a similar procedure to set a variable value. The syntax takes the general form

(setq set-variable varname value)

The behavior is exactly the same as executing a command. For example, to set user-
mail-address on-the-fly, the command to type in the scratch buffer is (setq
set-variable user-mail-address “someone@somewhere.com”) followed by C-j.

Command entered

Result

1072316072 CH08 7/26/99 2:38 PM Page 131

Creating and Using Keyboard Macros
This section will briefly describe how to create and execute keyboard macros within
Emacs. Keyboard macros are user-defined commands that represent a whole sequence of
keystrokes. They are a quick, easy way to speed up your work.

For example, the section on deleting text pointed out that the command C-k at the begin-
ning of a line would delete all the text on the line, but not the newline. In order to delete
the newline, too, you have to either type C-k twice or use the multiplier with an argu-
ment of 1, that is, C-u 1 C-k. In order to make this more convenient, you can define a
keyboard macro to do this for you.

To start, type C-x (, followed by the commands you want in the macro. To end the defin-
ition, type C-x). Now, to execute the macro you’ve just defined, type C-x e, which
stands for the command call-last-kbd-macro. Actually, the macro was executed the first
time while you defined it, allowing you to see what it was doing as you were defining it.

If you would like to see the actual commands, type C-x C-k, which will start a special
mode for editing macros, followed by C-x e to execute the macro. This will format the
command in a special buffer. The command C-h m will show you instructions for editing
the macro. C-c C-c ends the macro editing session.

The material in this section should give you a good start to creating a highly personal
and convenient Emacs customization. For all of the gory details, see Emacs’ extensive
info (help) file. The next section introduces you to enough Emacs Lisp to enable you to
further customize your Emacs development environment.

Automating Emacs with Emacs
Lisp
Emacs can be customized by writing functions in Elisp (or Emacs Lisp). You have
already seen how to customize Emacs by using the file ~/.emacs. It is assumed that you
have some knowledge of Lisp programming. The full reference to Emacs Lisp, GNU
Emacs Lisp Reference Manual (written by Bill Lewis, Dan Laliberte, and Richard
Stallman), can be found on the Web at http://www.gnu.org/manual/elisp-manual-20-
2.5/elisp.html. In this section, you will see how to write a simple Emacs Lisp function
that modifies text in the current text buffer.

Emacs Lisp is a complete programming environment, capable of doing file I/O, building
user interfaces (using Emacs), doing network programming for retrieving email, Usenet
news, and so on. However, most Emacs Lisp programming involves manipulating the text
in Emacs edit buffers.

The Linux Programming Toolkit

PART I
132

1072316072 CH08 7/26/99 2:38 PM Page 132

Listing 8.1 shows a very simple example that replaces the digits “0”, “1”, and so on with
the strings “ZERO”, “ONE”, and so on.

Listing 8.1 sample.el

(defun sample ()
(let* ((txt (buffer-string))

(len (length txt))
(x nil))

(goto-char 0)
(dotimes (n len)
;; see if the next character is a number 0, 1, .. 9
(setq x (char-after))
(if x

(let ()
(setq x (char-to-string (char-after)))
(if x

(let ()
(if (equal x “0”) (replace-char “ZERO”))
(if (equal x “1”) (replace-char “ONE”))
(if (equal x “2”) (replace-char “TWO”))
(if (equal x “3”) (replace-char “THREE”))
(if (equal x “4”) (replace-char “FOUR”))
(if (equal x “5”) (replace-char “FIVE”))
(if (equal x “6”) (replace-char “SIX”))
(if (equal x “7”) (replace-char “SEVEN”))
(if (equal x “8”) (replace-char “EIGHT”))
(if (equal x “9”) (replace-char “NINE”))))))

;; move the text pointer forward
(forward-char))))

(defun replace-char (s)
(delete-char 1)
(insert s))

The example in Listing 8.1 defines two functions: sample and replace-char. replace-
char is a helper function that only serves to make the sample function shorter. This
example uses several text-handling utility functions that are built in to Emacs Lisp:

• buffer-string—Returns as a string the contents of the current Emacs text buffer

• length—Returns the number of characters in a string

• char-after—Returns the character after the Emacs edit buffer insert point

• char-to-string—Converts a character to a string

• forward-char—Moves the Emacs edit buffer insert point forward by one character
position

Creating Programs in Emacs

CHAPTER 8
133

8

C
R

EA
TIN

G
P

R
O

G
R

A
M

S
IN

E
M

A
C

S

1072316072 CH08 7/26/99 2:38 PM Page 133

• delete-char—Deletes the character immediately following the Emacs edit buffer
insert point

• insert—Inserts a string at the current Emacs edit buffer insert point

You can try running this example by either copying the sample.el file into your
~/.emacs file or using M-x load-file to load sample.el. You run the program by typ-
ing M-: (sample). Typing M-: should give you a prompt Eval:.

Much of the functionality of Emacs comes from Emacs Lisp files that are auto-loaded
into the Emacs environment. When you install Emacs in your Linux distribution, one of
the options is to install the Emacs Lisp source files (the compiled Emacs Lisp files are
installed by default). Installing the Emacs Lisp source files provides many sample pro-
grams for doing network programming, adding menus to Emacs, and so on.

Summary
Emacs is a rich, deep programming environment. This chapter introduced you to the
basics of editing and writing programs with GNU Emacs. It covered starting and stop-
ping Emacs, cursor movement, basic editing functions, and search-and-replace opera-
tions. In addition, you learned how to use Emacs features that support programming,
such as using tags tables, special formatting, syntax highlighting, and running sections of
code through the C preprocessor. The chapter also showed you how to perform basic
Emacs customization using the ~/.emacs initialization file, keyboard macros, and
Emacs Lisp.

The Linux Programming Toolkit

PART I
134

1072316072 CH08 7/26/99 2:38 PM Page 134

System Programming
PART

II
IN THIS PART

• I/O Routines 137

• File Manipulation 161

• Process Control 173

• Accessing System Information 215

• Handling Errors 229

• Memory Management 247

1172316072 part2 7/26/99 2:14 PM Page 135

1172316072 part2 7/26/99 2:14 PM Page 136

IN THIS CHAPTER

• File Descriptors 138

• Calls That Use File Descriptors 138

• Types of Files 152

9
C

H
A

PT
ER

I/O Routines

by Mark Whitis

1272316072 CH09 7/26/99 2:37 PM Page 137

This chapter covers file descriptor–based I/O. This type of file I/O is UNIX specific,
although C development environments on many other platforms may include some sup-
port. The use of file pointer (stdio) based I/O is more portable and will be covered in
the next chapter, “File Manipulation.” In some cases, such as tape I/O, you will need to
use file descriptor–based I/O. The BSD socket programming interface for TCP/IP (see
Chapter 19, “TCP/IP and Socket Programming”) also uses file descriptor–based I/O,
once a TCP session has been established.

One of the nice things about Linux, and other UNIX compatible operating systems, is
that the file interface also works for many other types of devices. Tape drives, the con-
sole, serial ports, pseudoterminals, printer ports, sound cards, and mice are handled as
character special devices which look, more or less, like ordinary files to application pro-
grams. TCP/IP and UNIX domain sockets, once the connection has been established, are
handled using file descriptors as if they were standard files. Pipes also look similar to
standard files.

File Descriptors
A file descriptor is simply an integer that is used as an index into a table of open files
associated with each process. The values 0, 1, and 2 are special and refer to the stdin,
stdout, and stderr streams; these three streams normally connect to the user’s terminal
but can be redirected.

There are many security implications to using file descriptor I/O and file pointer I/O
(which is built on top of file descriptor I/O); these are covered in Chapter 35, “Secure
Programming.” The workarounds actually rely heavily on careful use of file descriptor
I/O for both file descriptor and file pointer I/O.

Calls That Use File Descriptors
A number of system calls use file descriptors. This section includes brief descriptions of
each of those calls, including the function prototypes from the man pages and/or header
files.

Most of these calls return a value of -1 in the event of error and set the variable errno to
the error code. Error codes are documented in the man pages for the individual system
calls and in the man page for errno. The perror() function can be used to print an error
message based on the error code. Virtually every call in this chapter is mentioned in
Chapter 35. Some calls are vulnerable, others are used to fix vulnerabilities, and many
wear both hats. The calls that take file descriptors are much safer than those that take
filenames.

System Programming

PART II
138

1272316072 CH09 7/26/99 2:37 PM Page 138

Each section contains a code fragment that shows the necessary include files and the pro-
totype for the function(s) described in that section, copied from the man pages for that
function.

The open() Call
The open() call is used to open a file. The prototype for this function and descriptions
for its variables and flags follow.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname, int flags).
int open(const char *pathname, int flags, mode_t mode);

The pathname argument is simply a string with the full or relative pathname to the file to
be opened. The third parameter specifies the UNIX file mode (permissions bits) to be
used when creating a file and should be present if a file may be created. The second
parameter, flags, is one of O_RDONLY, O_WRONLY, or O_RDWR, optionally OR-ed with addi-
tional flags; Table 9.1 lists the flag values.

TABLE 9.1 FLAGS FOR THE open() CALL

Flag Description

O_RDONLY Open file for read-only access.

O_WRONLY Open file for write-only access.

O_RDWR Open file for read and write access.

O_CREAT Create the file if it does not exist.

O_EXCL Fail if the file already exists.

O_NOCTTY Don’t become controlling tty if opening tty and the process had no control-
ling tty.

O_TRUNC Truncate the file to length 0 if it exists.

O_APPEND Append file pointer will be positioned at end of file.

O_NONBLOCK If an operation cannot complete without delay, return before completing the
operation. (See Chapter 22, “Non-blocking Socket I/O.”)

O_NODELAY Same as O_NONBLOCK.

O_SYNC Operations will not return until the data has been physically written to the
disk or other device.

open() returns a file descriptor unless an error occurred. In the event of an error, it will
return -1 and set the variable errno.

I/O Routines

CHAPTER 9
139

9

I/O
 R

O
U

TIN
ES

1272316072 CH09 7/26/99 2:37 PM Page 139

The close() Call
You should close a file descriptor when you are done with it. The single argument is the
file descriptor number returned by open(). The prototype for close() is as follows.

#include <unistd.h>

int close(int fd);

Any locks held by the process on the file are released, even if they were placed using a
different file descriptor. If closing the file causes the link count to reach zero, the file will
be deleted. If this is the last (or only) file descriptor associated with an open file, the
entry in the open file table will be freed.

If the file is not an ordinary file, other side effects are possible. The last close on one end
of a pipe may affect the other end. The handshake lines on a serial port might be affect-
ed. A tape might rewind.

The read() Call
The read() system call is used to read data from the file corresponding to a file descrip-
tor.

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

The first argument is the file descriptor that was returned from a previous open() call.
The second argument is a pointer to a buffer to copy the data from, and the third argu-
ment gives the number of bytes to read. Read() returns the number of bytes read or a
value of –1 if an error occurs (check errno).

The write() Call
The write() system call is used to write data to the file corresponding to a file descrip-
tor.

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

System Programming

PART II
140

NOTE

The creat() call is the same as open() with O_CREAT|O_WRONLY|O_TRUNC.

1272316072 CH09 7/26/99 2:37 PM Page 140

The first argument is the file descriptor which was returned from a previous open() call.
The second argument is a pointer to a buffer to copy the data to (which must be large
enough to hold the data) and the third argument gives the number of bytes to write.
write() returns the number of bytes read or a value of -1 if an error occurs (check
errno).

The ioctl() Call
The ioctl() system call is a catchall for setting or retrieving various parameters associ-
ated with a file or to perform other operations on the file. The ioctls available, and the
arguments to ioctl(), vary depending on the underlying device.

#include <sys/ioctl.h>

int ioctl(int d, int request, ...)

The argument d must be an open file descriptor.

The fcntl() Call
The fcntl() call is similar to ioctl() but it sets or retrieves a different set of parame-
ters.

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd);
int fcntl(int fd, int cmd, long arg);

Unlike ioctl(), these parameters are generally not controlled by the low-level device
driver. The first argument is the file descriptor, the second is the command, and the third
is usually an argument specific to the particular command. Table 9.2 lists the various
command values that can be used for the second argument of the fcntl() call.

TABLE 9.2 COMMANDS FOR fcntl()

Command Description

F_DUPFD Duplicates file descriptors. Use dup2() instead.

F_GETFD Gets close-on-exec flag. The file will remain open across exec() family calls
if the low order bit is 0.

F_SETFD Sets close-on-exec flag.

F_GETFL Gets the flags set by open.

F_SETFL Changes the flags set by open.

I/O Routines

CHAPTER 9
141

9

I/O
 R

O
U

TIN
ES

continues

1272316072 CH09 7/26/99 2:37 PM Page 141

TABLE 9.2 CONTINUED

Command Description

F_GETLK Gets discretionary file locks (see flock().)

F_SETLK Sets discretionary lock, no wait.

F_SETLKW Sets discretionary lock, wait if necessary.

F_GETOWN Retrieves the process id or process group number that will receive the SIGIO
and SIGURG signals.

F_SETOWN Sets the process id or process group number.

Since there are other ways to do most of these operations, you may have little need to
use fcntl().

The fsync() Call
The fsync() system call flushes all of the data written to file descriptor fd to disk or
other underlying device.

#include <unistd.h>

int fsync(int fd);
#ifdef _POSIX_SYNCHRONIZED_IO

int fdatasync(int fd);
#endif

The Linux filesystem may keep the data in memory for several seconds before writing it
to disk in order to more efficiently handle disk I/O. A zero is returned if successful; oth-
erwise -1 will be returned and errno will be set.

The fdatasync() call is similar to fsync() but does not write the metadata (inode infor-
mation, particularly modification time).

The ftruncate() Call
The ftruncate() system call truncates the file referenced by file descriptor fd to the
length specified by length.

#include <unistd.h>

int ftruncate(int fd, size_t length);

Return values are zero for success and -1 for an error (check errno).

System Programming

PART II
142

1272316072 CH09 7/26/99 2:37 PM Page 142

The lseek() Call
The lseek() function sets the current position of reads and writes in the file referenced
by file descriptor files to position offset.

#include <sys/types.h>
#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

Depending on the value of whence, the offset is relative to the beginning (SEEK_SET),
current position (SEEK_CUR), or end of file (SEEK_END). The return value is the resulting
offset (relative to the beginning of the file) or a value of (off_t) -1 in the case of error
(errno will be set).

The dup() and dup2() Calls
The system calls dup() and dup2() duplicate file descriptors. dup() returns a new
descriptor (the lowest numbered unused descriptor). dup2() lets you specify the value of
the descriptor that will be returned, closing newfd first, if necessary; this is commonly
used to reopen or redirect a file descriptor.

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

Listing 9.1 illustrates using dup2() to redirect standard output (file descriptor 1) to a file.
The function print_line() formats a message using snprintf(), a safer version of
sprintf(). We don’t use printf() because that uses file pointer I/O, although the next
chapter and Chapter 35 will show how to open a file pointer stream over a file descriptor
stream. The results of running the program are shown in Listing 9.2.

dup() and dup2() return the new descriptor or return -1 and set errno. The new and old
descriptors share file offsets (positions), flags, and locks but not the close-on-exec flag.

LISTING 9.1 dup.c—REDIRECTING STANDARD OUTPUT WITH dup2()

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <assert.h>

I/O Routines

CHAPTER 9
143

9

I/O
 R

O
U

TIN
ES

continues

1272316072 CH09 7/26/99 2:37 PM Page 143

LISTING 9.1 CONTINUED

print_line(int n)
{

char buf[32];
snprintf(buf,sizeof(buf), “Line #%d\n”,n);
write(1,buf, strlen(buf));

}

main()
{

int fd;

print_line(1);
print_line(2);
print_line(3);

/* redirect stdout to file junk.out */
fd=open(“junk.out”, O_WRONLY|O_CREAT,0666);
assert(fd>=0);
dup2(fd,1);

print_line(4);
print_line(5);
print_line(6);

close(fd);
close(1);

}

LISTING 9.2 SAMPLE RUN OF dup.c

$./dup
Line #1
Line #2
Line #3
$ cat junk.out
Line #4
Line #5
Line #6
$

The select() Call
The select() function call allows a process to wait on multiple file descriptors simulta-
neously with an optional timeout. The select() call will return as soon as it is possible
to perform operations on any of the indicated file descriptors. This allows a process to

System Programming

PART II
144

1272316072 CH09 7/26/99 2:37 PM Page 144

perform some basic multitasking without forking another process or starting another
thread. The prototype for this function and its macros is listed below.

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

select() is one of the more complicated system calls available. You probably won’t
need to use it very often but when you do, you really need it. You could issue a bunch of
non-blocking reads or writes on the various file descriptors, but that kind of program-
ming is one of the reasons why DOS and Windows applications multitask so poorly; the
task keeps running and chewing up CPU cycles even though it has no useful work to do.

The first parameter is the number of file descriptors in the file descriptor sets (so the ker-
nel doesn’t have to waste time checking a bunch of unused bits). The second, third, and
fourth parameters are pointers to file descriptor sets (one bit per possible file descriptor)
that indicate which file descriptors you would like to be able to read, write, or receive
exception notifications on, respectively. The last parameter is a timeout value. All but the
first parameter may be null. On return the file descriptor sets will be modified to indicate
which descriptors are ready for immediate I/O operations. The timeout will also be modi-
fied on return, although that is not the case on most systems other than Linux. The return
value itself will indicate a count of how many descriptors are included in the descriptor
sets. If it is zero, that indicates a timeout. If the return value is -1, errno will be set to
indicate the error (which may include EINTR if a signal was caught).

The macros FD_ZERO(), FD_SET(), FD_CLEAR, and FD_ISSET() help manipulate file
descriptor sets by erasing the whole set, setting the bit corresponding to a file descriptor,
clearing the bit, or querying the bit. All but FD_ZERO() take a file descriptor as the first
parameter. The remaining parameter for each is a pointer to a file descriptor set.

Listing 9.3 has a crude terminal program that illustrates the use of select(). The pro-
gram doesn’t disable local echo or line buffering on the keyboard, set the baud rate on
the serial port, lock the serial line, or do much of anything but move characters between
the two devices. If compiled with BADCODE defined, it will spin on the input and output
operations tying up CPU. Otherwise, the program will use select() to sleep until it is
possible to do some I/O. It will wake up every ten seconds, for no good reason. It is

I/O Routines

CHAPTER 9
145

9

I/O
 R

O
U

TIN
ES

1272316072 CH09 7/26/99 2:37 PM Page 145

limited to single character buffers so it will make a system call for every character in or
out instead of doing multiple characters at a time when possible. My manyterm program
also illustrates the use of select().

LISTING 9.3 select BASED TERMINAL PROGRAM

#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <assert.h>
#include <stdio.h> /* for fprintf(stderr,... */
#include <termios.h>

/* crude terminal program */
/* - does not lock modem */
/* - does not disable echo on users terminal */
/* - does not put terminal in raw mode */
/* - control-c will abort */

int debug = 0;

void dump_fds(char *name, fd_set *set, int max_fd)
{

int i;

if(!debug) return;

fprintf(stderr, “%s:”, name);
for(i=0; i<max_fd; i++) {

if(FD_ISSET(i, set)) {
fprintf(stderr, “%d,”, i);

}
}
fprintf(stderr, “\n”);

}

main()
{

int keyboard;
int screen;
int serial;
char c;
int rc;
struct termios tio;

#ifndef BADCODE

System Programming

PART II
146

1272316072 CH09 7/26/99 2:37 PM Page 146

fd_set readfds;
fd_set writefds;
fd_set exceptfds;
struct timeval tv;
int max_fd;

/* inbound and outbound keep track of */
/* whether we have a character */
/* already read which needs to be sent in that direction */
/* the _char variables are the data buffer */
int outbound;
char outbound_char;
int inbound;
char inbound_char;

#endif

keyboard = open(“/dev/tty”,O_RDONLY| O_NONBLOCK);
assert(keyboard>=0);
screen = open(“/dev/tty”,O_WRONLY| O_NONBLOCK);
assert(screen>=0);
serial = open(“/dev/modem”, O_RDWR| O_NONBLOCK);
assert(serial>=0);

if(debug) {
fprintf(stderr, “keyboard=%d\n”,keyboard);
fprintf(stderr, “screen=%d\n”,screen);
fprintf(stderr, “serial=%d\n”,serial);

}

#ifdef BADCODE
while(1) {

rc=read(keyboard,&c,1);
if(rc==1) {

while(write(serial,&c,1) != 1)
;

}
rc=read(serial,&c,1);
if(rc==1) {

while(write(screen,&c,1) != 1)
;

}
}

#else
outbound = inbound = 0;

while(1) {
FD_ZERO(&writefds);
if(inbound) FD_SET(screen, &writefds);

I/O Routines

CHAPTER 9
147

9

I/O
 R

O
U

TIN
ES

continues

1272316072 CH09 7/26/99 2:37 PM Page 147

LISTING 9.3 CONTINUED

if(outbound) FD_SET(serial, &writefds);

FD_ZERO(&readfds);
if(!outbound) FD_SET(keyboard, &readfds);
if(!inbound) FD_SET(serial, &readfds);

max_fd = 0;
if(screen > max_fd) max_fd=screen;
if(keyboard > max_fd) max_fd=keyboard;
if(serial > max_fd) max_fd=serial;
max_fd++;
if(debug) fprintf(stderr, “max_fd=%d\n”,max_fd);

tv.tv_sec = 10;
tv.tv_usec = 0;

dump_fds(“read in”, &readfds, max_fd);
dump_fds(“write in”, &writefds, max_fd);

rc= select(max_fd, &readfds, &writefds, NULL, &tv);

dump_fds(“read out”, &readfds, max_fd);
dump_fds(“write out”, &writefds, max_fd);

if(FD_ISSET(keyboard, &readfds)) {
if(debug) fprintf(stderr, “\nreading outbound\n”);
rc=read(keyboard,&outbound_char,1);
if(rc==1) outbound=1;
if(outbound == 3) exit(0);

}

if(FD_ISSET(serial, &readfds)) {
if(debug) fprintf(stderr, “\nreading inbound\n”);
rc=read(serial,&inbound_char,1);
if(rc==1) inbound=1;

}

if(FD_ISSET(screen, &writefds)) {
if(debug) fprintf(stderr, “\nwriting inbound\n”);
rc=write(screen,&inbound_char,1);
if(rc==1) inbound=0;

}

if(FD_ISSET(serial, &writefds)) {
if(debug) fprintf(stderr, “\nwriting outbound\n”);
rc=write(serial,&outbound_char,1);
if(rc==1) outbound=0;

System Programming

PART II
148

1272316072 CH09 7/26/99 2:37 PM Page 148

}

}
#endif

}

The fstat() Call
The fstat() system call returns information about the file referred to by the file descrip-
tor files, placing the result in the struct stat pointed to by buf(). A return value of
zero is success and -1 is failure (check errno).

#include <sys/stat.h>
#include <unistd.h>

int fstat(int filedes, struct stat *buf);

Here is the definition of struct stat, borrowed from the man page:

struct stat
{

dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
unsigned long st_blksize; /* blocksize for filesystem I/O */
unsigned long st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

};

This call is safer than its cousins stat() and even lstat().

The fchown() Call
The fchown() system call lets you change the owner and group associated with an open
file.

#include <sys/types.h>
#include <unistd.h>

int fchown(int fd, uid_t owner, gid_t group);

I/O Routines

CHAPTER 9
149

9

I/O
 R

O
U

TIN
ES

1272316072 CH09 7/26/99 2:37 PM Page 149

The first parameter is the file descriptor, the second the numerical user id, and the third
the numerical group id. A value of -1 for either owner or group will leave that value
unchanged. Return values are zero for success and -1 for failure (check errno).

System Programming

PART II
150

*Note

An ordinary user may change the file’s group to any group they belong to. Only
root may change the owner to any group.

The fchown() call is safer than its cousin chown(), which takes a pathname instead of a
file descriptor.

The fchmod() Call
The fchmod() call changes the mode (permission bits) of the file referenced by fildes to
mode.

#include <sys/types.h>
#include <sys/stat.h>

int fchmod(int fildes, mode_t mode);

Modes are frequently referred to in octal, a horrid base 8 numbering system that was
used to describe groups of 3 bits when some systems could not print the letters A–F
required for hexadecimal notation. Remember that one of the C language’s unpleasant
idiosyncrasies is that any numeric constant that begins with a leading zero will be inter-
preted as octal. Return values are zero for success and -1 for error (check errno).

Table 9.3 shows the file mode bits that may be OR-ed together to make the file mode.

TABLE 9.3 FILE MODES

Octal Symbolic Description

04000 S_ISUID Set user id (setuid)

02000 S_ISGID Set group id (setgid)

01000 S_SVTX Sticky bit

00400 S_IRUSR User (owner) may read

00200 S_IWUSR User (owner) may write

00100 S_IXUSR User (owner) may execute/search

1272316072 CH09 7/26/99 2:37 PM Page 150

Octal Symbolic Description

00040 S_IRGRP Group may read

00020 S_IWGRP Group may write

00010 S_IXGRP Group may execute/search

00004 S_IROTH All others may read

00002 S_IWOTH All others may write

00001 S_IXOTH All others may execute

The kernel may modify these bits silently while executing this call or when the file is
later modified in certain circumstances to prevent security breaches; in particular the
setuid and setgid bits will be reset when the file is written to.

The fchmod() call is safer than its cousin chmod().

The fchdir() Call
The fchdir() call changes to the directory referred to by the open file descriptor fd. A
return value of zero means success and -1 means failure (check errno).

#include <unistd.h>

int fchdir(int fd);

The fchdir() call is safer than its cousin chdir().

The flock() Call
The system call flock() requests or removes an advisory lock on the file referred to by
file descriptor fd.

#include <sys/file.h>

int flock(int fd, int operation)

The second parameter, operation, will be LOCK_SH for a shared lock, LOCK_EX for an
exclusive lock, or LOCK_UN to unlock; the value LOCK_NB can be OR-ed with any of the
other options to prevent blocking. At any particular time, only one process can have an
exclusive lock on a particular file, but more than one can have shared locks. Locks are
only enforced when a program tries to place its own lock; programs that do not attempt
to lock a file may still access it. Locks, therefore, only work between cooperating pro-
grams. Return values are zero for success and -1 for error.

I/O Routines

CHAPTER 9
151

9

I/O
 R

O
U

TIN
ES

1272316072 CH09 7/26/99 2:37 PM Page 151

On Linux, and many other UNIX-type systems, there are many types of locks that may
or may not interoperate with each other. Locks placed with flock() do not communicate
with locks placed using fcntl() or lockf(), or with UUCP lock files in /var/lock.
Linux also implements mandatory locks, if they are enabled on your kernel, for specific
files that have the setgid bit set and the group execute bit clear; in this case, locks placed
with fcntl() or lockf() will be mandatory.

The pipe() Call
The pipe() system call creates a pipe and returns two file descriptors in the two integer
arrays pointed to by filedes. These file descriptors may be used like any file descriptors
returned by open(). The return value is 0 for success and -1 for error (check errno).

#include <unistd.h>

int pipe(int filedes[2]);

pipe() can be used in conjunction with fork(), dup2(), and execve() to create pipes to
other programs with redirected input and/or output. Beware of deadlock conditions if you
redirect both input and output back to the parent process; it is not difficult to find your-
self in a situation where both the parent and child are waiting on each other. You can also
create pipes between two or more child processes in this manner.

Types of Files
A variety of types of files are manipulated using file descriptor I/O or by file pointer I/O
(stdio), which is implemented on top of file descriptor I/O. This section mentions some
of the idiosyncrasies of several different types of files.

Regular Files
All of the system calls described in the previous sections, except for ioctl() and
fchdir() (which applies to directories) apply to ordinary files. The program
filedes_io.c, shown in listing 9.4, shows most of the system calls described in this
chapter applied to an ordinary file.

LISTING 9.4 filedes_io.c

/* filedes_io.c */
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <fcntl.h>

System Programming

PART II
152

1272316072 CH09 7/26/99 2:37 PM Page 152

#include <unistd.h>

#include <assert.h>
#include <errno.h>
#include <string.h>
#include <stdio.h> /* for printf */

char sample1[] = “This is sample data 1\n”;
char sample2[] = “This is sample data 2\n”;
char data[16];

main()
{

int fd;
int rc;
struct stat statbuf;

/* Create the file */
printf(“Creating file\n”);
fd=open(“junk.out”,O_WRONLY|O_CREAT|O_TRUNC,0666);
assert(fd>=0);

rc=write(fd,sample1,strlen(sample1));
assert(rc==strlen(sample1));

close(fd);

/* Append to the file */
printf(“Appending to file\n”);
fd=open(“junk.out”,O_WRONLY|O_APPEND);
assert(fd>=0);

printf(“ locking file\n”);
rc=flock(fd, LOCK_EX);
assert(rc==0);

/* sleep so you can try running two copies at one time */
printf(“ sleeping for 10 seconds\n”);
sleep(10);

printf(“ writing data\n”);
rc=write(fd,sample2,strlen(sample2));
assert(rc==strlen(sample2));

printf(“ unlocking file\n”);
rc=flock(fd, LOCK_UN);
assert(rc==0);

close(fd);

I/O Routines

CHAPTER 9
153

9

I/O
 R

O
U

TIN
ES

continues

1272316072 CH09 7/26/99 2:37 PM Page 153

LISTING 9.4 CONTINUED

/* read the file */
printf(“Reading file\n”);
fd=open(“junk.out”,O_RDONLY);
assert(fd>=0);

while(1) {
rc=read(fd,data,sizeof(data));
if(rc>0) {

data[rc]=0; /* terminate string */
printf(“Data read (rc=%d): <%s>\n”,rc,data);

} else if (rc==0) {
printf(“End of file read\n”);
break;

} else {
perror(“read error”);
break;

}
}
close(fd);

/* Fiddle with inode */
printf(“Fiddling with inode\n”);
fd=open(“junk.out”,O_RDONLY);
assert(fd>=0);

printf(“changing file mode\n”);
rc=fchmod(fd, 0600);
assert(rc==0);
if(getuid()==0) {

printf(“changing file owner\n”);
/* If we are root, change file to owner nobody, */
/* group nobody (assuming nobody==99 */
rc=fchown(fd, 99, 99);
assert(rc==0);

} else {
printf(“not changing file owner\n”);

}

fstat(fd, &statbuf);
printf(“file mode=%o (octal)\n”,statbuf.st_mode);
printf(“Owner uid=%d\n”,statbuf.st_uid);
printf(“Owner gid=%d\n”,statbuf.st_uid);

close(fd);
}

System Programming

PART II
154

1272316072 CH09 7/26/99 2:37 PM Page 154

Tape I/O
Tape drives normally support sequential access to one or more unnamed files separated
by end of file markers. Some tape drives support variable block sizes but others use a
fixed block size or block sizes that are a multiple of some size. Most, perhaps all, tape
drives have some maximum block size. Nine-track (open reel) tape drives support vari-
able block sizes with a minimum block size of something like 16 bytes. Quarter Inch
Cartridge (QIC) drives require block sizes to be a multiples of 512 bytes. DAT drives
support variable length block sizes. If you want to preserve filename information, use an
archive program such as tar, which will write a single file containing an archive of many
files with filename, ownership, and permission information.

ANSI standard nine-track tapes do appear to have filenames. What is really happening is
that two files are written to tape for every data file; the first file contains a header and the
second contains the data. There is a package that handles ANSI tapes at
ftp://garbo.uwasa.fi/unix/ansiutil/ansitape.tar.Z.

The Linux tape drive interface is pretty straightforward. You simply open the tape device
(/dev/nst0) and perform read() and write() calls. Each write() writes a single block
to tape; you control the block size by simply controlling how many bytes you write at a
time. To read variable length blocks, and learn what block size was read, simply issue a
read() with a size large enough to hold the largest block expected; the read will only
read the data in the current block and the return value will indicate the block size. End of
file markers are placed on tape by writing a block size of zero (most tape devices do not
allow zero length blocks); by convention, two consecutive end of file markers mark the
end of tape. If a zero length block is read, this should be treated as an end of file. Some
UNIX systems require you to close and reopen the file to get past the end of file marker;
Linux does not have this idiosyncrasy. If you are not concerned about block sizes, you
can even use file pointer I/O on a tape drive; it is possible that selecting unbuffered input
and output using setbuf() might even allow control over block variable sizes.

I/O Routines

CHAPTER 9
155

9

I/O
 R

O
U

TIN
ESNOTE

The lseek() call does not work for tape devices, although you can accomplish
this using the MTSEEK ioctl on those tape drives (such as DAT drives) that sup-
port this.

1272316072 CH09 7/26/99 2:37 PM Page 155

There are a wide variety of ioctls defined in /usr/include/sys/mtio.h that pertain to
tape devices. The man page for st, the SCSI tape device, describes these in more detail.
The mt program can issue many of these. Some of the things you can do with ioctls are
rewind, retension tape, set tape position, eject tape, erase tape, retrieve status, set block
sizes, set recording density, turn compression on and off, and initiate a drive self-test.
Not all tape drives support all functions.

tapecopy.c, shown in Listing 9.5, copies all files from one tape drive to another, pre-
serving block sizes. Remember to use the no-rewind tape device (/dev/nst0 instead of
/dev/st0); the rewind device rewinds the tape every time the file is closed. You will
probably want to rewind each tape with a command like mt -f /dev/nst0 rewind. If
you only have one tape drive or just want to see the block sizes on an existing tape, you
can use /dev/null as the output devices. The program takes three parameters, the input
tape device, the output tape device, and the level of verbosity (1=verbose, 0=quiet).

LISTING 9.5 tapecopy.c

/* tapecopy.c - copy from one tape to another */
/* preserving block size */
/* Copyright 1999 by Mark Whitis. All rights reserved */

#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <assert.h>
#include <stdio.h>
#include <sys/mtio.h>

int verbose=1;

main(int argc, char *argv[])
{

int in;
int out;
int rc;
int size;
char buffer[65536];
int lasteof;
int filesize;
int nfiles;
int totalsize;
int blocknum;

if(argc != 4) {
fprintf(stderr, “Usage:\n”);

System Programming

PART II
156

1272316072 CH09 7/26/99 2:37 PM Page 156

fprintf(stderr, “ tapecopy in out verbosity\n”);
}

verbose = atoi(argv[3]);

in=open(argv[1],O_RDONLY);
assert(in);
out=open(argv[2],O_WRONLY|O_CREAT,0666);
assert(out);

/* set to variable block size (0) */
/* oddly, this returns EINVAL even though it works */
/* expect an ENOTTY on /dev/null or plain file */
rc=ioctl(in,MTSETBLK,0);
if(rc!=0) perror(“tapecopy: ioctl(in,MTSETBLK,0)”);
rc=ioctl(out,MTSETBLK,0);
if(rc!=0) perror(“tapecopy: ioctl(out,MTSETBLK,0)”);

filesize=0;
nfiles=0;
totalsize=0;
blocknum=0;

lasteof = 0;
while(1) {

rc=read(in, buffer, sizeof(buffer));
if(verbose) {

fprintf(stderr,”Block %d, size=%d\n”,blocknum,rc);
}
if(rc<0) {

perror(“tapecopy: read error”);
blocknum++;

} else if(rc==0) {
/* end of file marker read */
if(lasteof) {

/* end of tape */
if(verbose) fprintf(stderr,”**EOT**\n”);
write(out, buffer, 0);
break;

} else {
if(verbose) {

fprintf(stderr,”**EOF**, filesize=%d\n”,filesize);
}
/* some Un*x systems require closing and opening */
/* file to get past end of file marker */
close(in);
in=open(argv[1],O_RDONLY);
/* write file marker */
write(out, buffer, 0);

I/O Routines

CHAPTER 9
157

9

I/O
 R

O
U

TIN
ES

continues

1272316072 CH09 7/26/99 2:37 PM Page 157

LISTING 9.5 CONTINUED

nfiles++;
filesize=0;
lasteof=1;
blocknum=0;

}
} else {
size = rc;
rc = write(out, buffer, size);
if(rc!=size) {

perror(“tapecopy: write error”);
}
filesize+=size;
totalsize+=size;
blocknum++;

lasteof=0;
}

}

if(verbose) fprintf(stderr,”Number of files: %d\n”,nfiles);
if(verbose) fprintf(stderr,”Total size: %d\n”,totalsize);

close(in);
close(out);

}

Serial Port I/O
Using the serial ports is fairly easy. Just open the port O_RDWR and use ioctls or termios
to set the communications parameters. See Chapter 26, “Terminal Control the Hard
Way,” for more information on termios. You may also want to use file pointer I/O
instead.

Note that serial ports frequently have two instances: a call in device and a call out device.
This is so the getty program can have the connection open to receive incoming sessions,
but modem applications can still open it for outgoing connections as long as there is no
active incoming session.

Printer Port
The parallel printer driver creates three character special devices: /dev/lp0, /dev/lp1,
and /dev/lp2. To talk to the printer directly, you simply open write data to the appropri-
ate device (assuming no other program already has them open). This is usually not what

System Programming

PART II
158

1272316072 CH09 7/26/99 2:37 PM Page 158

you want to do from an application, however. Instead, you should use the spooling mech-
anism provided by the lpd daemon. You should pipe the data through a user specified
queuing program, which will usually be lpr or mpage with assorted options. It will usual-
ly be more convenient to use file pointer I/O for this purpose; the popen() function can
be used for this purpose (as long as the program is not privileged).

Sound Card
The sound driver creates a number of character special devices for the various subdevices
on a typical soundcard. To play back digitized sound samples, you simply open
/dev/audio (or /dev/dsp or /dsp1), use ioctls() to set the sample rate, number of
channels, number of bits per sample, and other parameters and then start writing your
audio samples to the open file descriptor (or file pointer). If you are trying to do synchro-
nized sound, you will need to balance the amount of data you write ahead; too little and
you will have dropouts due to buffer overflow, but too much will cause noticeable delays.
Recording is similar. To use the FM synthesizer, you must first know how to produce a
valid MIDI data stream that you then send to the /dev/midi device. In some cases, you
may find it simpler to invoke an external program such as play, rec, or playmidi to han-
dle your audio.

More information on the programming interface is available at
http://www.opensound.com/pguide/.

Summary
File descriptor I/O provides low level file I/O functions in a way that is somewhat UNIX
specific. For higher level I/O operations, see file pointer I/O in Chapter 10, “File
Manipulation.” In some cases, you will still need to use some of the functions in this
chapter in conjunction with file pointer I/O.

I/O Routines

CHAPTER 9
159

9

I/O
 R

O
U

TIN
ES

1272316072 CH09 7/26/99 2:37 PM Page 159

160

1272316072 CH09 7/26/99 2:37 PM Page 160

IN THIS CHAPTER

• The File Functions 162

• Formatted Output 165

10
C

H
A

PT
ER

File Manipulation

by Mark Whitis

1372316072 CH10 7/26/99 2:35 PM Page 161

This chapter describes file manipulation through the file pointer (FILE *) mechanism
provided by the stdio library. This library is common to all C implementations for
general-purpose computers (but not some embedded systems); therefore, most C pro-
grammers should already be reasonably familiar with it. This chapter provides a quick
overview of the basics, and gives more attention to various subtleties and Linux/UNIX-
specific calls. The functions described in this section are library functions and not system
calls.

The stdio library offers several enhancements over file descriptor I/O; in some circum-
stances, these can be disadvantages as well. The stdio library buffers I/O, reducing the
system call overhead. This can sometimes cause problems with output not being deliv-
ered when expected and can be a problem if you are concerned about block boundaries,
such as with magnetic tapes or some network protocols. The buffering can be disabled.
The very popular printf() family of functions work with file pointer I/O, not file
descriptor I/O, and there are a variety of other line oriented functions. These functions
may also resume system calls that were interrupted by a signal. The portability of the
library is also a major advantage.

The File Functions
The description of each function starts with a function prototype definition, borrowed
from the man page and/or header file. In the function descriptions that follow, FILE *
identifies a file pointer. Most functions described in this section will take a file pointer
argument to indicate what stream to operate on; this will not be repeated in each descrip-
tion. Three standard file pointers are normally open when each program starts— stdin,
stdout, and stderr. These three file pointers point to streams that normally are connect-
ed to the user’s terminal unless redirected to a file or pipe.

System Programming

PART II
162

NOTE

Some functions are actually implemented as macros. Beware of expressions in
the arguments that have side effects; these functions may be called more than
once.

1372316072 CH10 7/26/99 2:35 PM Page 162

Opening and Closing Files
The fopen(), freopen(), and fclose() calls are part of the ANSI standard library;
fdopen() is not. Prototype definitions for these functions are as follows:

#include <stdio.h>

FILE *fopen(const char *path, const char *mode);
FILE *fdopen(int fildes, const char *mode);
FILE *freopen (const char *path, const char *mode,

FILE *stream);
int fclose(FILE * stream);

The function fopen() opens the file named path in mode mode. The modes are described
in Table 10.1. There is no difference between text and binary modes; this distinction is
important on non-UNIX operating systems that handle line ends differently (DOS, MS-
Windows, MacOS) and translate to and from the UNIX paradigm in text mode. fopen()
returns a file pointer that is passed to other stdio functions to identify the stream; this
pointer points to a structure that describes the state of the stream. In the event of an error,
it will return NULL and set errno.

TABLE 10.1 FILE OPEN MODES

Mode Read Write Position Truncate Create Binary

r Yes No Beginning No No Text

r+ Yes Yes Beginning No No Text

w No Yes Beginning Yes Yes Text

w+ Yes Yes Beginning Yes Yes Text

a No Yes End No Yes Text

a+ Yes Yes End No Yes Text

rb Yes No Beginning No No Binary

r+b or rb+ Yes Yes Beginning No No Binary

wb No Yes Beginning Yes Yes Binary

w+b or wb+ Yes Yes Beginning Yes Yes Binary

ab No Yes End No Yes Binary

a+b or ab+ Yes Yes End No Yes Binary

The freopen() function takes a third argument, which is an existing file pointer. This
will close and reopen the file pointer so that it points to the new file. It should use the
same file descriptor for the underlying file descriptor I/O as well. freopen() is typically
used to redirect the streams stdout, stdin, and stdout.

File Manipulation

CHAPTER 10
163

10

F
ILE

M
A

N
IPU

LA
TIO

N

1372316072 CH10 7/26/99 2:35 PM Page 163

The fdopen() function is used to create a file pointer stream on top of an underlying
file descriptor stream created using open(), pipe(), or accept(). The fopen() and
freopen() calls are vulnerable security attacks based on race conditions and/or symbolic
links; Chapter 35, “Secure Programming,” presents a safer, but more restricted, imple-
mentation of fopen(). The fclose() system call closes a file. Return values are 0 for
success and EOF (-1) for failure (check errno).

Basic Reading and Writing
The functions fread() and fwrite() are used to read data from and write data to
streams (files).

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nmemb, FILE
*stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb,
FILE *stream);

The first argument is a pointer to a buffer. The next two arguments are the size of a
record and the number of records to be written. The return value is the number of records
written (not bytes); this value may be less than the number requested. In the event of an
error, the return value will normally be less than the number requested; it is possible it
might even be negative. You will need to use feof() and ferror() to check why the
operation was not completed.

Status Functions
The feof() and ferror() functions return the current status of the stream.

#include <stdio.h>

void clearerr(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);
int fileno(FILE *stream);

The feof() function returns non-zero if the end of file has been reached; note, however,
that the end of file flag will not usually be set until you actually try to read past the end
of file. Looping using while(!feof(stream)) will likely result in one extra pass
through the loop. The ferror() function returns a non-zero value if the error flag is
set on the stream. This function does not set errno, but the previous function call that
actually encountered the error did set errno. The end of file and error flags are reset
with clearerr().

System Programming

PART II
164

1372316072 CH10 7/26/99 2:35 PM Page 164

The fileno() function returns the file descriptor number associated with a stream. This
allows you to perform file descriptor I/O operations (see Chapter 9, “I/O Routines”) on
that stream. For example, you might need to issue an ioctl() of fstat() system call.
Be careful going over stdio’s head; in particular, be sure to flush your buffers before
doing so.

Formatted Output
The printf() function should be familiar to anyone with the slightest C programming
experience. It prints formatted output, including optional arguments, to a stream under
the control of a control string format.

#include <stdio.h>

int printf(const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);
int sprintf(char *str, const char *format, ...);
int snprintf(char *str, size_t size, const char *format, ...);

#include <stdarg.h>

int vprintf(const char *format, va_list ap);
int vfprintf(FILE *stream, const char *format,

va_list ap);
int vsprintf(char *str, const char *format, va_list ap);
int vsnprintf(char *str, size_t size, const char *format,

va_list ap);

There are a number of interesting variations on printf(). The functions with an “s” in
the name print to a string instead of a stream. The plain “s” variants are inherently bro-
ken and should not be used; they are vulnerable to buffer overflow problems. The func-
tions that have “sn” in the name fix the buffer overflow problem. These functions are not
implemented on many other operating systems but you should use them anyway. If you
need to port your program to an OS that has not fixed this problem, you can at least
implement the snprintf() calling convention using a wrapper function around
vsprintf() even if you don’t check for overflows. Your code will still be broken on sys-
tems that are broken, but it will work properly on systems that have been fixed. A canary
value (see Chapter 35) in your wrapper function would also help.

The versions of the function that start with “v” are very handy. These are the varargs
versions; actually, they use stdargs, which is the same but different. These are very
handy if you need to write your own printf() function that does something different
to the output. I remember years ago when I was forced to work on a Pascal program.

File Manipulation

CHAPTER 10
165

10

F
ILE

M
A

N
IPU

LA
TIO

N

1372316072 CH10 7/26/99 2:35 PM Page 165

This was during the Pascal fad; based on my own measurements at the time, around 90
percent of programming projects that were started were using Pascal—yet 90 percent of
the programming projects which were actually finished were written in C. Management
decided they wanted the program to optionally output its responses to a file and/or a
printer—a pretty reasonable request. It approximately doubled the size of the program;
every write statement had to be replaced with three write statements and two condition-
als. And inconsistencies would creep in between the different outputs when the program
was changed. Since printf() is a user-defined function and not a statement, you don’t
have that problem in C. The code fragment in Listing 10.1 shows how you would handle
duplicate output to multiple destinations using vprintf() and friends; just use a search
and replace operation to change all calls to printf() to your own xprintf(). The listing
also shows how we used to accomplish the same thing before the vprintf() family
came along. It wasn’t guaranteed to work but it did anyway; it effectively copied 32
bytes of the stack (or a bunch of registers on RISC CPUs). You can use a similar tick to
divert output to a dialog box. Note that on a Linux system, simply redirecting the output
of an unmodified program through the “tee” program would suffice to log the output of
the program.

The stdarg macros provide a way to pass a variable number and/or type of parameters to
a function. The function must have at least one fixed argument. The argument list in the
function prototype must have “…” where the variable arguments begin. This tells the
compiler not to generate error messages when you pass additional, and seemingly incon-
sistent, parameters to this function. It may also tell the compiler to use a stdarg friendly
calling convention. The printf() function has always used a variable number and type
of arguments, using trickery which eventually led to portability problems (implementa-
tions on some processors, particularly RISC processors, pass some or all of the argu-
ments to a function in registers instead of on the stack). printf() itself is the most
common application for stdargs. stdargs also provides a way to pass the variable
arguments of one function to another function safely and portably. One of the most com-
mon uses of this is to write your own printf() style function which, in turn, makes use
of the existing ones. A stdargs function declares a variable of type va_list. It then calls
a function va_start() with the va_list variable just declared and the last fixed vari-
able; va_start() is a macro so neither parameter needs to be preceded by an “&”
(address of) operator. When you are finished, va_end() will free any resources used by
va_start(). The va_list variable, often named “ap” for “argument pointer”, may now
be used to sequence through each variable using the va_arg() macro. The function itself,
not the stdargs macros, needs to know the number and type of the arguments; in the
case of the printf() functions, this information is determined from the format string.
va_arg() takes two parameters: the va_list variable, ap, and the type argument, which
is a C language type expression (such as char *); the macro casts its result to the

System Programming

PART II
166

1372316072 CH10 7/26/99 2:35 PM Page 166

specified type and as a side effect modifies the ap variable to point to the next variable
argument (using the size of the specified type as an offset on traditional systems where
arguments are passed on the stack). A simple example of a stdargs function that imple-
ments a trivial printf() like function can be found on the stdarg man page; for more
information on the use of va_arg() and stdargs, please refer to that document. Unlike
functions with fixed arguments, functions with variable arguments cannot easily be
encapsulated in another wrapper function. The trick here is to make the real function take
a va_list argument (instead of the variable argument list to which it refers) and then
make a simple wrapper function that does nothing more than initialize the va_list and
call the other function. Now programmers can write their own wrapper function by sim-
ply calling your real function instead of your wrapper. The xprintf() function in Listing
10.1 is an example of a replacement wrapper function. The ANSI standard essentially
requires that the printf() family of functions be implemented as a va_list function
and variable argument wrapper, or at least appear to be. Since vsprintf() and
vfprint() do the same thing but do different things with the results, a given implemen-
tation’s efforts to combine the two variations may add confusion here for those who
choose to look at the code for the printf() family of functions. Those who want to
peruse the stdarg.h file to see how the magic of stdarg is done may find more magic
than they expected: the file has disappeared. Although it is possible to implement
stdargs in C macros on a traditional machine, gcc handles these macros internally since
it has to deal with many different architectures.

LISTING 10.1 vprintf() AND FRIENDS

#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>

FILE *printer;
FILE *logfile;

int xprintf(const char *format, ...)
{

va_list ap;

va_start(ap,format);

vprintf(format, ap);
if(printer) vfprintf(printer, format, ap);
if(logfile) vfprintf(logfile, format, ap);

va_end(ap);

}

File Manipulation

CHAPTER 10
167

10

F
ILE

M
A

N
IPU

LA
TIO

N

continues

1372316072 CH10 7/26/99 2:35 PM Page 167

LISTING 10.1 CONTINUED

int old_xprintf(const char *format,
long a1, long a2, long a3, long a4,
long a5, long a6, long a7, long a8)

{
printf(format, a1, a2, a3, a4, a5, a6, a7, a8);
if(printer)

fprintf(printer,format, a1, a2, a3, a4, a5, a6, a7, a8);
if(logfile)

fprintf(logfile,format, a1, a2, a3, a4, a5, a6, a7, a8);

}

Formatted Input
The fscanf() function is used to read formatted input from stdin under the control of a
control string format. Many variations exist that read from any arbitrary stream (“f” ver-
sions) or from a string (“s” versions). The “v” versions use stdargs. These variations are
similar to the variations described for the printf() family.

#include <stdio.h>
int scanf(const char *format, ...);
int fscanf(FILE *stream, const char *format, ...);
int sscanf(const char *str, const char *format, ...);

#include <stdarg.h>
int vscanf(const char *format, va_list ap);
int vsscanf(const char *str, const char *format, va_list ap);
int vfscanf(FILE *stream, const char *format, va_list ap);

One of the most common mistakes people make using these functions is to pass the value
of a variable instead of its address (a pointer); don’t forget the “&” operator where nec-
essary. Generally, strings will not need an ampersand but other variables will.

Failure to include a size in the control string for string arguments will permit buffer over-
flows that can have serious security consequences. If you do include a size, any extra
input in a particular field is likely to end up in the wrong field.

Note that the versions of scanf() that read directly from a stream are vulnerable to extra
data at the end of the line being read by the next scanf(). For this reason, it is better to
read a line into a string buffer and then use sscanf() on it; this also lets you use multiple
scanf() calls with different formats to handle different possible input formats.

The return value from all of these functions is the number of fields successfully read. In
the event of an error, the function will return EOF (-1) or a number less than the number
of fields requested.

System Programming

PART II
168

1372316072 CH10 7/26/99 2:35 PM Page 168

Character and Line Based Input and Output
Many functions are available for line-based input and output. These functions generally

have two flavors, one that deals with characters and one that works on strings. The func-
tion prototypes are listed below.

#include <stdio.h>

int fgetc(FILE *stream);
char *fgets(char *s, int size, FILE *stream);
int getc(FILE *stream);
int getchar(void);
char *gets(char *s);
int ungetc(int c, FILE *stream);
int fputc(int c, FILE *stream);
int fputs(const char *s, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);
int puts(const char *s);
int ungetc(int c, FILE *stream);

Table 10.2 gives a brief summary of these functions. Those that return int will return a
negative value (EOF) on error (check errno). The functions that return a character point-
er return either a pointer to the string read (a pointer to the buffer you passed in) or
NULL if an error occurred.

TABLE 10.2 CHARACTER AND LINE I/O FUNCTIONS

Function Direction Size Stream Overflow Newline

fgetc Input Character Any No

fgets Input line Any No Kept

getc Input Character Any No

getchar Input Character stdin No

gets Input Line stdin Yes Removed

ungetc Input Character Any No

fputc Output Character Any No

fputs Output Line Any No Not added

putc Output Character Any No

putchar Output Character stdout No

puts Output Line stdout No Added

File Manipulation

CHAPTER 10
169

10

F
ILE

M
A

N
IPU

LA
TIO

N

1372316072 CH10 7/26/99 2:35 PM Page 169

The line-oriented functions are inconsistent in their handling of newlines. The gets()
function is vulnerable to buffer overflows and should not be used; use fgets() instead
but note the difference in newline handling.

File Positioning
The file positioning functions set the current position of a file; they may not work on
streams that do not point to normal files. The prototypes for these functions are listed
below.

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);
long ftell(FILE *stream);
void rewind(FILE *stream);
int fgetpos(FILE *stream, fpos_t *pos);
int fsetpos(FILE *stream, fpos_t *pos);

The fseek() function sets the position to offset. The whence parameter is SEEK_SET,
SEEK_CUR, or SEEK_END; these values determine whether the offset is relative to the begin-
ning, current position, or the end of file. It returns the current position relative to the
beginning, or a value of -1 in the event of error (check errno). The ftell() function
simply returns the current position. The rewind() function sets the position to zero. The
fgetpos() and fsetpos() functions are implemented as variations of ftell() and
fseek(); on other operating systems that do not treat all files as a simple stream of data
bytes, the fpos_t may be a structure instead of an integer.

Buffer Control
The prototypes for the buffer control functions are as follows. These functions provide
for the three main types of stream buffering, unbuffered, line buffered, and block
buffered, as well as the ability to flush any buffered but unwritten data out.

#include <stdio.h>

int fflush(FILE *stream);
int setbuf(FILE *stream, char *buf);
int setbuffer(FILE *stream, char *buf, size_tsize);
int setlinebuf(FILE *stream);
int setvbuf(FILE *stream, char *buf, int mode , size_t size);

The fflush() function flushes the buffers on output stream stream.

The setvbuf() function sets the buffer used by a stream. The arguments are the file
pointer for the stream, the address of the buffer to use, the mode, and the size of the
buffer. The mode can be one of _IONBF for unbuffered operation, _IOLBF for line
buffered, or _IOFBF for fully buffered. If the buffer address is NULL, the buffer will be

System Programming

PART II
170

1372316072 CH10 7/26/99 2:35 PM Page 170

left alone but the mode will still be changed. The other functions basically are variations
of the more versatile setvbuf() function. Use setvbuf() immediately after opening a
stream or after fflush(); do not use it if there is any buffered data.

File Manipulation

CHAPTER 10
171

10

F
ILE

M
A

N
IPU

LA
TIO

N

TIP

The code fragment setbuf(stream, NULL); is frequently used to unbuffer a
stream, although setvbuf() can also be used.

Deletion and Renaming
The remove() function deletes a file by name and the rename() function renames a file.

#include <stdio.h>

int remove(const char *pathname);
int rename(const char *oldpath, const char *newpath);

The first argument to each function is the pathname to an existing file. The second argu-
ment to rename() is a pathname that describes where the file should be renamed to. Both
return a value of zero on success and –1 on error; the specific error code will be found,
as usual, in the variable errno. These functions can be vulnerable to symbolic links and
race conditions, which are discussed in Chapter 35 “Secure Programming.”

Temporary Files
The tmpfile() and tmpnam() functions are part of the ANSI standard C stdio library;
the other two (mkstemp() and mktemp()) are peculiar to UNIX systems.

#include <stdio.h>

FILE *tmpfile (void);
char *tmpnam(char *s);

#include <unistd.h>
int mkstemp(char *template);
char *mktemp(char *template);

The tmpfile() function opens a temporary file. The tmpnam() function generates a file-
name that may be used to generate a temporary file; if “s” is not NULL the filename is
written into the supplied buffer (which could be overflowed since there is no size argu-
ment), otherwise it returns a pointer to an internal buffer that will be overwritten the next
time the function is used. Neither of these functions allows you to specify where the file
will be stored, and they are likely to create a file (or pathname) in a vulnerable shared
directory such as /tmp or /var/tmp. These functions should not be used.

1372316072 CH10 7/26/99 2:35 PM Page 171

A simple example of how to use tmpnam() to create and open a temporary function is as
follows:

FILE *tmpfile=NULL;
Char FILENAME[L_tmpnam];
Tempfile=fopen(tmpnam(FILENAME), “rb+”);

The mktemp() function also generates a unique filename for a temporary file, but it uses
a template that allows you to specify the path prefix that will be used; the last six charac-
ters of the template must be “XXXXXX”. The mkstemp() function makes a filename
using mktemp() and then issues an open() system call to open it for file descriptor I/O;
you can use fdopen() to open a stdio stream on top of that descriptor.

Temporary files should only be created in safe directories that are not writable by other
users (such as ~/tmp or /tmp/$(username); otherwise, they are vulnerable to race condi-
tions and symlink attacks (see Chapter 35). The filenames generated by these functions
are easily guessable.

Summary
The file pointer functions included in the stdio library, which is part of the standard C
library, provide a more convenient and portable interface to files, particularly for text
files.

The primary limitation of the stdio library is that it can only manipulate streams that are
handled by the underlying file descriptor system calls. My universal streams library does
not have this limitation; user supplied functions can be used to handle input and output.
You might want to check my Web site to see if this library has been released.

System Programming

PART II
172

1372316072 CH10 7/26/99 2:35 PM Page 172

IN THIS CHAPTER

• Attributes 174

• System Calls and Library
Functions 175

• Scheduling Parameters 183

• Threads 184

• Sample Programs 191

11
C

H
A

PT
ER

Process Control

by Mark Whitis

1472316072 CH11 7/26/99 2:34 PM Page 173

This chapter introduces the basics of process control. In the traditional UNIX model,
there are basically two operations to create or alter a process. You can fork() to create
another process that is an exact copy of the existing process, and you can use execve()
to replace the program running in a process with another program. Running another pro-
gram usually involves both operations, possibly altering the environment in between.
Newer, lightweight processes (threads) provide separate threads of execution and stacks
but shared data segments. The Linux specific __clone() call was created to support
threads; it allows more flexibility by specifying which attributes are shared. The use of
shared memory (see Chapter 17, “Shared Memory”) allows additional control over
resource sharing between processes.

Attributes
Table 11.1 attempts to summarize how process attributes are shared, copied, replaced, or
separate for the four major ways to change a process. Instead of actually copying memo-
ry, a feature known as “copy-on-write” is frequently used in modern OSes like Linux.
The mappings between virtual and physical memory are duplicated for the new process,
but the new mappings are marked as read-only. When the process tries to write to these
memory blocks, the exception handler allocates a new block of memory, copies the data
to the new block, changes the mapping to point to the new block with write access, and
then resumes the execution of the program. This feature reduces the overhead of forking
a new process.

TABLE 11.1 PROCESS ATTRIBUTE INHERITANCE

Attribute fork() thread __clone() execve()

Virtual Memory (VM)

Code Segment copy shared CLONE_VM replaced

Const Data don’t shared CLONE_VM replaced
Segment care

Variable Data copy shared CLONE_VM replaced
Segment

stack copy separate CLONE_VM replaced

mmap() copy shared CLONE_VM replaced

brk() copy shared CLONE_VM replaced

command line copy shared CLONE_VM replaced

environment copy shared CLONE_VM replaced

System Programming

PART II
174

1472316072 CH11 7/26/99 2:34 PM Page 174

Files

chroot(), copy shared CLONE_FS copy
chdir(),
umask()

File descriptor copy shared CLONE_ copy1

table FILES

file locks separate separate CLONE_PID same

Signals

Signal Handlers copy shared CLONE_SIGHAND reset

Pending Signals separate separate separate reset

Signal masks separate separate separate reset

Process Id (PID) different different CLONE_PID same

timeslice separate shared CLONE_PID same

Footnote1: Except file descriptors with the close on exec bit set

System Calls and Library Functions
The calls in this section are a mixture of system calls and library functions. The function
prototype at the beginning of each section is borrowed from the man pages and/or header
files.

The fork() System Call
The fork() system call creates an almost exact copy of the current process. Both the
parent and the child will execute the code following the fork(). An “if” conditional nor-
mally follows the fork to allow different behavior in the parent and child processes.

#include <unistd.h>

pid_t fork(void);
pid_t vfork(void);

If the return value is positive, you are executing in the parent process and the value is the
PID of the child. If the return value is 0, you are in the child. If the value is negative,
something went wrong and you need to check errno.

Process Control

CHAPTER 11
175

11 P
R

O
C

ESS
C

O
N

TR
O

L

Attribute fork() thread __clone() execve()

1472316072 CH11 7/26/99 2:34 PM Page 175

Under Linux, vfork() is the same as fork(). Under some operating systems, vfork() is
used when the fork will be immediately followed by an execve(), to eliminate unneeded
duplication of resources that will be discarded; in order to do this, the parent is suspend-
ed until the child calls execve().

The exec() Family
The execve() system call replaces the current process with the program specified by
filename, using the argument list argv and the environment envp. If the call to execve()
returns, an error obviously occurred and errno will have the cause.

#include <unistd.h>

int execve (const char *filename, char *const argv [],
char *const envp[]);

extern char **environ;

int execl(const char *path, const char *arg, ..., NULL);
int execlp(const char *file, const char *arg, ..., NULL);
int execle(const char *path, const char *arg , ...,

NULL, char * const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);

The library functions execl(), execlp(), execle(), execv(), and execvp() are simply
convenience functions that allow specifying the arguments in a different way, use the
current environment instead of a new environment, and/or search the current path for the
executable. The versions of the function with an “l” in the name take a variable number
of arguments, which are used to build argv[]; the function prototypes in the preceding
code have been edited to show the NULL terminator required at the end of the list. Those
functions that lack an “e” in the name copy the environment from the current process.
Those functions that have a “p” in the name will search the current path for the exe-
cutable named by file; the rest require that an explicit path to the executable file be
specified in path.

With the exception of execle() and execve(), all these functions have serious security
vulnerabilities due to their use of the current environment (including path) and should
never be used in setuid programs. All these functions and the execve() must be used
with a safe path to the executable. There is no exec() function; this is often used, how-
ever, as a generic identifier for this family of functions. Only rarely will you want to use
these routines by themselves. Normally, you will want to execute a fork() first to
exec() the program in a child process.

System Programming

PART II
176

1472316072 CH11 7/26/99 2:34 PM Page 176

The system() and popen() Functions
For lazy programmers, the system() and popen() functions exist. These functions must
not be used in any security sensitive program (see Chapter 35, “Secure Programming”).

#include <stdlib.h>
int system (const char * string);

#include <stdio.h>
FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);

These functions fork() and then exec() the user’s login shell that locates the command
and parses its arguments. They use one of the wait() family of functions to wait for the
child process to terminate.

The popen() function is similar to system(), except it also calls pipe() and creates a
pipe to the standard input or from the standard output of the program, but not both. The
second argument, type, is “r” to read piped stdout or “w” to write to stdin.

The clone() Function Call
The Linux specific function call, __clone(), is an alternative to fork() that provides
more control over which process resources are shared between the parent and child
processes.

#include <sched.h>

int __clone(int (*fn) (void *arg), void *child_stack,
int flags, void *arg)

This function exists to facilitate the implementation of pthreads. It is generally recom-
mended that you use the portable pthreads_create() to create a thread instead,
although __clone() provides more flexibility.

The first argument is a pointer to the function to be executed. The second argument is a
pointer to a stack that you have allocated for the child process. The third argument,
flags, is created by OR-ing together various CLONE_* flags (shown in Table 11.1). The
fourth argument, arg, is passed to the child function; its function is entirely up to the
user. The call returns the process ID of the child process created. In the event of an error,
the value -1 will be returned and errno will be set.

Process Control

CHAPTER 11
177

11 P
R

O
C

ESS
C

O
N

TR
O

L

1472316072 CH11 7/26/99 2:34 PM Page 177

The wait(), waitpid(), wait3(), and wait4()
System Calls
These system calls are used to wait for a change of state in a particular process, any
member of a process group, or any child process.

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status)
pid_t waitpid(pid_t pid, int *status, int options);

#define _USE_BSD
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3(int *status, int options,
struct rusage *rusage)

pid_t wait4(pid_t pid, int *status, int options,
struct rusage *rusage)

The wait() call waits for any child process. The waitdpid() call waits for a specific
process. The BSD-style wait3() and wait4() calls are equivalent to wait() and
waitpid(), respectively, but also return the resource usage of the child process into the
struct pointed to by the argument rusage. Where the functions take a pid argument, this
may be positive, in which case it specifies a specific pid; negative, in which case the
absolute value specifies a process group; -1, for any process; or 0, for any member of the
same process group as the current process. If the call takes an argument options, this
will be 0, or the result of OR-ing either or both of the options WNOHANG (don’t block if no
child has exited yet) or WUNTRACED (return for children that have stopped).

Until a parent process collects the return value of a child process, a child process that has
exited will exist in a zombie state. A stopped process is one whose execution has been
suspended, not one that has exited.

select()
The select() call was described in detail in Chapter 9, “I/O Routines.” It is mentioned
here because it provides a very lightweight alternative to threads and forking processes.

Signals
Signals are events that may be delivered to a process by the same or a different process.
Signals are normally used to notify a process of an exceptional event.

System Programming

PART II
178

1472316072 CH11 7/26/99 2:34 PM Page 178

#include <signal.h>
struct sigaction {

void (*sa_handler)(int);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}

void (*signal(int signum, void (*handler)(int)))(int);
int raise (int sig);
int killpg(int pgrp, int sig);
int sigaction(int signum, const struct sigaction *act,

struct sigaction *oldact);
int sigprocmask(int how, const sigset_t *set,

sigset_t *oldset);
int sigpending(sigset_t *set);
int sigsuspend(const sigset_t *mask);
void psignal(int sig, const char *s);

#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);

#include <unistd.h>
int pause(void);

#include <string.h>
char *strsignal(int sig);
extern const char * const sys_siglist[];

The signal() function registers the handler, handler, for the signal signum. The handler
may be one of the predefined macro values SIG_IGN (to ignore the signal), SIG_DFL (to
restore the default handler), or a user defined signal handler function. The handler is
reset to the default behavior when the signal handler is called; it may call signal() again
to catch future signals.

The function raise() sends a signal, sig, to the current process. The system call kill()
sends a signal, sig, to another process specified by process id pid. The system call
killpg() is similar, except it sends the signal to every process in the process group spec-
ified by pgrp or the current process’s process group if pgrp is zero. For both calls, the
current process must have permission to send a signal to the recipient, which generally
means they must belong to the same user or the sender must be root. If the signal for
kill() is zero, no signal is actually sent, but the usual error checking is performed; this
may be used to test for the continued existence of a particular process.

The various signals that may be delivered are defined in the man page signal in section
7 (use the command man 7 signal). The pause() system call suspends the current

Process Control

CHAPTER 11
179

11 P
R

O
C

ESS
C

O
N

TR
O

L

1472316072 CH11 7/26/99 2:34 PM Page 179

process until a signal is received. The sigaction() system call is an elaborate version of
the more common signal() call. It sets the new action for signal signum to the action
pointed to by act (if not NULL) and saves the current action into oldact (if not NULL).

The sigaction structure has four members. The member sa_handler is a pointer to the
signal handler function; it might also have the value SIG_DFL or SIG_IGN. The member
sa_mask indicates which other signals should be blocked while handling this one. The
member sa_flags is the result of bitwise OR-ing together of the flags SA_NOCLDSTOP
(disable SOGCHLD notification if the child merely stops), SA_ONESHOT or SA_RESETHAND
(which both cause the signal handler to be reset after the first invocation), SA_RESTART
(which allows some system calls to be restarted after a signal), or either SA_NOMASK or
SA_NODEFER (which allow the same signal to be delivered again while the signal handler
is executing). The sa_restorer member is obsolete.

The sigprocmask() function is used to set the current mask of blocked signals. The
argument how can be SIG_BLOCK (add members of set to the set of blocked signals),
SIG_UNBLOCK (remove members of set from the set of blocked signals), or SIG_SETMASK
(assign the set of blocked signals from set). If the pointer oldset has a value other than
NULL, the previous contents of the mask are saved to the referenced object.

The system call sigpending() may be used to determine which signals are currently
pending but blocked. The set of pending signals is stored into the object pointed to by
set. The system call sigsuspend() temporarily suspends the current process but first
sets the signal mask according to mask. These functions return zero for success and -1 for
an error (check errno).

The function strsignal() returns a pointer to a string that describes the signal sig. The
descriptive strings may be accessed directly in the array sys_siglist[]. The psignal()
function is similar except it prints the description, along with the prefix message “s”, to
stderr.

The function sigreturn() should not be called directly; when the kernel invokes a sig-
nal handler it inserts a return into this cleanup function on the stack frame. The function
sigpause() is obsolete; use sigsuspend(). The sigvec() function has similarly been
obsoleted by sigaction().

There can be problems with setuid() processes receiving signals from an ordinary user
who invokes the process while the process is in a privileged state. Chapter 35 has more
details on the security implications of signals.

Many system calls and library functions can be interrupted by signals. Depending on the
SA_RESTART value set with sigaction(), some system calls may be restarted automati-
cally. Otherwise, if a system call is interrupted by a signal (errno=EINTR), you may need
to reissue the system call with the arguments adjusted to resume where it left off.

System Programming

PART II
180

1472316072 CH11 7/26/99 2:34 PM Page 180

Program Termination
The exit() function terminates execution of the current program, closes any open file
descriptors, and returns the lower eight bits of the value status to the parent process to
retrieve using the wait() family of functions.

#include <unistd.h>
void _exit(int status);

#include <stdlib.h>
void exit(int status);
int atexit(void (*function)(void));
int on_exit(void (*function)(int , void *), void *arg);
void abort(void);

#include <assert.h>
void assert (int expression);

The parent process will receive a SIGCHLD signal. Any child processes’ parent process id
will be changed to 1 (init). Any exit handlers registered with atexit() or on_exit() will
be called (most recently registered first) before the program ends. The exit() function
will call the system call _exit(), which may be called directly to bypass the exit han-
dlers.

The function atexit() registers a function with no arguments and no return value to be
called when the program exits normally. The on_exit() function is similar, except that
the exit handler function will be called with the exit status and the value of arg as argu-
ments. The atexit() and on_exit() functions return a value of 0 on success and return
-1 and set errno if they do not succeed.

The abort() function also terminates the current program. Open files are closed and
core may be dumped. If you have registered a signal handler for SIGABRT using
signal(), or a similar function, this signal handler will be called first. The parent
process will be notified that the child died due to SIGABRT.

The assert() macro evaluates the provided expression. If the expression evaluates to 0
(false) then it will call abort(). The assert() macro can be disabled by defining the
macro NDEBUG. assert() is normally used to check your assumptions and make your
code more robust, causing it to abort instead of malfunction. It is good practice to check
function arguments using assert() at the beginning of each function for situations that
otherwise would not be handled properly. assert() can be used to check return values
from functions if you don’t feel like handling them more gracefully. You can also use
assert() to check word sizes and other aspects of the compilation and execution envi-
ronment. The following code fragments show some calls to assert():

assert(result_p); /* check for NULL pointer */
assert(result_p!=NULL); /* ditto */

Process Control

CHAPTER 11
181

11 P
R

O
C

ESS
C

O
N

TR
O

L

1472316072 CH11 7/26/99 2:34 PM Page 181

assert(sizeof(int)==4); /* Check word size */
rc=open(“foo”,O_RDONLY);
assert(rc>=0); /* check return value from open */

Alarms and Timers
The system call setitimer() sets one of three interval timers associated with each
process.

#include <sys/time.h>
struct itimerval {

struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */

};
struct timeval {

long tv_sec; /* seconds */
long tv_usec; /* microseconds */

};
int getitimer(int which, struct itimerval *value);
int setitimer(int which, const struct itimerval *value,

struct itimerval *ovalue);

#include <unistd.h>
unsigned int alarm(unsigned int seconds);
unsigned int sleep(unsigned int seconds);
void usleep(unsigned long usec);

The argument may have the value ITIMER_REAL (decrements in real time), ITIMER_VIR-
TUAL (decrements when the process is executing), or ITIMER_PROF (decrements when the
process is executing or when the kernel is executing on the process’s behalf). The timers
deliver the signals SIGALRM, SIGVTALRM, and SIGPROF, respectively. The interval timers
may have up to microsecond resolution. The getitimer() system call retrieves the cur-
rent value into the object pointed to by value. The setitimer() call sets the timer to the
value pointed to by value and stores the old value into the object pointed to by ovalue,
if not NULL. These system calls return zero for success or a value of -1 (check errno)
for an error.

The alarm() function schedules a SIGALRM signal to be delivered in the number of sec-
onds of real time indicated by seconds. The sleep() and usleep() functions suspend
the process for at least the number of seconds or microseconds, respectively, specified by
their single argument. The actual delay may be significantly longer due to clock granu-
larity or multitasking.

All these functions share the same set of timers. Thus alarm(), sleep(), and usleep()
can conflict with each other and with an ITIMER_REAL used with getitimer(). The time-
out used by the select() system call might also conflict. If you need to make simultane-
ous use of more than one function that uses ITIMER_REAL(), you will need to write a

System Programming

PART II
182

1472316072 CH11 7/26/99 2:34 PM Page 182

function library that maintains multiple timers and calls setitimer() only with the next
one to expire.

Scheduling Parameters
These calls manipulate parameters that set the scheduling algorithm and priorities associ-
ated with a process.

#include <sched.h>
int sched_setscheduler(pid_t pid, int policy,

const struct sched_param *p);
int sched_getscheduler(pid_t pid);
struct sched_param {

...
int sched_priority;
...

};

#include <unistd.h>
int nice(int inc);

#include <sys/time.h>
#include <sys/resource.h>
int getpriority(int which, int who);
int setpriority(int which, int who, int prio);

#include <sched.h>
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

A process with a higher static priority will always preempt a process with a lower static
priority. For the traditional scheduling algorithm, processes within static priority 0 will
be allocated time based on their dynamic priority (nice() value).

The system calls sched_setscheduler() and sched_getscheduler() are used to set or
get, respectively, the scheduling policy and parameters (set only) associated with a par-
ticular process. These functions take a process id, pid, to identify the process on which
to operate; the current process must have permission to act on the specified process. The
scheduling policy, policy, is one of SCHED_OTHER (the default policy), SCHED_FIFO, or
SCHED_RR; the latter two specify special policies for time critical applications and will
preempt processes using SCHED_OTHER. A SCHED_FIFO process can only be preempted by
a higher priority process, but a SCHED_RR process will be preempted if necessary to share
time with other processes at the same priority. These two system calls will return -1 in
the event of an error (check errno); on success, sched_setscheduler() returns 0 and
sched_getscheduler() returns a non-negative result. The system calls sched_get_
priority_max() and sched_get_priority_min() return the maximum and minimum
priority values, respectively, which are valid for the policy specified by policy). The

Process Control

CHAPTER 11
183

11 P
R

O
C

ESS
C

O
N

TR
O

L

1472316072 CH11 7/26/99 2:34 PM Page 183

static priority of SCHED_OTHER processes is always 0; use nice() or setpriority() to set
the dynamic priority.

The system call nice() adds inc to the dynamic priority for the calling process, lower-
ing its priority. The superuser may specify a negative value, which will raise the priority.
Returns 0 for success or -1 for error (check errno).

The system call setpriority() sets the dynamic priority of a process (which =
PRIO_PROCESS), process group (which = PRIO_PGRP), or user (which = PRIO_USER). The
priority is set to the value prio, which will have a value between -20 and 20 with lower
numbers giving more priority in scheduling. It will return 0 on success and -1 if there is
an error (check errno). The system call getpriority() takes the same first two argu-
ments and returns the lowest value (highest priority) of all matching processes. It will
return -1 for either an error or if that is the actual result; you must clear errno before
using this function and check it afterwards to determine which was the case.

Threads
POSIX threads (pthreads) provide a relatively portable implementation of lightweight
processes. Many operating systems do not support threads. The Linux implementation
differs from many. In particular, each thread under Linux has its own process id because
thread scheduling is handled by the kernel scheduler. Threads offer lower consumption of
system resources and easier communication between processes.

There are many potential pitfalls to using threads or any other environment where the
same memory space is shared by multiple processes. You must be careful about more
than one process using the same variables at the same time. Many functions are not re-
entrant; that is, there cannot be more than one copy of that function running at the same
time (unless they are using separate data segments). Static variables declared inside func-
tions are often a problem. Parameter passing and return value conventions for function
calls and returns that are used on various platforms can be problematic, as can the specif-
ic conventions used by certain functions. Returning strings, large structs, and arrays are
particularly problematic. Returning a pointer to statically allocated storage inside the
function is no good; another thread may execute that function and overwrite the return
value before the first one is through using it. Unfortunately, many functions and, worse
yet, compilers, use just such a calling convention. GCC may use different calling conven-
tions on different platforms because it needs to maintain compatibility with the native
compiler on a given platform; fortunately, GCC favors using a non-broken return conven-
tion for structures even if it could mean incompatibility with other compilers on the same
platform. Structs up to 8 bytes long are returned in registers, and functions that return

System Programming

PART II
184

1472316072 CH11 7/26/99 2:34 PM Page 184

larger structures are treated as if the address of the return value (storage space allocated
in the calling function) was passed as an argument. Variables that are shared between
processes should be declared using the volatile keyword to keep the optimizer from
changing the way they are used and to encourage the compiler to use atomic operations
to modify these variables where possible. Semaphores, mutexes, disabling interrupts, or
similar means should be used to protect variables, particularly aggregate variables,
against simultaneous access.

Setting or using global variables may create problems in threads. It is worth noting that
the variable errno may not, in fact, be a variable; it may be an expression that evaluates
to a different value in each thread. In Linux, it appears to be an ordinary integer variable;
presumably, it is the responsibility of the thread context switching code to save and
restore errno when changing between threads.

The pthread_create() Function
The pthread_create() function creates a new thread storing an identifier to the new
thread in the argument pointed to by thread.

#include <pthread.h>

int pthread_create(pthread_t *thread,
pthread_attr_t * attr,
void * (*start_routine)(void *), void * arg);

The second argument, attr, determines which thread attributes are applied to the thread;
thread attributes are manipulated using pthread_attr_init(). The third argument is the
address of the function that will be executed in the new thread. The fourth argument is a
void pointer that will be passed to that function; its significance, if any, is defined by the
user.

The pthread_exit() Function
This function calls any cleanup handlers that have been registered for the thread using
pthread_cleanup_push() and then terminates the current thread, returning retval,
which may be retrieved by the parent or another thread using pthread_join(). A thread
may also terminate simply by returning from the initial function.

#include <pthread.h>

void pthread_exit(void *retval);

Process Control

CHAPTER 11
185

11 P
R

O
C

ESS
C

O
N

TR
O

L

1472316072 CH11 7/26/99 2:34 PM Page 185

The pthread_join() Function
The function pthread_join() is used to suspend the current thread until the thread spec-
ified by th terminates.

#include <pthread.h>

int pthread_join(pthread_t th, void **thread_return);
int pthread_detach(pthread_t th);

The other thread’s return value will be stored into the address pointed to by
thread_return if this value is not NULL. The memory resources used by a thread are
not deallocated until pthread_join() is used on it; this function must be called once for
each joinable thread. The thread must be in the joinable, rather than detached, state and
no other thread may be attempting to use pthread_join() on the same thread. The
thread may be put in the detached state by using an appropriate attr argument to
pthread_create() or by calling pthread_detach().

Note that there seems to be a deficiency here. Unlike with the wait() family of calls for
regular processes, there does not seem to be a way to wait for the exiting of any one out
of multiple threads.

Attribute Manipulation
These functions manipulate thread attribute objects. They do not manipulate the attribut-
es associated with threads directly. The resulting object is normally passed to
pthread_create(). The function pthread_attr_init() initializes a new object and the
function pthread_attr_destroy() erases it. The user must allocate space for the attr
object before calling these functions. These functions could allocate additional space that
will be deallocated by thread_attr_destroy(), but in the Linux implementation this is
not the case.

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);
int pthread_attr_setdetachstate(pthread_attr_t *attr,

int detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t *attr,

int *detachstate);
int pthread_attr_setschedpolicy(pthread_attr_t *attr,

int policy);
int pthread_attr_getschedpolicy(const pthread_attr_t *attr,

int *policy);
int pthread_attr_setschedparam(pthread_attr_t *attr,

const struct sched_param *param);

System Programming

PART II
186

1472316072 CH11 7/26/99 2:34 PM Page 186

int pthread_attr_getschedparam(const pthread_attr_t *attr,
struct sched_param *param);

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inherit);

int pthread_attr_getinheritsched(const pthread_attr_t *attr,
int *inherit);

int pthread_attr_setscope(pthread_attr_t *attr,
int scope);

int pthread_attr_getscope(const pthread_attr_t *attr,
int *scope);

int pthread_setschedparam(pthread_t target_thread,
int policy, const struct sched_param *param);

int pthread_getschedparam(pthread_t target_thread,
int *policy, struct sched_param *param);

The pthread_setschedparam() and pthread_getschedparam() functions are used to set
or get, respectively, the scheduling policy and parameters associated with a running
thread. The first argument identifies the thread to be manipulated, the second is the poli-
cy, and the third is a pointer to the scheduling parameters.

The remaining functions take one argument that is a pointer to the attribute object, attr,
to be manipulated, and either set or retrieve the value of a specific attribute that will be
obvious from the name. Table 11.2 shows the thread attributes; the default values are
marked with an asterisk. High priority real-time processes may want to lock their pages
into memory using mlock(). mlock() is also used by security sensitive software to pro-
tect passwords and keys from getting swapped to disk, where the values may persist after
they have been erased from memory.

TABLE 11.2 THREAD ATTRIBUTES

Attribute Value Meaning

detachstate PTHREAD_CREATE_JOINABLE* Joinable state
PTHREAD_CREATE_DETACHED Detached state

schedpolicy SCHED_OTHER* Normal, non-realtime
SCHED_RR Realtime, round-robin
SCHED_FIFO Realtime, first in

first out

schedparam policy specific

inheritsched PTHREAD_EXPLICIT_SCHED* Set by schedpolicy
PTHREAD_INHERIT_SCHED and schedparam

Inherited from
parent process

Process Control

CHAPTER 11
187

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 187

scope PTHREAD_SCOPE_SYSTEM* One system timeslice
PTHREAD_SCOPE_PROCESS for each thread

Threads share same
system timeslice
(not supported
under Linux)

All the attribute manipulation functions return 0 on success. In the event of an error,
these functions return the error value rather than setting errno.

The pthread_atfork() Function
This function registers three separate handlers, which will be invoked when a new
process is created.

#include <pthread.h>

int pthread_atfork(void (*prepare)(void),
void (*parent)(void), void (*child)(void));

The prepare() function will be called in the parent process before the new process is
created, and the parent() process will be called afterwards in the parent. The child()
function will be called in the child process as soon as it is created. The man page for
these functions refers to the fork() process; this seems to be an anachronism since pre-
sumably __clone() is now used instead. Any of the three function pointers may be
NULL; in that case, the corresponding function will not be called. More than one set of
handlers may be registered by calling pthread_atfork() multiple times. Among other
things, these functions are used to clean up mutexes that are duplicated in the child
process. Return values are 0 for success or an error code.

Thread Cancellation
The pthread_cancel function allows the current thread to cancel another thread, identi-
fied by thread.

#include <pthread.h>

int pthread_cancel(pthread_t thread);
int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);
void pthread_testcancel(void);

System Programming

PART II
188

TABLE 11.2 CONTINUED

Attribute Value Meaning

1472316072 CH11 7/26/99 2:34 PM Page 188

A thread may set its cancellation state using setcancelstate(), which takes two argu-
ments. The argument state is the new state and the argument oldstate is a pointer to a
variable in which to save the oldstate (if not NULL). The function pthread_setcancel-
type changes the type of response to cancellation requests; if type is
PTHREAD_CANCEL_ASYNCHRONOUS, the thread will be cancelled immediately or
PTHREAD_CANCEL_DEFERRED to delay cancellation until a cancellation point is reached.
Cancellation points are established by calls to pthread_testcancel(), which will cancel
the current thread if any deferred cancellation requests are pending. The first three func-
tions return 0 for success and an error code otherwise.

The pthread_cleanup_push() Macro
The pthread_cleanup_push() macro registers a handler, routine, which will be called
with the void pointer argument specified by arg when a thread terminates by calling
pthread_exit(), or honors a cancellation request.

#include <pthread.h>
void pthread_cleanup_push(void (*routine) (void *),

void *arg);
void pthread_cleanup_pop(int execute);
void pthread_cleanup_push_defer_np(

void (*routine) (void *), void *arg);
void pthread_cleanup_pop_restore_np(int execute);

The macro pthread_cleanup_pop() unregisters the most recently pushed cleanup han-
dler; if the value of execute is non-zero, the handler will be executed as well. These two
macros must be called from within the same calling function.

The macro pthread_cleanup_push_defer_np() is a Linux-specific extension that calls
pthread_cleanup_push() and also pthread_setcanceltype() to defer cancellation. The
macro pthread_clanup_pop_restore_np() pops the most recent handler registered by
pthread_cleanup_push_defer_np() and restores the cancellation type.

pthread_cond_init()
These functions are used to suspend the current thread until a condition is satisfied. A
condition is an object that may be sent signals.

#include <pthread.h>
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
int pthread_cond_init(pthread_cond_t *cond,

pthread_condattr_t *cond_attr);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

Process Control

CHAPTER 11
189

11 P
R

O
C

ESS
C

O
N

TR
O

L

1472316072 CH11 7/26/99 2:34 PM Page 189

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

int pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t *mutex, const struct timespec *abstime);

int pthread_cond_destroy(pthread_cond_t *cond);

The function pthread_cond_int() initializes an object, cond, of type cond_t. The sec-
ond parameter is ignored under Linux. You can also just copy PTHREAD_COND_INITIAL-
IZER to the variable. The function pthread_cond_destroy() is the destructor for objects
of type cond_t; it doesn’t do anything except check that there are no threads waiting on
the condition.

The function pthread_cond_signal() is used to restart one, and only one, of the threads
waiting on a condition. The function pthread_cond_broadcast() is similar, except that
it restarts all threads. Both take a condition, of type cond_t, to identify the condition.

The function pthread_cond_wait() unlocks a mutex, specified by mutex, and waits for a
signal on the condition variable cond. The function pthread_cond_timedwait() is simi-
lar but it only waits until the time specified by abstime. The time is usually measured in
seconds since 1/1/1970 and is compatible with the value returned by the system call
time(). These functions are also possible cancellation points and they return 0 for suc-
cess or an error code in the event of failure.

The pthread_equal() Function
The function pthread_equal() returns a non-zero value if the threads referred to by
thread1 and thread2 are actually the same; otherwise it returns zero.

#include <pthread.h>

int pthread_equal(pthread_t thread1, pthread_t thread2);

Mutexes
Mutexes are mutual exclusion locks, a form of semaphore. Mutexes are objects of type
mutex_t such that only one thread may hold a lock on a given mutex simultaneously.
Like any form of semaphore, they are normally used to prevent two processes or threads
from using a shared resource at the same time. A thread that tries to lock a mutex that is
already locked will be suspended until the lock is released by the thread that has it
locked.

#include <pthread.h>
pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
pthread_mutex_t errchkmutex

= PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

System Programming

PART II
190

1472316072 CH11 7/26/99 2:34 PM Page 190

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex));
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

The functions pthread_mutex_init() and pthread_mutex_destroy() are the construc-
tor and destructor functions, respectively, for mutex objects. The functions
pthread_mutex_lock() and pthread_mutex_unlock() are used to lock and unlock a
mutex, respectively. The function pthread_mutex_trylock() is similar to
pthread_mutex_lock() except that it will not block (suspend the thread) if the mutex is
already locked. These functions return 0 for success or an error code otherwise;
pthread_mutex_init() never fails.

Sample Programs
This section presents a library I wrote that demonstrates a number of process control fea-
tures and some sample programs that use that library.

Child Library
Listing 11.1 shows the header file, child.h, and Listing 11.2 shows the actual imple-
mentation, child.c, of the library. The library contains functions to spawn a set number
of child processes, to replace these processes when they die, and to send signals to these
processes. It also includes a function that implements a safer and more flexible replace-
ment for the system() and popen() standard library functions.

The type child_fp_t defines a pointer to a function that will be executed in the child
process. The two arguments are a pointer to the child_info_t structure that describes
the child and an arbitrary (user defined) void pointer.

The data structure child_info_t has information about a particular child process,
including its process id (pid), its parent process id (ppid), its process number (zero
through the number of child processes in a given group), and a pointer to the function to
be executed.

The data structure child_group_info_t contains information about a group of child
processes. The member nchildren defines how many processes are listed in the child
array. The members minchildren, maxchildren, and activechildren define the mini-
mum and maximum numbers of children to maintain and the number currently being
maintained; currently, these three values should all be the same. The array child

Process Control

CHAPTER 11
191

11 P
R

O
C

ESS
C

O
N

TR
O

L

1472316072 CH11 7/26/99 2:34 PM Page 191

contains multiple instances of type child_info_t. This data structure maintains informa-
tion on a group of child processes all running the same function.

The data structure child_groups_t defines multiple groups; each group may be running
a different function. Member ngroups indicates how many groups are defined in the
array group of type child_group_info_t. This allows functions that wait for or manipu-
late dissimilar child processes.

The function child_create() creates an individual child process. The third argument,
private_p, is a user defined void pointer that is passed to the created child function. The
function child_group_create() creates between “min” and “max” copies of a child
process (currently the number created will equal “min”). The function
child_groups_keepalive() replaces children from one or more groups of children
when they terminate for any reason. The function child_group_signal() sends a signal
to all children in a single group. The function child_groups_signal() sends a signal to
the children in multiple groups. The function child_groups_kill() counts the number
of children by sending them signal 0, sends each of them SIGTERM, and waits until they
all die or a couple minutes have elapsed, at which time it aborts them using SIGKILL.

The function child_pipeve() is a replacement for system() and popen(). The first
three arguments are similar to the arguments for the execve() system call and define the
program to be executed, its command line arguments, and its environment. The remain-
ing three arguments are pointers to file descriptors for stdin, stdout, and stderr; if
these pointers are not NULL, a pipe will be created for the corresponding stream, and a
file descriptor for the appropriate end of the pipe will be returned into the referenced
objects.

LISTING 11.1 child.h

#ifndef _CHILD_H
#define _CHILD_H

#ifdef __cplusplus
extern “C” {
#endif

#define MAX_CHILDREN 32
#define MAX_CHILD_GROUPS 4

extern int child_debug;

System Programming

PART II
192

1472316072 CH11 7/26/99 2:34 PM Page 192

/* we have a circular reference here */
struct child_info_t;

typedef void (*child_fp_t)(struct child_info_t *, void *);

typedef struct child_info_t {
int pid;
int ppid;
int number;
child_fp_t child_fp;

} child_info_t;

/* The following should really be kept in shared memory */
typedef struct {

int nchildren; /* number in table, not number running */
int minchildren;
int maxchildren;
int activechildren;
child_info_t child[MAX_CHILDREN];

} child_group_info_t;

typedef struct {
int ngroups;
child_group_info_t *group[MAX_CHILD_GROUPS];

} child_groups_t;

void child_create(
child_info_t *child_info_p,
child_fp_t child_fp,
void *private_p

);

child_info_t *child_lookup_by_pid(
const child_groups_t *child_groups_p,
int pid

);

int child_group_create(
child_group_info_t *children_info_p,
const int min,
const int max,
const child_fp_t child_fp,
void *private_p

);

extern int child_restart_children;

Process Control

CHAPTER 11
193

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 193

extern void child_groups_keepalive(
const child_groups_t *child_groups_p

);

extern int child_group_signal(
child_group_info_t *children_info_p,
int signal

);

extern int child_groups_signal(
const child_groups_t *child_groups_p,
int signal

);

extern int child_groups_kill(
const child_groups_t *child_groups_p

);

extern int child_pipeve(
const char *cmdpath, /* full path to command */
char * const argv[], /* Array of pointers to arguments */
char * const envp[],/* Array of pointers to environment vars*/
int *stdin_fd_p, /* Output: fd for stdin pipe */
int *stdout_fd_p, /* Output: fd for stdout pipe */
int *stderr_fd_p /* Output: fd for stderr pipe */

);

extern void child_print_arg_array(char *name, char * const array[]);

extern void child_init();
extern void child_term();

#ifdef __cplusplus
}
#endif

#endif /* _CHILD_H */

LISTING 11.2 child.c

#include <sys/time.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/types.h>

System Programming

PART II
194

LISTING 11.1 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 194

#include <sys/wait.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>

#include “child.h”

/* Linux doesn’t even bother to declare DST_NONE */
#ifndef DST_NONE

#define DST_NONE 0
#endif

int child_debug=0;

void child_create(
child_info_t *child_info_p,
child_fp_t child_fp,
void *private_p

) {
int rc;
int fd;
int seed;
struct timeval tv;
struct timezone tz;

assert(child_info_p);
assert(child_fp);

/* struct timezone is obsolete and not really used */
/* under Linux */
tz.tz_minuteswest = 0;
tz.tz_dsttime = DST_NONE;

rc=fork();
if(rc == (pid_t) -1) {

/* error */
perror(“fork failed”);

} else if (rc>0) {
/* parent */
child_info_p->pid = rc;

} else {
#ifndef USING_SHARED_MEM

child_info_p->pid = getpid();
child_info_p->ppid = getppid();

#endif

/* reseed random number generator */
/* if you don’t do this in each child, they are */

Process Control

CHAPTER 11
195

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 195

/* likely to all use the same random number stream */
fd=open(“/dev/random”,O_RDONLY);
assert(fd>=0);
rc=read(fd, &seed, sizeof(seed));
assert(rc == sizeof(seed));
close(fd);
srandom(seed);

gettimeofday(&tv, NULL);
fprintf(stderr,

“%010d.%06d: Starting child process #%d, pid=%d, “
“parent=%d\n”,
tv.tv_sec,
tv.tv_usec,
child_info_p->number,
child_info_p->pid,
child_info_p->ppid

);

child_info_p->child_fp = child_fp;

child_fp(child_info_p, private_p);

gettimeofday(&tv, NULL);
fprintf(stderr,

“%010d.%06d: child process #%d finishing, pid=%d, “
“parent=%d\n”,
tv.tv_sec,
tv.tv_usec,
child_info_p->number,
child_info_p->pid,
child_info_p->ppid

);

/* child process ceases to exist here */
exit(0);

}
}

child_info_t *child_lookup_by_pid(
const child_groups_t *child_groups_p,
int pid

) {
int i;
int j;

assert(child_groups_p);

System Programming

PART II
196

LISTING 11.2 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 196

for(i=0; i<child_groups_p->ngroups; i++) {
for(j=0; j<child_groups_p->group[i]->nchildren; j++) {

if(child_groups_p->group[i]->child[j].pid == pid) {
return(&child_groups_p->group[i]->child[j]);

}
}

}
return(NULL);

}

int child_group_create(
child_group_info_t *children_info_p,
const int min,
const int max,
const child_fp_t child_fp,
void *private_p

) {
int i;

children_info_p->nchildren = min;
children_info_p->maxchildren = max;
children_info_p->minchildren = min;

for(i=0; i<min; i++) {
children_info_p->child[i].number = i;
children_info_p->child[i].child_fp = child_fp;

child_create(&children_info_p->child[i],child_fp,
private_p);

}

children_info_p->activechildren = min;

return(0);
}

int child_restart_children = 1;

/* This function currently does not change the number of */
/* children. In the future, it could be extended to change */
/* the number of children based on load. Each time a child */
/* exited, it could restart 0, 1, or 2 children instead of 1 */

void child_groups_keepalive(
const child_groups_t *child_groups_p

) {
int rc;
int child_status;

Process Control

CHAPTER 11
197

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 197

int pid;
child_info_t *child_p;

while(1) {
rc=wait(&child_status);
if(child_restart_children==0) {

fprintf(stderr,”child_groups_keepalive(): exiting\n”);
return;

}
if(rc>0) {

fprintf(stderr,”wait() returned %d\n”,rc);
pid = rc;
if(WIFEXITED(child_status)) {

fprintf(stderr, “child exited normally\n”);
}
if(WIFSIGNALED(child_status)) {

fprintf(stderr, “child exited due to signal %d\n”,
WTERMSIG(child_status));

}
if(WIFSTOPPED(child_status)) {

fprintf(stderr, “child suspended due to signal %d\n”,
WSTOPSIG(child_status));

}

/* Use kill with an argument of zero to see if */
/* child still exists. We could also use */
/* results of WIFEXITED() and WIFSIGNALED */
if(kill(pid,0)) {

child_p = child_lookup_by_pid(child_groups_p, pid);
assert(child_p);
fprintf(stderr,

“Child %d, pid %d, died, restarting\n”,
child_p->pid, pid);

child_create(child_p, child_p->child_fp, NULL);
} else {

fprintf(stderr,”Child pid %d still exists\n”);
}

}
}

}

int child_group_signal(
child_group_info_t *children_info_p,
int signal

) {
int i;
int count;

System Programming

PART II
198

LISTING 11.2 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 198

int rc;
child_info_t *child_p;

assert(children_info_p);
assert(signal>=0);

count=0;

for(i=0; i<children_info_p->nchildren; i++) {
child_p = &children_info_p->child[i];
fprintf(stderr,”sending signal %d to pid %d\n”,

signal, child_p->pid);
rc=kill(child_p->pid,signal);
if(rc==0) count++;

}
return(count);

}

int child_groups_signal(
const child_groups_t *child_groups_p,
int signal

) {
int i;
int pid;
int count;

assert(child_groups_p);
assert(signal>=0);
count=0;
for(i=0; i<child_groups_p->ngroups; i++) {

count += child_group_signal(child_groups_p->group[i],
signal);

}
return(count);

}

int child_groups_kill(
const child_groups_t *child_groups_p

) {
int child_count;
int rc;
int i;

assert(child_groups_p);

child_count=child_groups_signal(child_groups_p, 0);
fprintf(stderr, “total children=%d\n”, child_count);

fprintf(stderr, “sending SIGTERM\n”);
child_groups_signal(child_groups_p, SIGTERM);

Process Control

CHAPTER 11
199

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 199

/* wait up to 4 minutes for children to die */
/* wait() may hang if children are already gone */
for(i=0; i<24; i++) {

rc=child_groups_signal(child_groups_p, 0);
if(rc==child_count) return(child_count);
sleep(5);

}

fprintf(stderr, “some children did not die\n”);
fprintf(stderr, “sending SIGKILL\n”);
child_groups_signal(child_groups_p, SIGKILL);

}

/* debugging function for argv and envp */
void child_print_arg_array(char *name, char * const array[])
{

int i;

i=0;
while(1) {

if(array[i]) {
fprintf(stderr,”%s[%d]=\”%s\”\n”,name,i,array[i]);

} else {
fprintf(stderr,”%s[%d]=NULL\n”,name,i,array[i]);
break;

}

i++;
}

}

extern char **environ;

/* This function is intended as a replacement for */
/* system() and popen() which is more flexible and */
/* more secure. The path to the executable must still */
/* be safe against write access by untrusted users. */

/* argv[] and envp[] must end with a NULL pointer */
/* stdin_fd_p, stdout_fd_p, or stderr_fd_p may be NULL, in */
/* which case, that stream will not be piped. stdout_fd_p
/* and stderr_fd_p may be equal */

System Programming

PART II
200

LISTING 11.2 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 200

/* you may want to use fd_open() on the pipes to use stdio */
/* argv[0] should equal cmdpath */

int child_pipeve(
const char *cmdpath, /* full path to command */
char * const argv[], /* Array of pointers to arguments */
char * const envp[], /* Array of pointers to env. vars*/
int *stdin_fd_p, /* Output: fd for stdin pipe */
int *stdout_fd_p, /* Output: fd for stdout pipe */
int *stderr_fd_p /* Output: fd for stderr pipe */

) {
int rc;
int pid;
int status;
int stdin_pipe[2];
int stdout_pipe[2];
int stderr_pipe[2];
char *dummy_argv[8];
char *dummy_envp[8];

stdin_pipe[0] = -1;
stdin_pipe[1] = -1;
stdout_pipe[0] = -1;
stdout_pipe[1] = -1;
stderr_pipe[0] = -1;
stderr_pipe[1] = -1;

if(stdin_fd_p) {
rc=pipe(stdin_pipe);
if(rc!=0) return(-1);
*stdin_fd_p = stdin_pipe[1];

}

if(stdout_fd_p) {
rc=pipe(stdout_pipe);
if(rc!=0) {

if(stdin_pipe[0]>=0) close(stdin_pipe[0]);
if(stdin_pipe[0]>=0) close(stdin_pipe[1]);
return(-1);

}
*stdout_fd_p = stdout_pipe[0];

}

if(stderr_fd_p && (stderr_fd_p!=stdout_fd_p)) {
rc=pipe(stderr_pipe);
if(rc!=0) {

if(stdin_pipe[0]>=0) close(stdin_pipe[0]);
if(stdin_pipe[0]>=0) close(stdin_pipe[1]);

Process Control

CHAPTER 11
201

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 201

if(stdin_pipe[0]>=0) close(stdout_pipe[0]);
if(stdin_pipe[0]>=0) close(stdout_pipe[1]);
return(-1);

}
*stderr_fd_p = stderr_pipe[0];

}

rc=fork();
if(rc<0) {
/* error */
return(-1);

} else if(rc==0) {
/* child */

if(stdin_fd_p) {
/* redirect stdin */
rc=dup2(stdin_pipe[0],0);

}

if(stdout_fd_p) {
/* redirect stdout */
rc=dup2(stdout_pipe[1],1);

}

if(stderr_fd_p) {
/* redirect stderr */
if(stderr_fd_p == stdout_fd_p) {

rc=dup2(stdout_pipe[1],2);
} else {

rc=dup2(stderr_pipe[1],2);
}

}

/* clean up file descriptors */
#if 0

for(i=3;i<OPEN_MAX;i++) {
close(i);

}
#endif

if(envp == NULL) envp = environ;

if(child_debug>=5) {
child_print_arg_array(“argv”,argv);
child_print_arg_array(“envp”,envp);

System Programming

PART II
202

LISTING 11.2 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 202

fprintf(stderr,”cmdpath=\”%s\”\n”,cmdpath);
}

fprintf(stderr,”about to execve()\n”);

#if 1
execve(cmdpath, argv, envp);

#else
dummy_argv[0] = “./child_demo4”;
dummy_argv[1] = “one”;
dummy_argv[2] = “two”;
dummy_argv[3] = “three”;
dummy_argv[4] = NULL;
dummy_envp[0] = “PATH=/bin:/usr/bin”;
dummy_envp[1] = NULL;

execve(“./child_demo4”,dummy_argv,dummy_envp);
#endif
/* we should never get here unless error */

fprintf(stderr, “execve() failed\n”);
perror(“execve()”);
/* we will be lazy and let process termination */
/* clean up open file descriptors */
exit(255);

} else {
/* parent */
pid=rc;

#if 0
rc=wait4(pid, &status, 0, NULL);

#else
rc=waitpid(pid, &status, 0);

#endif

if(rc<0) {
/* wait4() set errno */
return(-1);

}
if(WIFEXITED(status)) {

fprintf(stderr,”child_pipve(): child exited normally\n”);
return((int) (signed char) WEXITSTATUS(status));

} else if(WIFSIGNALED(status)) {
fprintf(stderr,”child_pipve(): child caught signal\n”);
errno = EINTR;
return(-1);

} else {

Process Control

CHAPTER 11
203

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 203

fprintf(stderr,”child_pipve(): unkown child status\n”);
/* we should handle stopped processes better */
errno = EINTR;
return(-1);

}
}

}

void child_init()
{

;
}

void child_term()
{

;
}

The child_demo1.c Program
The program child_demo1.c, shown in listing 11.3, demonstrates the child library by
invoking four child processes that do little other than announce their existence, sleep a
random amount of time, and then die. Processes that die are automatically restarted. For
no especially good reason, it installs signal handlers for several common signals and
responds to those signals by doing a longjmp() and then killing the children. The use of
longjmp() here is slightly risky because the local variables in the function have not been
declared volatile, so any variables the compiler might have stored in registers will have
random values after the longjmp(). A future version may fix this oversight.

LISTING 11.3 child_demo1.c

#include <sys/time.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <fcntl.h>

System Programming

PART II
204

LISTING 11.2 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 204

#include <signal.h>
#include <setjmp.h>

#include “child.h”

void child_process_1(
child_info_t *child_info_p,
void *private_p

) {
int rc;
int sleep_time;

assert(child_info_p);

/* undo signal settings from parent */
signal(SIGTERM, SIG_DFL);
signal(SIGINT, SIG_DFL);
signal(SIGQUIT, SIG_DFL);

/* This is child process */
fprintf(stderr,

“Child process #%d starting, pid=%d, parent=%d\n”,
child_info_p->number,
child_info_p->pid,
child_info_p->ppid

);

/* Here is where we should do some useful work */
/* instead, we will sleep for a while and then die */
sleep_time = random() & 0x7F;
fprintf(stderr,

“Child process #%d sleeping for %d seconds\n”,
child_info_p->number,
sleep_time

);
sleep(sleep_time);

fprintf(stderr,
“Child process #%d exiting, pid=%d, parent=%d\n”,
child_info_p->number,
child_info_p->pid,
child_info_p->ppid

);
}

child_group_info_t child_group_1;
jmp_buf jump_env;

Process Control

CHAPTER 11
205

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 205

void sig_handler(int signal)
{

fprintf(stderr, “pid %d received signal %d\n”,
getpid(), signal);

child_restart_children = 0;

#if 0
/* wake up the wait() */
/* doesn’t work */
raise(SIGCHLD);

#endif

longjmp(jump_env,1);

/* We opt not to call signal() again here */
/* next signal may kill us */

}

main()
{

int i;
int child;
child_group_info_t child_group_1;
child_groups_t child_groups;
int rc;

#if 0
setvbuf(stderr, NULL, _IOLBF, 0);

#else
setbuf(stderr, NULL);

#endif

/* Note: children inherit this */
signal(SIGTERM, sig_handler);
signal(SIGINT, sig_handler);
signal(SIGQUIT, sig_handler);

child_group_create(&child_group_1, 4, 4, child_process_1, NULL);

child_groups.ngroups = 1;
child_groups.group[0]=&child_group_1;

rc=setjmp(jump_env);
if(rc==0) {
/* normal program execution */

System Programming

PART II
206

LISTING 11.3 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 206

child_groups_keepalive(&child_groups);
} else {

/* exception handler */
/* we got here via setjmp() */

/* restore signal handlers to defaults */
signal(SIGTERM, SIG_DFL);
signal(SIGINT, SIG_DFL);
signal(SIGQUIT, SIG_DFL);

child_groups_kill(&child_groups);
exit(0);

}

}

The child_demo2.c Program
The program child_demo2.c, shown in Listing 11.4, is an extension of child_demo1.c.
It implements a very primitive Web server, which preforks 4 processes, each of which
responds to any request by reporting the status of the child process that handled the
request. Each child will terminate after it has handled 10 requests. In a preforked server
situation, you may want to guard against memory leaks and other problems by giving
each child a limited lifetime. It would also be good to set an alarm using alarm() at the
beginning of each request so the child will die if the request is not handled in a reason-
able length of time for any reason.

LISTING 11.4 child_demo2.c

#include <sys/time.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <signal.h>
#include <setjmp.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>

Process Control

CHAPTER 11
207

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 207

#include <string.h>
#include <limits.h>

#include “child.h”

int debug=1;

int listen_sock;

void child_process_1(
child_info_t *child_p,
void *private_p

) {
int rc;
int sleep_time;
int connection;
struct sockaddr_in remote_addr;
int addr_size;
struct hostent *remote_host;
char buf[1024];
char *p;
int requests_remaining = 10;
int read_fd;
int write_fd;
FILE *in;
FILE *out;
char s[128];
assert(child_p);

requests_remaining = 10;

/* undo signal settings from parent */
signal(SIGTERM, SIG_DFL);
signal(SIGINT, SIG_DFL);
signal(SIGQUIT, SIG_DFL);

/* This is child process */
fprintf(stderr,

“Child process #%d starting, pid=%d, parent=%d\n”,
child_p->number,
child_p->pid,
child_p->ppid

);

while(requests_remaining--) {

addr_size=sizeof(remote_addr);

System Programming

PART II
208

LISTING 11.4 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 208

connection = accept(listen_sock,
(struct sockaddr *) &remote_addr,
&addr_size);

fprintf(stderr, “accepted connection\n”);

remote_host = gethostbyaddr(
(void *) &remote_addr.sin_addr,
addr_size, AF_INET);

/* we never bother to free the remote_host strings */
/* The man page for gethostbyaddr() fails to mention */
/* allocation/deallocation or reuse issues */

/* return values from DNS can be hostile */

if(remote_host) {
assert(strlen(remote_host->h_name)<128);
assert(remote_host->h_length==4); /* no IPv6 */

if(debug) {
fprintf(stderr, “from: %s\n”, remote_host->h_name);

}
strncpy(s,remote_host->h_name,sizeof(s));

} else {
if(debug) {
fprintf(stderr,
“from: [%s]\n”,inet_ntoa(remote_addr.sin_addr));

}
strncpy(s,inet_ntoa(remote_addr.sin_addr),sizeof(s));

}

read_fd = dup(connection);
write_fd = dup(connection);
assert(read_fd>=0);
assert(write_fd>=0);
in = fdopen(read_fd, “r”);
out = fdopen(write_fd, “w”);
assert(in);
assert(out);

/* do some work */

while(1) {
buf[0]=0;
p=fgets(buf, sizeof(buf), in);
if(!p) break; /* connection probably died */
buf[sizeof(buf)-1]=0;
p=strrchr(buf,’\n’);
if(p) *p=0; /* zap newline */

Process Control

CHAPTER 11
209

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 209

p=strrchr(buf,’\r’);
if(p) *p=0; /* zap return */

fprintf(stderr,”buf=<%s>\n”,buf);
p=strchr(buf,’:’);
if(p) {

/* we never actually get here because we start */
/* spewing out a response as soon as we rx GET */
/* probably an http: header */
/* ignore it */
;

} else if(strstr(buf,”GET”)) {
fprintf(stderr,”GET\n”);
fprintf(out,”HTTP/1.0 200 OK”);
fprintf(out,”Content-type: text/html\n”);
fprintf(out,”\n”);
fprintf(out,”<HTML>\n”);
fprintf(out,” <HEAD>\n”);
fprintf(out,” <TITLE>\n”);
fprintf(out,” Status Page\n”);
fprintf(out,” </TITLE>\n”);
fprintf(out,” </HEAD>\n”);
fprintf(out,” <BODY>\n”);
fprintf(out,” <H1>\n”);
fprintf(out,” Status Page\n”);
fprintf(out,” </H1>\n”);
fprintf(out,”
number=%d\n”,child_p->number);
fprintf(out,”
pid=%d\n”,child_p->pid);
fprintf(out,”
ppid=%d\n”,child_p->ppid);
fprintf(out,”
requests remaining=%d\n”,

requests_remaining);
fprintf(out,” </BODY>\n”);
fprintf(out,”</HTML>\n”);
break;

} else {
/* ??? */

}

}

fprintf(stderr,”closing connection\n”);
/* wrap things up */
fclose(in);
fclose(out);
close(read_fd);
close(write_fd);

System Programming

PART II
210

LISTING 11.4 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 210

close(connection);
} /* while */

fprintf(stderr,
“Child process #%d exiting, pid=%d, parent=%d\n”,
child_p->number,
child_p->pid,
child_p->ppid

);
}

child_group_info_t child_group_1;
jmp_buf jump_env;

void sig_handler(int signal)
{

fprintf(stderr, “pid %d recieved signal %d\n”,
getpid(), signal);

child_restart_children = 0;

#if 0
/* wake up the wait() */
/* doesn’t work */
raise(SIGCHLD);

#endif

longjmp(jump_env,1);

/* We opt not to call signal() again here */
/* next signal may kill us */

}

int port = 1236;

main()
{

int i;
int child;
child_group_info_t child_group_1;
child_groups_t child_groups;
int rc;
struct sockaddr_in tcpaddr;

tcpaddr.sin_family = AF_INET;
tcpaddr.sin_addr.s_addr = INADDR_ANY;
tcpaddr.sin_port = htons(port);

Process Control

CHAPTER 11
211

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 211

listen_sock = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);
if(listen_sock<0) perror(“socket”);
assert(listen_sock>=0);

fprintf(stderr, “listening on port %d\n”,port);

#if 1
rc=bind(listen_sock, (struct sockaddr *) &tcpaddr,

sizeof(tcpaddr));
#else

rc=bind(listen_sock, (struct sockaddr *) &tcpaddr, 4);
#endif
if(rc!=0) perror(“bind”);
assert(rc==0);
rc=listen(listen_sock,10);
if(rc!=0) perror(“listen”);
assert(rc==0);

#if 0
setvbuf(stderr, NULL, _IOLBF, 0);

#else
setbuf(stderr, NULL);

#endif

/* Note: children inherit this */
signal(SIGTERM, sig_handler);
signal(SIGINT, sig_handler);
signal(SIGQUIT, sig_handler);

child_group_create(&child_group_1, 4, 4, child_process_1,
NULL);

child_groups.ngroups = 1;
child_groups.group[0]=&child_group_1;

rc=setjmp(jump_env);
if(rc==0) {
/* normal program execution */

child_groups_keepalive(&child_groups);
} else {

/* exception handler */
/* we got here via setjmp() */

/* restore signal handlers to defaults */
signal(SIGTERM, SIG_DFL);

System Programming

PART II
212

LISTING 11.4 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 212

signal(SIGINT, SIG_DFL);
signal(SIGQUIT, SIG_DFL);

child_groups_kill(&child_groups);
exit(0);

}

}

The child_demo3.c Program
The program child_demo3.c, shown in Listing 11.5, illustrates the use of the
child_pipeve() function. It will invoke the program named by argv[1] and give it the
arguments found in the remaining command-line arguments. It merely copies its environ-
ment for the child’s environment.

Another program, child_demo4.c, which is included on the CD-ROM but not as a list-
ing, dumps its arguments and environment and is useful for testing child_demo3.c.

LISTING 11.5 child_demo3.c

#include <sys/time.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <signal.h>
#include <setjmp.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <limits.h>

#include “child.h”

int debug=5;

extern char **environ;

main(int argc, char *argv[])
{

int count;

Process Control

CHAPTER 11
213

11 P
R

O
C

ESS
C

O
N

TR
O

L

continues

1472316072 CH11 7/26/99 2:34 PM Page 213

int i;
char **newargv;
int rc;

#if 1
/* very primitive example, borrows everything from the */
/* current process */
if(debug>=5) child_print_arg_array(“argv”,argv);

fprintf(stderr,”argc=%d\n”,argc);
assert(argc >= 2);
/* make a new argv[] from argv[] */
count=0;
while(1) {

count++;
if(argv[count]==NULL) break;

}
printf(“count=%d\n”,count);
newargv = malloc(sizeof(void *)*(count+2));
newargv[0] = argv[1];
for(i=1; i<count; i++) {

newargv[i] = argv[i+1];
}
newargv[i] = NULL;
printf(“argv[1]=%s\n”,argv[1]);

if(debug>=5) child_print_arg_array(“newargv”,newargv);
if(debug>=5) child_print_arg_array(“environ”,environ);

fprintf(stderr,”invoking program\n”);
rc=child_pipeve(argv[1], newargv, environ,

NULL, NULL, NULL);
fprintf(stderr,”program invocation over\n”);

fprintf(stderr,”rc=%d\n”,rc);
if(rc<0) {

perror(“child_pipeve()”);
}

#endif
}

Summary
The Linux operating system provides a variety of functions that can be used to manipu-
late processes. Most of these are shared by some or even all other UNIX and compatible
operating systems.

System Programming

PART II
214

LISTING 11.5 CONTINUED

1472316072 CH11 7/26/99 2:34 PM Page 214

IN THIS CHAPTER

• Process Info 217

• General System Info 221

• Libraries and Utilities 227

12
C

H
A

PT
ER

Accessing System
Information

by Mark Whitis

1572316072 CH12 7/26/99 2:33 PM Page 215

In the old days, certain UNIX programs, such as ps and uptime, accessed kernel data
structures directly to retrieve system information. This required knowledge of kernel
externals and required care to ensure that the values were not modified as they were
being accessed. The programs needed to be setuid root in order to access the kernel data
structures; this meant they were vulnerable to security exploits if they were not carefully
written. These programs also frequently had to be rebuilt when the kernel was changed
because the positions and layouts of the data structures may have changed.

Some more modern systems implement a /proc filesystem that contains special files that
can be read to access system status information. These files are usually plain text files.
Linux makes more information available through the /proc filesystem than many other
systems.

Entries in the /proc filesystem can be created by any kernel module. The code that
implements the /proc filesystem and some of its entries can be found in /usr/src/
linux/fs/proc. Portions of the proc namespace are registered using the kernel function
proc_register().

The /proc files described in this chapter are based on a system running a 2.2.5 kernel. If
you have a different kernel version or have drivers installed that create /proc entries, you
may have a somewhat different selection of files. Many of the files listed here are not
mentioned in documentation so I had to rely on my own knowledge, the kernel sources,
comparisons with the output of various utilities, and the occasional guess to generate the
descriptions. The manual page for proc in section 5 (man 5 proc) gives more info on
many of these files.

I will caution you in advance that this chapter does not contain meticulous documenta-
tion for every bit of information available through the proc filesystem. The documenta-
tion in this chapter is largely based on exploring the contents of the files, the output of
certain programs that use the files, kernel sources, and sources to some of the utility
programs. You can, and should, do much of this yourself, but focus your efforts on the
specific information you need for your current application. This section is intended as a
general overview of what information is available from the system and where. If you
need a specific piece of information, you will have the motivation to explore that particu-
lar portion of the /proc filesystem more thoroughly and the code you are writing will be
the means to test your statements. Perhaps someone will decide to write an entire book
on the /proc filesystem or get a bunch of people to do so as part of the Linux
Documentation Project; until then, programmers should expect to have to get their feet
wet.

I will walk you to the library and show you how to use the card catalog—reading the
books is left as an exercise for you.

System Programming

PART II
216

1572316072 CH12 7/26/99 2:33 PM Page 216

Process Info
There is a directory under /proc for each user level process running on the system at any
given time; the name of this directory is the decimal representation of the process num-
ber. In addition, /proc/self is a symbolic link to the current process’s directory (this
link looks different for each process). Within these directories, there are a number of
files.

In the following sections, $pid should be replaced with the process id of the process of
interest. Most of these special files can be viewed with more, cat, or strings, or
searched with fgrep. The -f option on strings will print the filename, which is handy
with wildcards.

Accessing System Information

CHAPTER 12
217

12

A
C

C
ESSIN

G
S

Y
STEM

I N
FO

R
M

A
TIO

NNOTE

The source file /usr/src/linux/fs/proc/array.c seems to have most of the
routines that actually generate /proc output for the per process entries.

The cmdline File
Reading the file /proc/$pid/cmdline returns a single line that is the command line of
the process, including the name of the program and all arguments. The command line
may be blank for zombie processes and the arguments might not be available if the
process is swapped out.

TIP

You can take a quick look at what is running on your system by issuing the fol-
lowing command:

strings -f /proc/[0-9]*/cmdline

The environ File
Reading the file /proc/$pid/environ returns the process environment. Individual envi-
ronment strings are separated by null bytes and the end of the environment is marked by
an end of file condition. The strings utility displays this in a more readable form than
the cat utility.

1572316072 CH12 7/26/99 2:33 PM Page 217

The fd Directory
The directory /proc/$pid/fd has an entry for each open file descriptor as a symbolic
link to the actual file’s inode. An inode contains information about a file. Each inode has
the device where the inode resides, locking information, mode and filetype of the file,
links to the file, user and group ids of the owner, bytes in the file, and addresses of the
file’s blocks on the disk.

Opening the file descriptor entry (for example, /proc/self/fd/1) opens the file itself; if
the file is a terminal or other special device, it may interfere with the process itself by
stealing data. You can also use the fstat() or lstat() system calls to get information
about the file. The permissions shown for the file have access for the owner only and the
owner read and owner write bits indicate the mode in which the file is open.

There is a utility program that runs on many UNIX systems, with and without /proc
filesystems, called lsof. On a Red Hat system, it is installed in /usr/sbin/lsof. This
can be handy when you want to get information on what a process is doing, want to
know why you can’t unmound a particular filesystem because it is busy, or want to inves-
tigate suspicious activity. The fuser command is similar but searches for specific files. If
you have an old distribution or did not do a full install, you may be missing these
utilities.

System Programming

PART II
218

TIP

Programmers especially need to do a full installation of everything included
with a Linux distribution CD.

The mem File
The file /proc/self/mem can be used to access the memory image of a particular
process. Ordinary utilities like strings cannot be used, but the mmap() call should work
if you have adequate permission.

stat
The file /proc/$pid/stat has most of the information usually displayed by ps about a
process, and then some. Table 12.1 lists the various fields along with their position, the
name used to identify the field in the ps program, and a description. Cumulative values
include the current process and any children that have been reaped (using the wait()

1572316072 CH12 7/26/99 2:33 PM Page 218

family). Many of the time-related fields appear to be measured in jiffies (1/100 sec).
There seems to be some discrepancy about whether the counter field is included.

TABLE 12.1 stat FIELDS

Name Description

1 pid Process id

2 cmd Simple name Basename of command line in parentheses (will be
used by ps if cmdline is blank)

3 state R=runnable, S=sleeping, D=uninterruptible sleep, T=traced or
stopped, Z=zombie, W=not resident, N=nice

4 ppid Parent process id

5 pgrp Process group id

6 session Session id of process

7 tty Controlling tty (major, minor)?

8 tpgid Process id for controlling tty

9 flags Process flags

10 min_flt Minor page faults

11 cmin_flt Minor page faults (cumulative)

12 maj_flt Major page faults

13 cmaj_flt Major page faults (cumulative)

14 utime User time

15 stime System time

16 cutime User time (cumulative)

17 cstime System time (cumulative)

18 counter Size of processes next timeslice

19 priority Static scheduling priority

20 nice Normal scheduling algorithm nice value (dynamic priority)

21 timeout Timeout value in jiffies

22 it_real_value Next interval timer expiration in jiffies

23 start_time When process was started

24 vsize VM size in bytes (total)

25 rss Resident Set Size

26 rss_rlim RSS rlimit

Accessing System Information

CHAPTER 12
219

12

A
C

C
ESSIN

G
S

Y
STEM

I N
FO

R
M

A
TIO

N

continues

1572316072 CH12 7/26/99 2:33 PM Page 219

TABLE 12.1 CONTINUED

Name Description

27 start_code Start of code segment

28 end_code End of code segment

29 start_stack Start of stack segment

30 kstk_esp Current stack frame

31 kstk_eip Current stack frame

32 signal Pending signals

33 blocked Blocked signals

34 sigignore Ignored signals

35 sigcatch Caught signals—signals with handlers

36 wchan Kernel function name process is sleeping in

The status File
The file /proc/$pid/status contains less information but in a more readable format
than /proc/$pid/stat. It includes the name, state, process id, parent process id, uids and
group ids (including real, effective, and saved ids), virtual memory statistics, and signal
masks.

The cwd Symbolic Link
The symbolic link /proc/$pid/cwd points to the inode for the current working directory
of the process.

The exe Symbolic Link
The symbolic link /proc/$pid/exe contains a symbolic link to the file being executed.
This usually points to a binary file. This could also point to a script that is being execut-
ed or the executable processing it, depending on the nature of the script.

The maps File
The file /proc/$pid/maps contains information on the mapped memory regions for the
processes. It contains address ranges, permissions, offset (into mapped file), and the
major and minor device numbers and inodes for mapped files.

System Programming

PART II
220

1572316072 CH12 7/26/99 2:33 PM Page 220

The root Symbolic Link
The symbolic link /proc/$pid/root is a link to the root directory (set with the chroot()
system call) for the process.

The statm File
The special file /proc/$pid/statm lists memory usage by a process. The variable names,
in order, used in array.c are size, resident, share, trs, lrs, drs, and dt. These give
the total size (including code, data, and stack), resident set size, shared pages, text pages,
stack pages, and dirty pages. Note that “text” often means executable code when you are
talking about memory usage. The top program displays this information.

General System Info
There are a variety of files in the /proc filesystem that give system information that is
not specific to a given process. The available files may vary with your system configura-
tion. The procinfo command can display a lot of system information based on some of
these files.

The /proc/cmdline File
This gives the kernel boot command line.

The /proc/cpuinfo File
This file gives various information about the system CPU(s). This information is derived
from the CPU detection code in the kernel. It lists the generic model (386, 486, 586, and
so on) of the CPU and more specific information (vendor, model, and version) where
available. It includes the speed of the processor in bogomips, and flags that indicate if
various features or bugs were detected. The format of this file is multiple lines with a
fieldname, a colon, and a value.

The /proc/devices File
This file lists the major character and block device numbers and the name the driver gave
when allocating those numbers.

Accessing System Information

CHAPTER 12
221

12

A
C

C
ESSIN

G
S

Y
STEM

I N
FO

R
M

A
TIO

N

1572316072 CH12 7/26/99 2:33 PM Page 221

The /proc/dma File
This file lists which DMA channels have been reserved by drivers and the name the dri-
ver gave when reserving them. The cascade entry is for the DMA line that is used to
cascade the secondary DMA controller off of the primary controller; this line is not avail-
able for other use.

The /proc/filesystems File
This file lists the available filesystem types, one per line. This is generally the filesys-
tems that were compiled into the kernel, although it might include others that were added
by loadable kernel modules.

The /proc/interrupts File
This file has one line per reserved interrupt. The fields are the interrupt number, the num-
ber of interrupts received on that line, a field that may have a plus sign (SA_INTERRUPT
flag set) and the name a driver used when registering that interrupt. The function
get_irq_list() in /usr/src/linux/arch/i386/kernel/irq.c (assuming Intel plat-
form) generates this data.

This is a very handy file to manually “cat” before installing new hardware, as are
/proc/dma and /proc/ioports. They list the resources that are currently in use (but not
those used by hardware for which no driver is loaded).

The /proc/ioports File
This file lists the various I/O port ranges registered by various device drivers such as
your disk drives, ethernet, and sound devices.

The /proc/kcore File
This is the physical memory of the system in core file format. It is used with GDB to
examine kernel data structures. This file is not in a text format that is viewable using
your favorite text viewer (such as less).

The /proc/kmsg File
Only one process, which must have root privileges, can read this file at any given time.
This is used to retrieve kernel messages generated using printk(). The syslog() system
call (not to be confused with the syslog() library function) can be used to retrieve these
messages instead. The dmesg utility or the klogd daemon is normally used to retrieve
these messages.

System Programming

PART II
222

1572316072 CH12 7/26/99 2:33 PM Page 222

The /proc/ksyms File
This file lists the kernel symbols that have been registered; these symbols give the
address of a variable or function. Each line gives the address of a symbol, the name of
the symbol, and the module that registered the symbol. The ksyms, insmod, and kmod
programs probably use this file. It also lists the number of running tasks, the total num-
ber of tasks, and the last pid assigned.

The /proc/loadavg File
This file gives the system load average over several different time intervals as displayed
by the uptime command. The important data in this file is the three load values and the
process id that it was last run with.

The /proc/locks File
This file contains information on locks that are held on open files. It is generated by the
get_locks_status() function in /usr/src/linux/fs/locks.c. Each line represents
lock information for a specific file, and documents the type of lock applied to the file.
The functions fcntl() and flock() are used to apply locks to files. The kernel may also
apply mandatory locks to files when needed. This information appears in the
/proc/locks file. The documents locks.txt and mandatory.txt in the
/usr/src/linux/Documentation subdirectory discuss file locking in Linux.

The /proc/mdstat File
This contains information on raid devices controlled by the md device driver.

The /proc/meminfo File
This file gives information on memory status and is used by the free program. Its format
is similar to that displayed by free. This displays the total amount of free and used phys-
ical and swap memory in the system. This also shows the shared memory and buffers
used by the kernel.

The /proc/misc File
This reports device drivers that register using the kernel function misc_register(). On
my system it reports rtc at 135. 135 is the minor device number used by the real-time
clock driver for /dev/rtc. None of the other devices that share major number 10 are list-
ed; perhaps they forget to call misc_register().

This information may have different results from system to system and setup to setup.

Accessing System Information

CHAPTER 12
223

12

A
C

C
ESSIN

G
S

Y
STEM

I N
FO

R
M

A
TIO

N

1572316072 CH12 7/26/99 2:33 PM Page 223

The /proc/modules File
This gives information on loadable kernel modules. This information is used by the
lsmod program to display the information on the name, size, usecount, and referring
modules.

The /proc/mounts File
This gives information on currently mounted filesystems in the format you would nor-
mally expect in /etc/mtab. This is the file that would also reflect any currently manually
mounted file-systems that may not be included in your /etc/mtab file.

The /proc/pci File
This gives information on PCI devices. It is handy for diagnosing PCI problems. Some
of the information that you can retrieve from this file is the device, such as the IDE inter-
face or USB controller, the bus, device, and function numbers, device latency, and IRQ
numbers.

The /proc/rtc File
This gives information on the hardware real-time clock including the current date and
time, alarm setting, battery status, and various features supported. The /sbin/hwclock
command is normally used to manipulate the real-time clock. The format is similar to
/proc/cpuinfo.

The /proc/stat File
This has various information on CPU utilization, disk, paging, swapping, total interrupts,
contact switches, and the time of last boot (in seconds since 1/1/70). This information is
reported by the procinfo program.

The /proc/uptime File
This gives the number of seconds since the system booted and how many of those sec-
onds were spent idle. These are used by the uptime program, among others. Comparing
these two numbers gives you a long term measure of what percentage of CPU cycles go
to waste.

System Programming

PART II
224

1572316072 CH12 7/26/99 2:33 PM Page 224

The /proc/version File
This returns one line identifying the version of the running kernel. This information is
used by the uname program. An example of this would be:

Linux version 2.2.5-15 (root@porky.devel.redhat.com)
(gcc version egcs-2.91.66 19990314/Linux (egcs-1.1.2 release))
#1 Mon Apr 19 22:21:09 EDT 1999

The output from /proc/version appears as a single text string, and can be parsed using
standard programming methods to obtain system information as needed.

The uname program will access this file for some of its information.

The /proc/net Subdirectory
The /proc/net subdirectory contains files that describe and/or modify the behavior of
the networking code. Many of these special files are set or queried through the use of the
arp, netstat, route, and ipfwadm commands. The various files and their functions are
listed in Table 12.2.

TABLE 12.2 /proc/net/ FILES

File Description

arp Dumps the arp table dev packet statistics for each network interface

dev Statistics from network devices

dev_stat Status of network devices

igmp IGMP multicast groups joined

ip_masq_app Info on masquerading

ip_masquerade Info on masqueraded connections

raw Socket table for raw sockets

route Static routing rules

rt_cache Routing cache

snmp ip/icmp/tcp/udp protocol statistics for snmp agent; alternate lines give
field names and values

sockstat Lists number of tcp/udp/raw/pac/syn_cookies in use

tcp Socket table for TCP connections

udp Socket table for UDP connections

unix Socket table for UNIX domain sockets

Accessing System Information

CHAPTER 12
225

12

A
C

C
ESSIN

G
S

Y
STEM

I N
FO

R
M

A
TIO

N

1572316072 CH12 7/26/99 2:33 PM Page 225

The /proc/scsi Subdirectory
The /proc/scsi directory contains one file that lists all detected SCSI devices and one
directory for each controller driver, with a further subdirectory for each separate instance
of that controller installed. Table 12.3 lists the files and subdirectories in /proc/scsi.

TABLE 12.3 /proc/scsi/ FILES

File Description

/proc/scsi/$driver/$n One file for each controller where $driver is the name of the
SCSI controller driver and $n is a number such as 0,1,2, and so on

/proc/scsi/scsi Lists all detected SCSI devices; special commands can be written
to probe a specific target address, such as “scsi singledevice 1 0 5
0” to probe device ID 5 on channel 0

The /proc/sys Subdirectory
There are many subdirectories within the /proc/sys directory. Table 12.4 contains
descriptions of the various files within this directory.

TABLE 12.4 /proc/sys/ FILES

File Description

kernel/domainname Domain name

kernel/hostname Host name

kernel/acct Process accounting control values

kernel/ctrl-alt-del Ctrl-Alt-Delete key behavior on keyboard

kernel/osrelease Kernel version number

kernel/ostype “Linux”

kernel/panic Get/set panic timeout; kernel will reboot after this number of
seconds following a panic if >0

/kernel/printk Kernel message logging levels

kernel/real-root-dev The number (major*256+minor) of the root device

kernel/version Date of compilation

net/core General networking parameters

net/core/rmem_default Socket read buffer default size

net/core/rmem_max Socket read buffer maximum size

net/core/wmem_default Socket write buffer default size

System Programming

PART II
226

1572316072 CH12 7/26/99 2:33 PM Page 226

File Description

net/core/wmem_max Socket write buffer maximum size

net/ipv4 Standard IP networking parameters

net/ipv4/ip_autoconfig IP configuration -1 if IP address obtained automatically (BOOTP,
DHCP, or RARP)

net/ipv4/ip_dynaddr sysctl_ip_dynaddr: Allow dynamic rewriting of packet address;
bitfields - ip_output.c

net/ipv4/ip_forward Writing a 0 or 1 disables/enables ip_forwarding

vm/bdflush Disk buffer flushing parameters

vm/freepages set/get min_freepages (“man stm”)

vm/kswapd /usr/include/linux/swapctl.h

vm/swapctl /usr/include/linux/swapctl.h

Libraries and Utilities
I have compiled a listing of /proc filesystem usage that I have been able to detect in
libraries or programs. This is included in the listings for this chapter on the CD-ROM
and my Web site but is not printed here. It can be used to find examples on the handling
of particular files in the /proc filesystem. Some are simply listed as /proc/ or
/proc/$pid/; in these cases the particular files used could not be quickly determined.
The list was generated from manual inspection of the results of searching manual pages,
libraries, and executable files for the string /proc on a Red Hat system with Powertools
and Gnome installed. Some cases where the filename is built up piecemeal were
undoubtedly missed. If a program only accesses the /proc filesystem through libraries, it
may not be listed at all.

The library libproc contains the /proc filesystem handling code from the ps program.

Summary
The /proc filesystem contains a large amount of information about the current system
state. Interpretation of the files in /proc is often fairly obvious from looking at the file or
will be documented in the proc man page. Comparing the file with the output of utilities
that parse the file can shed light on the subject. In other cases, you will want to examine
the kernel sources and/or the source code of programs or libraries that use the /proc
filesystem for information on the interpretation of various fields.

Accessing System Information

CHAPTER 12
227

12

A
C

C
ESSIN

G
S

Y
STEM

I N
FO

R
M

A
TIO

N

1572316072 CH12 7/26/99 2:33 PM Page 227

228

1572316072 CH12 7/26/99 2:33 PM Page 228

IN THIS CHAPTER

• Please Pause for a Brief Editorial 230

• C-Language Facilities 230

• The System Logging Facility 239

13
C

H
A

PT
ER

Handling Errors

by Kurt Wall

1672316072 CH13 7/26/99 2:32 PM Page 229

No matter how fast your algorithms run or how good your code is, you, or rather your
program, eventually must deal with unanticipated error conditions. The goal of this chap-
ter is to acquaint you with the error handling facilities available and to show you how to
use them.

Please Pause for a Brief Editorial
Robust, flexible error handling is crucial for production or release quality code. The bet-
ter your programs catch and respond to error conditions, the more reliable your programs
will be. So, if a library function call sets or returns an error value, test it and respond
appropriately. Similarly, write your own functions to return meaningful, testable error
codes. Whenever possible, try to resolve the error in code and continue. If continuing
execution is not possible, provide useful diagnostic information to the user (or write it in
a log file) before aborting. Finally, if you must end your program abnormally, do so as
gracefully as possible: closing any open files, updating persistent data (such as configu-
ration information), and making the termination appear as orderly as possible to the user.
It is very frustrating when a program simply dies for no apparent reason without issuing
any warning or error messages.

C-Language Facilities
Several features of ANSI C (also known, these days, as ISO9899 C) support error han-
dling. The following sections look at the assert() routine, usually implemented as a
macro but designed to be called like a function, a few handy macros you can use to build
your own assert()-style function, and some standard library functions specifically
designed for detecting and responding to errors.

assert() Yourself
The assert() call, prototyped in <assert.h>, terminates program execution if the con-
dition it tests returns false (that is, tests equal to zero). The prototype is

#include <assert.h>
void assert(int expression);

assert() prints an error message to stderr and terminates the program by calling
abort(3) if expression is false (compares equal to 0). expression can be any valid C
statement that evaluates to an integer, such as fputs(“some string”, somefile). So,
for example, the program in Listing 13.1 will terminate abruptly at line 17 because the
fopen() call on line 16 will fail (unless, of course, you happen to have a file named
bar_baz in the current directory).

System Programming

PART II
230

1672316072 CH13 7/26/99 2:32 PM Page 230

LISTING 13.1 badptr.c—USING assert()

1 /*
2 * Listing 13.1
3 * badptr.c - Testing assert()
4 */
5 #include <assert.h>
6 #include <stdio.h>
7
8 int main(void)
9 {
10 FILE *fp;
11
12 fp = fopen(“foo_bar”, “w”); /* This should work */
13 assert(fp);
14 fclose(fp);
15
16 fp = fopen(“bar_baz”, “r”); /* This should fail */
17 assert(fp);
18 fclose(fp); /* Should never get here */
19 return 0;
}

A sample run looks like the following:

$ badptr
badptr: badptr.c:17: main: Assertion `fp’ failed.
IOT trap/Abort

The output shows the program in which the error occurred, badptr, the source file in
which the assertion failed, badptr.c, the line number where the assertion failed, 17 (note
that this is not where the actual error occurs), the function in which the error occurred,
and the assertion that failed. If you have configured your system to dump core, the direc-
tory from which you executed the program will also contain a core file.

The drawback to using assert() is that, when called frequently, it can dramatically
affect program execution speed. Occasional calls, however, are probably acceptable.
Because of the performance hit, many programmers use assert() during the develop-
ment process for testing and debugging, but, in the release version, disable all of the
assert() calls by inserting #define NDEBUG before the inclusion of <assert.h>, as
illustrated in the following code snippet:

#include <stdio.h>
#define NDEBUG
#include <assert.h>

If NDEBUG is defined, the assert() macro will not be called.

Handling Errors

CHAPTER 13
231

13

H
A

N
D

LIN
G

E
R

R
O

R
S

1672316072 CH13 7/26/99 2:32 PM Page 231

NDEBUG’s value does not matter and can even be 0. The mere existence of NDEBUG is suffi-
cient to disable assert() calls. However, as usual, there’s a catch! NDEBUG also makes it
important not to use expressions in the assert() statement that you will need later. In
fact, do not use any expression in assert(), even a function call, that has side effects.
Consider the statement

assert((p = malloc(sizeof(char)*100) == NULL));

Because NDEBUG prevents the call to assert() if it is defined, p will never be properly
initialized, so future use of it is guaranteed to cause problems. The correct way to write
this statement, if you are using assert(), is

p = malloc(sizeof(char) * 100);
assert(p);

Even after the assert() statement is disabled, you will still need to test p, but at least
your code will attempt to allocate memory for it. If you embed the malloc() call in an
assert() statement, it will never get called.

As you can see, assert() is useful, but abrupt program termination is not what you want
your users to deal with. The real goal should be “graceful degradation,” so that you only
need to terminate the program if a hierarchy of error handling calls all fail and you have
no alternative. The more errors you can successfully resolve behind the scenes without
having to involve or inform the user, the more robust your program will appear to be to
your users.

Using the Preprocessor
In addition to the assert() function, the C standard also defines two macros, __LINE__
and __FILE__, that are useful in a wide variety of situations involving errors in program
execution. You can use them, for example, in conjunction with assert() to more accu-
rately pinpoint the location of the error that causes assert() to fail. In fact, assert()
uses both __LINE__ and __FILE__ to do its work. Listings 13.2–13.4 declare, define, and
use a more robust function for opening files, open_file().

LISTING 13.2 filefcn.h

1 /*
2 * Listing 13.2
3 * filefcn.h - Declare a new function to open files
4 */
5 #ifndef FILEFCN_H_
6 #define FILEFCN_H_
7

System Programming

PART II
232

1672316072 CH13 7/26/99 2:32 PM Page 232

8 int open_file(FILE *fp, char *fname, char *mode,
➥int line, char *file);
9
10 #endif /* FILEFCN_H_ */

Nothing extraordinary here.

LISTING 13.3 filefcn.c

1 /*
2 * Listing 13.3
3 * filefcn.c - Using __LINE__ and __FILE__
4 */
5 #include <stdio.h>
6 #include “filefcn.h”
7
8 int open_file(FILE *fp, char *fname, char *mode, int line,
➥char *file)
9 {
10 if((fp = fopen(fname, mode)) == NULL) {
11 fprintf(stderr, “[%s:%d] open_file() failed\n”, file, line);
12 return 1;
13 }
14 return 0;
15 }

We merely define our function here. Again, nothing unusual.

LISTING 13.4 testmacs.c

1 /*
2 * Listing 13.4
3 * testmacs.c - Exercise the function defined in filefcn.c
4 */
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include “filefcn.h”
8
9 int main(void)
10 {
11 FILE *fp;
12 int ret;
13
14 if(open_file(fp, “foo_bar”, “w”, __LINE__, __FILE__))
15 exit(EXIT_FAILURE);
16 if(fp)
17 fclose(fp);
18

Handling Errors

CHAPTER 13
233

13

H
A

N
D

LIN
G

E
R

R
O

R
S

continues

1672316072 CH13 7/26/99 2:32 PM Page 233

LISTING 13.4 CONTINUED

19 ret = open_file(fp, “bar_baz”, “r”, __LINE__, __FILE__);
20 if(ret)
21 exit(EXIT_FAILURE);
22 if(fp)
23 fclose(fp);
24
25 return 0;
}

Before compilation, the preprocessor substitutes the __LINE__ symbols with 14 and 19,
and replaces __FILE__ with testmacs.c, the name of the source file. If a call to
open_file() succeeds, it returns 0 to the caller, otherwise it prints a diagnostic indicat-
ing the filename and line number (in the caller) where it failed and returns 1. If we had
used __LINE__ and __FILE__ in the definition of open_file(), the line number and file-
name would not be very useful. As we have defined it, you know exactly where the func-
tion call failed.

Executing the program,

$./testmacs
[testmacs.c:19] open_file() failed

we see that it failed at line 19 of testmacs.c, which is the result we expected. __LINE__
and __FILE__ can be very helpful in tracking down bugs. Learn to use them.

Standard Library Facilities
In this context, “standard library” refers to the variables, macros, and functions mandated
to be part of the C environment supporting the standard. This section will take an
in-depth look at five functions and a variable (gee, that sounds like a movie about pro-
gramming, “Five Functions and a Variable”) that are an important part of any error han-
dling. Their prototypes (and header files) are as follows:

• stdlib.hvoid abort(void);

• stdlib.hvoid exit(int status);

• stdlib.hint atexit(void (*fcn)(void));

• studio.hvoid perror(const char *s);

• string.hvoid *strerror(int errnum);

• errno.hint errno;

System Programming

PART II
234

1672316072 CH13 7/26/99 2:32 PM Page 234

The following three functions are also essential components of an error handling toolkit.
They are all declared in <stdio.h>.

void clearerr(FILE *stream);

Clears the end-of-file (EOF) and error indicators for stream.

int feof(FILE *stream);

Returns a non-zero value if the EOF indicator for stream is set.

int ferror(FILE *stream);

Returns a non-zero value if the error indicator for stream is set

Understanding errno
Many, but not all, library functions set the global variable errno to a non-zero value
when errors occur (most of these functions are in the math library). However, no library
function ever clears errno (sets errno = 0), so to avoid spurious errors, clear errno
before calling a library function that may set, as the code snippet in Listing 13.5 illus-
trates.

LISTING 13.5 THE errno VARIABLE

1 #include <errno.h.>
2 /* more stuff here */
3
4 errno = 0;
5 y = sqrt(x);
6 if(errno != 0) {
7 fprintf(stderr, “sqrt() error”! Goodbye!\n”);
8 exit(EXIT_FAILURE);
9}

Functions in the math library often set errno to EDOM and ERANGE. EDOM errors occur
when a value passed to a function is outside of its domain. sqrt(-1), for example, gen-
erates a domain error. ERANGE errors occur when a value returned from a function in the
math library is too large to be represented by a double. log(0) generates a range error
since log(0) is undefined. Some functions can set both EDOM and ERANGE errors, so com-
pare errno to EDOM and ERANGE to find out which one occurred and how to proceed.

Using the abort() Function
This is a harsh call. When called, it causes abnormal program termination, so the usual
clean-up tasks, such as closing files, and any functions registered with atexit() do not

Handling Errors

CHAPTER 13
235

13

H
A

N
D

LIN
G

E
R

R
O

R
S

1672316072 CH13 7/26/99 2:32 PM Page 235

execute (atexit() is discussed later in this chapter). abort() does, however, return an
implementation defined value to the operating system indicating an unsuccessful termi-
nation. If not restricted by ulimit, abort() also dumps out a core file to aid post-
mortem debugging. To facilitate debugging, always compile your code with debugging
symbols (using -g or -ggdb options with gcc) and don’t strip your executables. The
assert() call we discussed in a previous section of this chapter calls abort().

System Programming

PART II
236

NOTE

Stripping binaries means using the strip command to remove symbols, usually
debugging symbols, from compiled programs. Doing so reduces their disk and
memory footprint, but has the unfortunate side effect of making debugging
virtually impossible. Let the foolhardy user strip them.

Using the exit() Function
exit() is abort()’s civilized cousin. Like abort(), it terminates a program and returns
a value to the OS, but, unlike abort(), it does so only after doing any clean up and, if
you have additional clean up performed by functions registered with atexit(), it calls
them as well. status returns the exit value to the operating system. Any integer value is
legal, but only EXIT_SUCCESS and EXIT_FAILURE, defined in <stdlib.h>, and 0 are
portable return values. Many, if not most, of the programs you have already seen in this
book use it. See line 8 of Listing 13.5, for example.

Using the atexit() Function
The atexit() function registers fcn to be called upon normal program termination. Pass
atexit() a function that accepts no arguments and returns void. You can use atexit()
to guarantee that certain code is executed before your program shuts down completely.
As noted in the discussion of abort(), functions registered with atexit() will not be
called if abort() executes. If fcn registers successfully, atexit() returns 0, otherwise it
returns 1. Listing 13.6 demonstrates how atexit() works.

LISTING 13.6 THE atexit() FUNCTION

1 /*
2 * Listing 13.6
3 * chkexit.c - Fun with atexit()
4 */
5 #include <stdio.h>
6 #include <stdlib.h>

1672316072 CH13 7/26/99 2:32 PM Page 236

7
8 void f_atexit(void)
9 {
10 fprintf(stdout, “Here we are in f_atexit()\n”);
11 }
12
13 int main(int argc, char *argv[])
14 {
15 fprintf(stdout, “Here we are in main()\n”);
16 if(atexit(f_atexit) != 0)
17 fprintf(stderr, “Failed to register f_atexit()\n”);
18 fprintf(stdout, “Exiting...\n”);
19
20 if(atoi(argv[1]))
21 abort();
22
23 return 0;
24}

Line 16 is the key line. We pass f_atexit() by feeding the bare function name,
f_atexit, to atexit(), testing the return value to make sure the function registered
successfully. To run chkexit, pass it a 1 or a 0. If you pass chkexit a 0, it will terminate
normally, but a non-zero argument will cause abnormal termination. When we run the
program, it confirms that atexit() was called after main() returned:

$./chkexit 0
Here we are in main()
Exiting...
Here we are in f_atext()
$./chkexit 1
Here we are in main()
Exiting...
IOT trap/Abort

In the second invocation, f_atext() registers successfully, but the abort() call sidesteps
the call. On systems configured to allow core dumps, the abort() call will also produce
a message similar to “Aborted (core dumped)” and generate a core file in the current
directory.

Using the strerror() Function
If an error occurs, it would probably be helpful to your users (or to you, for that matter)
to know what the operating system thinks went wrong. Enter strerror(). It returns a
pointer to a string that describes the error code associated with errnum. So, if you pass
errno to strerror(), you will get a human readable explanation of what happened,
rather than a cold, uninformative number.

Handling Errors

CHAPTER 13
237

13

H
A

N
D

LIN
G

E
R

R
O

R
S

1672316072 CH13 7/26/99 2:32 PM Page 237

Using the perror() Function
This handy function prints a system error message. If your code makes a system call that
fails, the call returns -1 and sets the variable errno to a value describing the last error,
just as many library functions do. perror() uses this value, printing the string argument
s, a colon, a space, the error message corresponding to errno, and a newline. So, calling

perror(“Oops”);

is the same as calling

printf(“Oops: %s\n”, strerror(errno));

Listing 13.7 illustrates both strerror() and perror().

LISTING 13.7 errs.c

1 /*
2 * Listing 13.7
3 * errs.c - Demonstrate perror() and strerror()
4 */
5 #include <stdio.h>
6 #include <string.h>
7 #include <stdlib.h>
8 #include <math.h>
9 #include <errno.h>
10
11 int main()
12 {
13 double d;
14
15 errno = 0;
16 d = sqrt(-1);
17 if(errno)
18 fprintf(stderr, “sqrt: %s\n”, strerror(errno));
19
20 errno = 0;
21 d = sqrt(-2);
22 if(errno)
23 perror(“sqrt”);
24
25 exit(EXIT_SUCCESS);
26 }

When executed, you can’t tell the difference between perror()’s output and the output
using strerror().

System Programming

PART II
238

1672316072 CH13 7/26/99 2:32 PM Page 238

The System Logging Facility
Writing log messages has been mentioned several times. The good news is that you do
not have to write this functionality yourself. Linux provides centralized system logging
facilities using two daemons, klogd and syslogd. We will concern ourselves with
syslogd, because it controls the generation of messages from user space programs. If
your application needs logging abilities, the tool to use is the syslog facility, borrowed
from BSD. On most Linux systems, the log files live under /var/log. Depending on the
Linux distribution you use, these log files include messages, debug, mail, and news. The
standard console logging daemon, syslogd, maintains these files. The header file
<syslog.h> defines the interface to syslogd. System administrators set the behavior of
syslogd in /etc/syslog.conf. To create a log message, use the syslog() function, pro-
totyped as

#include <syslog.h>
void syslog(int priority, char *format, ...);

priority is a bitwise OR combination of a level, which indicates the severity of the
message, and a facility, which tells syslogd who sent the message and how to respond to
it. format specifies the message to write to the log and any printf()-like format speci-
fiers. The special format specifier %m will be replaced by the error message that str-
error() assigns to errno, as if strerror(errno) had been called. Table 13.1 lists the
possible values for levels in descending order.

TABLE 13.1 syslog LOGGING LEVELS

Level Severity

LOG_EMERG System is unusable

LOG_ALERT Immediate action required

LOG_CRIT Critical error, such as hardware failure

LOG_ERR Error conditions

LOG_WARNING Warning conditions

LOG_NOTICE Normal, but significant, message

LOG_INFO Purely informational message

LOG_DEBUG Debug or trace output

Table 13.2 lists the facilities’ values.

Handling Errors

CHAPTER 13
239

13

H
A

N
D

LIN
G

E
R

R
O

R
S

1672316072 CH13 7/26/99 2:32 PM Page 239

TABLE 13.2 syslog FACILITY NAMES

Facility Source of Message

LOG_AUTHPRIV Private security and authorization messages

LOG_CRON Clock daemons (crond and atd)

LOG_DAEMON Other system daemons

LOG_KERN Kernel messages

LOG_LOCAL[0-7] Reserved for local/site use

LOG-LPR Printer subsystem

LOG_MAIL Mail subsystem

LOG_NEWS News subsystem

LOG_SYSLOG Internal messages generated by sylogd

LOG_USER (DEFAULT) general user level messages

LOG_UUCP The uucp subsystem

In most cases, it’s best to use a facility value of LOG_USER, the default value. Unless, of
course, you are writing a mail or news client. However, if the system administrator at
your site has set up the local facility levels, LOG_LOCAL[0-7], you could use one of those
if they apply. Choosing the correct level is a little trickier. Generally, use one of the lev-
els between LOG_ERR and LOG_INFO, but, if you do send a LOG_ERR message, it will usual-
ly get displayed to all users and the system console, and may well send a page to the
machine’s administrator—hopefully the implication is clear: choose a level value appro-
priate the your message’s contents. My own personal recommendation for user-level pro-
grams is LOG_ERR for errors and LOG_INFO for regular, boring log messages.

So, putting it all together, suppose you encounter an error while opening a file. Your
syslog() call might look like this:

syslog(LOG_ERR | LOG_USER, “unable to open file %s *** %m\n”, fname);

where fname is the filename you tried unsuccessfully to open. This call generated the fol-
lowing message in /var/log/messages:

Mar 26 19:36:25 hoser syslog: unable to open file foo
*** No such file or directory

The %m format specifier appended the string “No such file or directory”, as if
strerror(errno) had been called. Because LOG_USER is the default facility, the previous
code snippet could have been written:

syslog(LOG_ERR, “unable to open file %s *** %m\n”, fname);

System Programming

PART II
240

1672316072 CH13 7/26/99 2:32 PM Page 240

Similarly, if you simply want to scribble a non-critical log entry, try

syslog(LOG_INFO, “this is a normal message\n”);

The message it wrote to /var/log/messages:

Mar 26 19:29:03 hoser syslog: this is a normal message

One of the problems with the previous examples is that the log messages generated are
not sufficiently unique to locate in a log file that can easily grow to seven or eight
megabytes. openlog() comes to the rescue:

void openlog(const char *ident, int option, int facility);

facility is one of the values from Table 13.2. ident specifies a string to prepend to the
message being logged. option is a bitwise OR of zero or more of the options listed in
Table 13.3.

TABLE 13.3 THE openlog() OPTIONS

Option Description

LOG_PID Include PID in each message

LOG_CONS Write the message to the console if it can’t be logged

LOG_NDELAY Opens the connection immediately (the default is to wait until syslog() the
first time)

LOG_PERROR Print the message to stderr, in addition to the log

Handling Errors

CHAPTER 13
241

13

H
A

N
D

LIN
G

E
R

R
O

R
S

NOTE

<syslog.h> also defines LOG_ODELAY, which means delay opening the connec-
tion until syslog()’s first call. Under Linux, the value has no effect, since
LOG_ODELAY is the default behavior.

openlog() works by allocating and opening a (hidden) file descriptor syslog(). We
describe the descriptor hidden because nothing in the syslog facility’s public interface
gives you direct access to it. You simply have to trust that it exists.

openlog()’s purpose is to customize logging behavior. However, openlog() is option-
al—if you do not call it yourself, syslog() calls it automatically the first time your pro-
gram calls syslog(). A companion function, closelog(), also optional, merely closes

1672316072 CH13 7/26/99 2:32 PM Page 241

the file descriptor openlog() opened. To illustrate openlog()’s usage, consider the
following two code snippets:

openlog(“my_program”, LOG_PID, LOG_USER);
syslog(LOG_NOTICE, “Pay attention to me!\n”);

This snippet produces

Mar 26 20:11:58 hoser my_program[1354]: Pay attention to me!

in /var/log/messages, while the next one

openlog(“your_program”, LOG_PID, LOG_USER);
syslog(LOG_INFO, “No, ignore that other program!\n”)

generates this:

Mar 26 20:14:28 hoser your_program[1363]: No, ignore that other program!

Note how the ident string and the PID replaced the facility string. This makes it very
clear what program owns what log messages. In effect, openlog() sets the default facili-
ty name to facility for all future calls of syslog() from your program. As you might
have guessed, a similar call, setlogmask(), sets the default priority:

int setlogmask(int priority);

The priority argument, in this context, is either a single priority or an inclusive range
of priorities.

Calling setlogmask() sets a default mask for priorities; syslog() rejects any message
with priorities not set in the mask. <syslog.h> also defines two helper macros that help
set the mask:

int LOG_MASK(int priority)

and

LOG_UPTO(int priority)

LOG_MASK() creates a mask consisting of only one priority, the priority passed as its
argument. LOG_UPTO() on the other hand, creates a mask made of a range or priorities.
For example, LOG_UPTO(LOG_NOTICE) creates a mask that consists of any message of
level LOG_EMERG through LOG_NOTICE. A message with a level of LOG_INFO or LOG_DEBUG
won’t get through. Behold, Listing 13.8.

LISTING 13.8 mask_log.c

1 /*
2 * Listing 13.8
3 * mask_log.c - demonstrate openlog() and family

System Programming

PART II
242

1672316072 CH13 7/26/99 2:32 PM Page 242

4 */
5 #include <syslog.h>
6 #include <stdio.h>
7 #include <unistd.h>
8 #include <stdlib.h>
9
10 int main(void)
11 {
12 int ret;
13
14 openlog(“mask_log”, LOG_PID, LOG_USER);
15 syslog(LOG_INFO, “This message courtesy of UID #%d\n”,

➥getuid());
16 syslog(LOG_NOTICE, “Hopefully, you see this\n”);
17
18 /* Don’t want to see DEBUG and INFO messages */
19 ret = setlogmask(LOG_UPTO(LOG_NOTICE));
20 syslog(LOG_INFO, “You should not be seeing this\n”);
21 syslog(LOG_DEBUG, “I hope you don’t see this\n”);
22 syslog(LOG_NOTICE, “This should still appear\n”);
23
24 closelog();
25 exit(EXIT_SUCCESS);
24}

Compiled and executed, /var/log/messages says

Mar 26 22:42:06 hoser mask_log[1718]: This message courtesy of UID #100
Mar 26 22:42:06 hoser mask_log[1718]: Hopefully, you see this
Mar 26 22:42:06 hoser mask_log[1718]: This should still appear

Success! After we change the priority mask, the messages with LOG_INFO and LOG_DEBUG
did not pass through, but messages with higher priority, like LOG_NOTICE get through just
fine.

Handling Errors

CHAPTER 13
243

13

H
A

N
D

LIN
G

E
R

R
O

R
S

NOTE

A simple way to track /var/log/messages is to open a separate xterm and tail
the file, using tail -f /var/log/messages. Each time a new messages is written
to the log, it will pop up on your screen.

User Programs
For you shell programmers out there, you have not been forgotten. There exists a user
level program, logger(1), that offers a shell interface to the syslog facility. As

1672316072 CH13 7/26/99 2:32 PM Page 243

mentioned, logger is a shell and command-line interface to syslog. Its complete
syntax is

logger [-is] [-f file] [-p pri] [-t tag] [message ...]

The option -i tells logger to add the PID to the log message. Use -t to get the name of
the script calling logger into the log message. Listing 13.9 demonstrates how you might
use logger in a shell script:

LISTING 13.9 logger.sh

#!/bin/sh
Listing 13.9
logger.sh - Demonstrate logger(1) interface to syslog
###

echo “type the log message and press ENTER”
read _msg
logger -i -t logger.sh $_msg

Don’t trouble yourself with understanding the syntax, it will be covered in Chapter 34,
“Shell Programming with GNU bash.” After prompting for a log message, the script
reads in the log message, then calls logger to insert it in the log file. A sample run might
look like the following:

[kwall@hoser 13]$ logger.sh
type the log message and press ENTER
This is a long log message. I’m making it as long as I possibly can,
➥even to the point of wrapping, to show that log file entries have a
➥fixed length.

Here’s how the message came out in /var/log/messages:

Mar 26 23:26:49 hoser logger.sh[1888]: This is a long log message. I’m
➥making it as long as I possibly

As you can see, syslog truncated the message at eighty characters (the shell name, the
PID, and the message itself total eighty characters), and prepended the script name and
the PID to the message.

System Programming

PART II
244

1672316072 CH13 7/26/99 2:32 PM Page 244

Summary
Hopefully, after reading this chapter, you will get some sense of the value of error han-
dling. Unfortunately, there is no single error handling API, just some tools scattered
around the system that you have to collect and use together to create robust, error
tolerant software. You learned about the rich set of functions the C language provides,
including assert(), the exit functions abort(), exit(), and atexit(), and the error-
handling routines perror() and strerror(). You were also introduced to the system
logging facility and shown how to use it.

Handling Errors

CHAPTER 13
245

13

H
A

N
D

LIN
G

E
R

R
O

R
S

1672316072 CH13 7/26/99 2:33 PM Page 245

246

1672316072 CH13 7/26/99 2:33 PM Page 246

IN THIS CHAPTER

• Reviewing C Memory
Management 248

• Memory Mapping Files 252

• Finding and Fixing Memory
Problems 257

14
C

H
A

PT
ER

Memory
Management

by Kurt Wall

1772316072 CH14 7/26/99 2:32 PM Page 247

In many respects, memory management under Linux is comparable to memory manage-
ment for any modern PC operating system. This chapter reviews basic C memory man-
agement and then looks at some additional capabilities Linux provides. In particular, I
will discuss memory mapped files, a very fast way to perform input and output, and
memory locking, which is a method that keeps critical data in active memory rather than
allowing it be swapped out to disk. I will also cover some special tools for debugging
memory problems and LCLint, a free implementation of the classic code analysis pro-
gram lint.

Reviewing C Memory
Management
The C programming language supports dynamic memory allocation in the malloc(3),
calloc(3), realloc(3), and free(3) functions. These functions enable you to obtain,
manipulate, and return memory from the operating system on an as-needed basis.
Dynamic memory management is essential to efficient programming. Besides more effi-
cient use of memory, a critical system resource, dynamic memory management frees you
from coding arbitrary limits in your code. Instead of hitting an artificial size constraint in
an array of, say, strings, you can simply request more and avoid unnecessary hard-coded
limits. The following sections discuss each of these functions.

Using the malloc() Function
The malloc() function allocates an uninitialized memory block. It allocates a specified
number of bytes of memory, as shown in the following prototype, returning a pointer to
the newly allocated memory or NULL on failure:

void *malloc(size_t size);

Always check malloc()’s return value. It is not necessary to cast the pointer malloc()
returns because it is automatically converted to the correct type on assignment, but you
may encounter these casts in older, pre-ANSI code. The memory block you receive is not
initialized, so don’t use it until you’ve initialized it. Memory obtained with malloc()
must be returned to the operating system with a call to free() in order to prevent
memory leaks.

System Programming

PART II
248

1772316072 CH14 7/26/99 2:32 PM Page 248

Using the calloc() Function
The calloc() function allocates and initializes a memory block. It uses the following
prototype:

void *calloc(size_t nmemb, size_t size);

This function acts very much like malloc(), returning a pointer to enough space to hold
an array of nmemb objects of size size. The difference is that calloc() initializes the
allocated memory, setting each bit to 0, returning a pointer to the memory or NULL on
failure.

Using the realloc() Function
The realloc() function resizes a previously allocated memory block. Use realloc() to
resize memory previously obtained with a malloc() or calloc() call. This function uses
the following prototype:

void *realloc(void *ptr, size_t size);

The ptr argument must be a pointer returned by malloc() or calloc(). The size argu-
ment may be larger or smaller than the size of the original pointer. Increases or decreases
should occur in place. If this is not possible, realloc() will copy the old data to the new
location, but the programmer must update any pointer references to the new block. The
following also apply to realloc()’s behavior:

• realloc() does not initialize the memory added to the block.

• realloc() returns NULL if it can’t enlarge the block, leaving the original data
untouched.

• realloc() called with a NULL pointer as the first argument behaves exactly like
malloc().

• realloc() called with 0 as the second argument frees the block.

Memory Management

CHAPTER 14
249

14

M
EM

O
RY

M
A

N
A

G
EM

EN
T

*Note

In general, you can assign a void pointer to a variable of any pointer type, and
vice versa, without any loss of information.

1772316072 CH14 7/26/99 2:32 PM Page 249

Using the free() Function
The free() function frees a block of memory. This function uses the following proto-
type:

void free(void *ptr);

The ptr argument must be a pointer returned from a previous call to malloc() or
calloc(). It is an error to attempt to access memory that has been freed.

Memory allocation functions obtain memory from a storage pool known as the heap.
Memory, a finite resource, can be exhausted, so be sure to return memory as you finish
using it. Beware, too, of dangling pointers. A memory leak occurs when allocated memo-
ry is never returned to the operating system. Dangling pointers are the uninitialized
pointers left behind after memory is freed. Ordinarily, dangling pointers are not a prob-
lem. Trouble only arises when you try to access a freed pointer without reinitializing the
memory to which it points, as this code snippet illustrates:

char *str;
str = malloc(sizeof(char) * 4)
free(str);
strcpy(str, “abc”);

KABLOOIE! You will get a segmentation fault (SIGSEGV) on the last line.

Using the alloca() Function
The alloca() function allocates an uninitialized block of memory. This function uses the
following prototype:

void *alloca(size_t size);

The dynamic memory allocation functions covered so far, malloc(), calloc(), and
realloc(), all obtain their memory from the heap. alloca() behaves like these, except
that it obtains memory from the process’s stack rather than the heap and, when the func-
tion that invoked alloca() returns, the allocated memory is automatically freed. Listing
14.1 illustrates the standard library’s memory management functions.

LISTING 14.1 USING DYNAMIC MEMORY MANAGEMENT FUNCTIONS

1 /*
2 * Listing 14.1
3 * mem.c - Demonstrate malloc(), calloc(), realloc(),
➥alloca(), and free() usage
4 */
5 #include <stdio.h>
6 #include <stdlib.h>

System Programming

PART II
250

1772316072 CH14 7/26/99 2:32 PM Page 250

7
8 void err_quit(char *);
9 void prn(char *, char *, int);
10
11 int main(void)
12 {
13 char *c, *d, *e;
14
15 if((c = malloc(10)) == NULL)
16 err_quit(“malloc() failed”);
17 prn(“malloc”, c, 10);
18 free(c);
19
20 if((d = calloc(10, 1)) == NULL)
21 err_quit(“calloc() failed”);
22 prn(“calloc”, d, 10);
23
24 strcpy(d, “foobar”);
25 fprintf(stdout, “d = %s\n”, d);
26 if((d = realloc(d, 20)) == NULL)
27 err_quit(“realloc() failed”);
28 fprintf(stdout, “d = %s\n”, d);
29 prn(“realloc”, d, 20);
30
31 if((e = alloca(10)) == NULL)
32 err_quit(“alloca() failed”);
33 prn(“alloca”, e, 10);
34
35 exit(0);
36 }
37
38 void err_quit(char *msg)
39 {
40 fprintf(stderr, “%s\n”, msg);
41 exit(EXIT_FAILURE);
42 }
43
44 void prn(char *memop, char *str, int len)
45 {
46 int i;
47 fprintf(stdout, “%8s : “, memop);
48 for(i = 0; i < len; ++i)
49 fprintf(stdout, “%d “, str[i]);
50 fprintf(stdout, “\n”);
51}

Lines 15–18 illustrate malloc() usage. We attempt to allocate ten bytes of memory,
check malloc()’s return value, display the contents of the uninitialized memory, and
then return the memory to the heap. Lines 20–22 repeat this procedure for calloc().

Memory Management

CHAPTER 14
251

14

M
EM

O
RY

M
A

N
A

G
EM

EN
T

1772316072 CH14 7/26/99 2:32 PM Page 251

Rather than freeing d, however, we attempt to extend it on lines 26–28. Whether
realloc() succeeds or fails, it should still point to the string “foobar”. The pointer, e,
as shown on lines 31–33, is allocated off the stack and, when main() returns (that is,
when the program exits), its memory is automatically freed.

Memory Mapping Files
Although memory mapped files do not, strictly speaking, fall under the “memory
management” rubric, the topic is covered here because it is an example of how Linux
manages memory. Linux allows any process to map a disk file into memory, creating a
byte-for-byte correspondence between the disk file and its image in memory.

Memory mapped files have two chief advantages. The first is faster file I/O. Ordinary I/O
calls, such as the read() and write() system calls or the fputs() and fgets() library
calls, copy the read or written data through kernel buffers. While Linux has a fast and
sophisticated disk-caching algorithm, the fastest disk access will always be slower than
the slowest memory access. I/O operations on a memory-mapped file bypass the kernel
buffers and, as a result, are much faster. They are also simpler because you can access
the mapped file using pointers rather than the usual file manipulation functions.

The second advantage of memory mapped files is data sharing. If multiple processes
need to access the same data, the data can be stored in a memory mapped file.
Effectively a shared memory model, this makes the data independent of any single
process and stores the region’s contents in a disk file.

Linux provides a family of function calls to manage memory mapping. These functions,
defined in <sys/mman.h>, include mmap(), munmap(), msync(), mprotect(), mlock(),
munlock(), mlockall(), and munlockall(). Subsequent sections discuss each of these
functions in detail.

Using the mmap() Function
The mmap() function maps a disk file into memory. It uses the following prototype:

void *mmap(void *start, size_t length, int prot,
➥int flags, int fd, off_t offset);

Map the file open on file descriptor fd, beginning at offset offset in the file, into memo-
ry beginning at start. length specifies the amount of the file to map. The memory
region will have protections protection, a logical OR of the values in Table 14.1, and
attributes specified in flags, a logical OR of the values in Table 14.2. This function
returns a pointer to the memory region or -1 on failure.

System Programming

PART II
252

1772316072 CH14 7/26/99 2:32 PM Page 252

TABLE 14.1 VALUES FOR PROTECTION

Protection Access Allowed

PROT_NONE No access is allowed

PROT_READ Mapped region may be read

PROT_WRITE Mapped region may be written

PROT_EXEC Mapped region may be executed

Memory Management

CHAPTER 14
253

14

M
EM

O
RY

M
A

N
A

G
EM

EN
T

NOTE

On the x86 architecture, PROT_EXEC implies PROT_READ, so PROT_EXEC is the same
as specifying PROT_EXEC | PROT_READ.

TABLE 14.2 VALUES FOR FLAGS

Flag POSIX Compliant Description

MAP_ANONYMOUS no Create an anonymous mapping, ignoring fd

MAP_FIXED yes Fail if address is invalid or already in use

MAP_PRIVATE yes Writes to region are process private

MAP_SHARED yes Writes to region are copied to file

MAP_DENYWRITE no Disallow normal writes to file

MAP_GROWSDOWN no Grow the memory downward

MAP_LOCKED no Lock pages into memory

A file descriptor is a handle to a file opened using the open() system call (file descrip-
tors are discussed in more detail in Chapter 10, “File Manipulation”). offset is usually
zero, indicating that the entire file should be mapped into memory.

A memory region must be marked either private, with MAP_PRIVATE, or shared, with
MAP_SHARED; the other values are optional. A private mapping makes any modifications
to the region process private, so they are not reflected in the underlying file or available
to other processes. Shared maps, on the other hand, cause any updates to the memory
region to be immediately visible to other processes that have mapped the same file.

To prevent writes to the underlying disk file, specify MAP_DENYWRITE (but note that this is
not a POSIX value and as such is not portable). Anonymous maps, created with
MAP_ANONYMOUS, involve no physical file and simply allocate memory for the process’s

1772316072 CH14 7/26/99 2:32 PM Page 253

private use, such as a custom malloc() implementation. MAP_FIXED causes the kernel to
place the map at a specific address. If the address is already in use or otherwise unavail-
able, mmap() fails. If MAP_FIXED is not specified and address is unavailable, the kernel
will attempt to place the region elsewhere in memory. MAP_LOCKED allows processes with
root privilege to lock the region into memory so it will never be swapped to disk. User
space programs cannot use MAP_LOCKED, a security feature that prevents unauthorized
processes from locking all available memory, which would essentially bring the system
to a standstill.

Using the munmap() Function
When you have finished using a memory mapped file, call munmap() to unmap the region
and return the memory to the operating system. This function uses the following proto-
type:

int munmap(void *start, size_t length);

The start argument points to the beginning of the region to unmap, and length indi-
cates how much of the region to unmap. After a memory block has been unmapped, fur-
ther attempts to access start will cause a segmentation fault (generate a SIGSEGV). When
a process terminates, all memory maps are unmapped. The munmap() function returns 0
on success or, on failure, -1 and sets errno.

Using the msync() Function
The msync() function writes a mapped file to disk. It uses the following prototype:

int msync(const void *start, size_t length, int flags);

Call msync() to update the disk file with changes made to the in-core map. The region to
flush to disk begins at the start address; length bytes will be flushed. The flags argu-
ment is a bitwise OR of one or more of the following:

MS_ASYNC Schedules a write and returns

MS_SYNC Data are written before msync() returns

MS_INVALIDATE Invalidate other maps of the same file so they will be
updated with new data

Using the mprotect() Function
The mprotect() function modifies the protection on a memory map. This function uses
the following prototype:

int protect(const void *addr, size_t len, int prot);

System Programming

PART II
254

1772316072 CH14 7/26/99 2:32 PM Page 254

This function call modifies the protections on the memory region that begins at addr to
the protections specified in prot, a bitwise OR of one or more of the flags listed in Table
14.1. It returns zero on success or, on failure, -1 and sets errno.

Locking Memory
Without going into the nitty-gritty details of how it works, memory locking means pre-
venting a memory area from being swapped to disk. In a multitasking, multiuser system
such as Linux, areas of system memory (RAM) not in active use may be temporarily
written to disk (swapped out) in order for that memory to be put to other uses. Locking
the memory sets a flag that prevents it from being swapped out.

There are four functions for locking and unlocking memory: mlock(), mlockall(),
munlock(), and munlockall(). Their prototypes are listed below.

int mlock(const void *addr, size_t len);
int munlock(void *addr, size_t len);
int mlockall(int flags);
int munlockall(void);

The memory region to be locked or unlocked is specified in addr and len indicates how
much of the region to lock or unlock. Values for flags may be one or both of MCL_CUR-
RENT, which requests that all pages are locked before the call returns, or MCL_FUTURE,
indicating that all pages added to the process’ address space should be locked. As noted
in the discussion of mmap(), only processes with root privilege may lock or unlock mem-
ory regions.

Using the mremap() Function
Use the mremap() function to change the size of a mapped file. This function uses the
following prototype:

void *mremap(void *old_addr, size_t old_len,
➥size_t new_len, unsigned long flags);

You will occasionally need to resize a memory region, which is the reason for this func-
tion. An analogue of the realloc() call discussed earlier, mremap() resizes the memory
region beginning at old_addr, originally with size old_len, to new_len. flags indicates
whether the region can be moved in memory if necessary. MREMAP_MAYMOVE permits the
address to change; if not specified, the resize operation fails. mremap() returns the
address of the resized region or NULL on failure.

Memory Management

CHAPTER 14
255

14

M
EM

O
RY

M
A

N
A

G
EM

EN
T

1772316072 CH14 7/26/99 2:32 PM Page 255

Implementing cat(1) Using Memory Maps
Listing 14.2 illustrates using memory mapped files. Although it is a naive cat(1) imple-
mentation, it clearly demonstrates using memory mapped files.

LISTING 14.2 A cat(1) IMPLEMENTATION USING MEMORY MAPS

1 /*
2 * Listing 14.2
3 * mmcat.c - Implement the cat(1) command using mmap() and family
4 */
5 #include <sys/types.h>
6 #include <sys/mman.h>
7 #include <sys/stat.h>
8 #include <unistd.h>
9 #include <fcntl.h>
10 #include <stdlib.h>
11 #include <stdio.h>
12
13 void err_quit(char *msg);
14
15 int main(int argc, char *argv[])
16 {
17 int fdin;
18 char *src;
19 struct stat statbuf;
20 off_t len;
21
22 /* open the input file and stdout */
23 if(argc != 2)
24 err_quit(“usage: mmcat <file>”);
25
26 if((fdin = open(argv[1], O_RDONLY)) < 0)
27 err_quit(“open failed”);
28
29 /* need the size of the input file for mmap() call */
30 if((fstat(fdin, &statbuf)) < 0)
31 err_quit(“fstat failed”);
32 len = statbuf.st_size;
33
34 /* map the input file */
35 if((src = mmap(0, len, PROT_READ, MAP_SHARED,

➥fdin, 0)) == (void *)-1)
36 err_quit(“mmap failed”);
37
38 /* write it out */
39 fprintf(stdout, “%s”, src);
40
41 /* clean up */
42 close(fdin);

System Programming

PART II
256

1772316072 CH14 7/26/99 2:32 PM Page 256

43 munmap(src, len);
44
45 exit(0);
46 }
47
48 void err_quit(char *msg)
49 {
50 perror(msg);
51 exit(EXIT_FAILURE);
52}

The interesting pieces of code in this program are lines 30–39. As the comment indi-
cates, we need the input file’s size for the mmap() call, hence the call to fstat() on line
30 (fstat() and open() (line 26) are discussed in Chapter 9, “I/O Routines,” and
Chapter 10, “File Manipulation,” respectively). Once we have the file mapped into mem-
ory (line 35), we can use the pointer, src, exactly as if we had populated it with an
fread() or fgets() call, as we do in the fprintf() statement on line 39. We return to
the memory region to the kernel on line 43 by calling munmap(). perror(), used in the
utility function err_quit(), was introduced in Chapter 13, “Handling Errors.”

From a practical point of view, using a memory mapped file in this example was overkill
because it buys us little in terms of performance or code length. In situations where per-
formance is crucial or when you are dealing with time-sensitive operations, however,
memory mapped files can be a definite plus. Memory mapping can also be valuable in
high security situations. Because processes running with root privilege can lock memory
mapped files into memory, preventing them from being swapped to disk by Linux’s
memory manager, sensitive data such as password files will be less susceptible to scanner
programs. Of course, in such a situation, the memory region would have to be set to
PROT_NONE so that other process cannot read the region.

Now that you know more about memory maps, the next section examines a few tools to
help you debug memory problems.

Finding and Fixing Memory
Problems
This section covers a few tools that help you locate memory management problems in
your code. Because C assumes you know what you are doing, most C compilers ignore
uses of uninitialized memory, buffer overruns, and buffer underruns. Nor do most com-
pilers catch memory leaks or dangling pointers. The tools discussed in this section make
up for these compiler shortcomings.

Memory Management

CHAPTER 14
257

14

M
EM

O
RY

M
A

N
A

G
EM

EN
T

1772316072 CH14 7/26/99 2:32 PM Page 257

A Problem Child
Listing 14.3 is beset with bugs, including the following:

• A memory leak (line 18)

• Overruns the end of dynamically allocated heap memory (lines 22 and 28)

• Underruns a memory buffer (line 32)

• Frees the same buffer twice (lines 36 and37)

• Accesses freed memory (lines 40 and41)

• Clobbers statically allocated stack and global memory (lines 48 and 44,
respectively)

LISTING 14.3 A PROGRAM WITH MEMORY BUGS

1 /*
2 * Listing 14.3
3 * badmem.c - Demonstrate usage of memory debugging tools
4 */
5 #include <stdlib.h>
6 #include <stdio.h>
7 #include <string.h>
8
9 char g_buf[5];
10
11 int main(void)
12 {
13 char *buf;
14 char *leak;
15 char l_buf[5];
16
17 /* Won’t free this */
18 leak = malloc(10);
19

System Programming

PART II
258

NOTE

Actually, most compilers accept various switches and options that enable them
to catch some subset of the errors just mentioned. gcc, for example, has the -
Wall option (discussed in Chapter 3, “GNU cc”). In general, however, compilers
do not detect all memory problems, making the tools covered in this section
quite valuable.

1772316072 CH14 7/26/99 2:32 PM Page 258

20 /* Overrun buf a little bit */
21 buf = malloc(5);
22 strcpy(buf, “abcde”);
23 fprintf(stdout, “LITTLE : %s\n”, buf);
24 free(buf);
25
26 /* Overrun buf a lot */
27 buf = malloc(5);
28 strcpy(buf, “abcdefgh”);
29 fprintf(stdout, “BIG : %s\n”, buf);
30
31 /* Underrun buf */
32 *(buf - 2) = ‘\0’;
33 fprintf(stdout, “UNDERRUN: %s\n”, buf);
34
35 /* free buf twice */
36 free(buf);
37 free(buf);
38
39 /* access free()ed memory */
40 strcpy(buf, “This will blow up”);
41 fprintf(stdout, “FREED : %s\n”, buf);
42
43 /* Trash the global variable */
44 strcpy(g_buf, “global boom”);
45 fprintf(stdout, “GLOBAL : %s\n”, g_buf);
46
47 /* Trash the local variable */
48 strcpy(l_buf, “local boom”);
49 fprintf(stdout, “LOCAL : %s\n”, l_buf);
50
51 exit(0);
52}

None of these bugs, however, prevent the program from executing, but leaks and clob-
bered memory usually show up as unpredictable behavior elsewhere in the program. On
my system, the program’s output was:

$./badmem
LITTLE : abcde
BIG : abcdefgh
UNDERRUN: abcdefgh
FREED : This will blow up
GLOBAL : global boom
LOCAL : local boom

On other systems, especially those configured to allow core dumps, the sample program
may dump core on the second call to free() (line 37).

Memory Management

CHAPTER 14
259

14

M
EM

O
RY

M
A

N
A

G
EM

EN
T

1772316072 CH14 7/26/99 2:32 PM Page 259

Using mpr and check to Locate Memory
Problems
The first tool covered here is Taj Khattra’s mpr package, available from your favorite
Metalab mirror (ftp://metalab.unc.edu/pub/Linux/devel/lang/c/mpr-1.9.tar.gz).
It can be used to find memory leaks, but it does not find memory corruption errors. In
addition, mpr also generates allocation statistics and patterns, but those features will not
be covered in this section. mpr’s method uses simple brute force: it logs all allocation and
free requests to an external log file that is later processed using mpr’s utilities.

To use mpr, download and compile it. The package includes several utility programs and
a static library, libmpr.a, that you link your program against. To compile Listing 14.3,
the command line was:

$ gcc -g badmem.c -o badmem -lmpr -L $HOME/lib

Be sure to use the -g switch to generate debugging symbols because some of mpr’s pro-
grams require them. Recall from Chapter 3, “GNU cc,” that -lmpr links badmem against
libmpr.a, and -L $HOME/lib prepends $HOME/lib to the library search path. Once the
program is compiled and linked, set the environment variables $MPRPC and $MPRFI. mpr
uses $MPRPC to traverse and display the call chain for each allocation and free request,
while $MPRFI defines a pipeline command for logging (and, optionally, filtering) mpr’s
output.

$ export MPRPC=`mprpc badmem`
$ export MPRFI=”cat > badmem.log”

With these preliminary steps out of the way, execute the program. If all goes as planned,
you should wind up with a file named badmem.log in the current directory. It will look
something like the following:

m:134522506:134516229:134514813:10:134561792
m:134522506:134516229:134514826:5:134565888
f:134522614:134520869:134514880:134565888
m:134522506:134516229:134514890:5:134565888
f:134522614:134520869:134514975:134565888
f:134522614:134520869:134514987:134565888

This isn’t very informative as is, but the mpr documentation explains the format. The log
file provides the raw material for mpr’s utility programs, which parse, slice, dice, and
julienne the log to create meaningful information.

System Programming

PART II
260

1772316072 CH14 7/26/99 2:32 PM Page 260

To view memory leaks, use mprlk:

$ mprlk < badmem.log | mpr -f -l badmem

or

$ mpr -f -l badmem < badmem.log | mprlk

The -f and -l options report the filename and line number where mpr detects the leak. In
either case, the output is

mprlk: f:main(badmem.c,37):134565888 (NR=6)
m:main(badmem.c,18):10:134561792

The output indicates that on line 18 of badmem.c, in the main() function, we malloc()
10 bytes of memory that we never free (the long decimal number is the call chain
counter, which mpr and its utilities use precisely to track each allocation and free
request). Looking back at Listing 14.3, this is exactly correct.

I mentioned a moment ago that mpr cannot detect memory corruption errors. While this
is true, mpr includes the mcheck() function from GNU’s malloc() library, which enables
you to detect buffer overruns, buffer underruns, and multiple free()s of the same block.
In fact, mpr compiles mcheck() into libmpr.a by default. So, the good news is that the
buffer overruns and underruns in Listing 14.3 will cause it to abort unless you specifical-
ly instruct mpr not to use mcheck(). The bad news is that mcheck() is not terribly infor-
mative—it merely complains about a problem and leaves the programmer to determine
where the problem occurs. Compiled with mcheck(), the sample program aborts each
time we clobber memory:

$./badmem
LITTLE : abcde
mcheck: memory clobbered past end of allocated block
IOT trap/Abort

After fixing the first overrun, the program gets a little farther:

$./badmem
LITTLE : abcde
BIG : abcdefgh
UNDERRUN: abcdefgh
mcheck: memory clobbered before allocated block
IOT trap/Abort

Memory Management

CHAPTER 14
261

14

M
EM

O
RY

M
A

N
A

G
EM

EN
T

1772316072 CH14 7/26/99 2:32 PM Page 261

Interestingly, mcheck() ignores the larger overrun on line 28, but dies, as you would
expect, when the program underruns the buffer on line 32. After fixing these two errors,
mcheck() complains about freeing memory twice, as shown in the following code:

$./badmem
LITTLE : abcde
BIG : abcdefgh
UNDERRUN:
mcheck: block freed twice
IOT trap/Abort

Fixing the other errors is left as an exercise for you.

Electric Fence
The next tool covered is Electric Fence, written by Bruce Perens. Electric Fence does not
catch memory leaks, but it does an excellent job of detecting buffer overruns. You can
obtain it from ftp://metalab.unc.edu/pub/Linux/devel/lang/c, although many
Linux distributions also ship with it.

Electric Fence uses a system’s virtual memory hardware to detect illegal memory access-
es, stopping a program on the first instruction that causes a boundary violation. It accom-
plishes this by replacing the normal malloc() with its own malloc(), and allocating a
small section of memory after the requested allocation that the process is not permitted
to access. As a result, buffer overruns cause a memory access violation, which aborts the
program with a SIGSEGV (segmentation violation). If your system is configured to allow
core files (execute ulimit -c to get and set the size of core files allowed), you can then
use a debugger to isolate the location of the overrun. Like mpr, to use Electric Fence you
have to link your program against a special library, libefence.a:

$ gcc -ggdb badmem.c -o badmem -lefence

The compile command used the -ggdb option to generate extra gdb-compatible debug-
ging symbols. When executed, the program aborts and dumps core:

$./badmem

Electric Fence 2.0.5 Copyright © 1987-1995 Bruce Perens.
LITTLE : abcde
Segmentation fault (core dumped)

Next, using the core file, run badmem from the gdb debugger (just follow the example for
the time being, because gdb is covered in detail in Chapter 36, “Debugging: GNU
gdb”).

$ gdb badmem
GNU gdb 4.17

System Programming

PART II
262

1772316072 CH14 7/26/99 2:32 PM Page 262

Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it
under certain conditions
.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for
details.
This GDB was configured as “i386-COL-linux”...
(gdb) run
Starting program: /home/kwall/projects/unleashed/src/14/badmem

Electric Fence 2.0.5 Copyright (C) 1987-1995 Bruce Perens.
LITTLE : abcde

Program received signal SIGSEGV, Segmentation fault.
strcpy (dest=0x40003ff8 “abcdefgh”, src=0x8055e0c “abcdefgh”) at
strcpy.c:35
strcpy.c:35: No such file or directory.
(gdb) where
#0 strcpy (dest=0x40003ff8 “abcdefgh”, src=0x8055e0c “abcdefgh”)

at strcpy.c:35
#1 0x80481be in main () at badmem.c:28
#2 0x80480ee in ___crt_dummy__ ()
(gdb)

The second line from the bottom of the listing makes it crystal clear that there is a prob-
lem at line 28 in badmem.c in the main() function. Once you fix this problem, you would
then recompile and rerun the program, and, if it aborts again, repeat the debug/fix/recom-
pile sequence. Once you’ve thoroughly debugged all of your code, recompile without
linking against Electric Fence, and you should be set.

But wait, Electric Fence caught the big overrun on line 28, but it missed the little overrun
on line 22. How could this be? This peculiar behavior results from the way the CPU
aligns allocated memory. Most modern CPUs require that memory blocks be aligned on
their natural word size. Intel x86 CPUs, for example, require that memory regions begin
at addresses evenly divisible by four, so malloc() calls ordinarily return pieces of
memory aligned accordingly. Electric Fence does the same. So, a request for five bytes
actually results in eight bytes being allocated in order to meet the memory alignment
requirements! As a result, the small buffer overrun on line 22 slips through the fence.

Fortunately, Electric Fence allows you to control its alignment behavior using the envi-
ronment variable $EF_ALIGNMENT. Its default value is sizeof(int), but if you set it to
zero (0), Electric Fence will detect smaller overruns. After setting $EF_ALIGNMENT to 0,
recompiling, and rerunning the program, Electric Fence catches the small overrun at
line 22:

Memory Management

CHAPTER 14
263

14

M
EM

O
RY

M
A

N
A

G
EM

EN
T

1772316072 CH14 7/26/99 2:32 PM Page 263

...
Program received signal SIGSEGV, Segmentation fault.
strcpy (dest=0x40003ffb “abcde”, src=0x8055df8 “abcde”) at strcpy.c:35
strcpy.c:35: No such file or directory.
(gdb) where
#0 strcpy (dest=0x40003ffb “abcde”, src=0x8055df8 “abcde”) at
➥strcpy.c:35
#1 0x804817e in main () at badmem.c:22
#2 0x80480ee in ___crt_dumhttp://www.sds.lcs.mit.edu/lclint/my__ ()
(gdb)

Electric Fence recognizes three other environment variables that control its behavior:
EF_PROTECT_BELOW=1 for detecting buffer underruns; EF_PROTECT_FREE=1 for detecting
access to free()ed memory; and EF_ALLOW_MALLOC_0=1, which allows programs to
malloc() zero bytes of memory.

Use a Lint Brush
The traditional tool for detecting code problems is lint. Although lint is a proprietary
program, an open source (possibly better) version of it, LCLint, by David Evans,
released under an MIT-style license (see Chapter 39, “Licensing”) can be obtained from
http://www.sds.lcs.mit.edu/lclint/ and most free software repositories on the
Internet. LCLint is a hugely capable program that accomplishes far more than merely
finding memory problems. Unfortunately, there is only time and space to highlight its
abilities with respect to memory irregularities. You are strongly encouraged to visit the
Web site, download the package, and invest some time and effort in learning to use
LCLint—you will be glad you did.

Using LCLint is simple: just execute it (lclint is the command name, while LCLint is
the formal name), providing the name of one or more source files as arguments:

$ lclint badmem.c
LCLint 2.4b —- 18 Apr 98

badmem.c: (in function main)
badmem.c:22:9: Possibly null storage buf passed as non-null param:

strcpy (buf, ...)
A possibly null pointer is passed as a parameter corresponding to a
➥formal parameter with no /*@null@*/ annotation. If NULL may
➥be used for this parameter, add a /*@null@*/ annotation to the
➥function parameter declaration. (-nullpass will suppress message)
badmem.c:21:8: Storage buf may become null

The first line names the function in which the error is found. The second line identifies
the filename, the line and column number, and the error message. In this case, lclint
detected that the program may be passing a NULL argument, buf, to strcpy(), which

System Programming

PART II
264

1772316072 CH14 7/26/99 2:32 PM Page 264

requires a non-NULL argument. The third line provides a hint of more information about
the error, and the last line provides additional location information, where appropriate.

...
badmem.c:37:7: Dead storage buf passed as out parameter: buf
Memory is used after it has been released (either by passing as an only

param or assigning to and only global. (-usereleased will suppress
message)

badmem.c:36:7: Storage buf is released

This message indicates that badmem.c uses the buf variable on line 37 after buf was
released on line 36.

badmem.c:41:36: Variable buf used after being released
badmem.c:37:7: Storage buf released

...

This error resembles the previous one, except that on line 41 the code attempts to copy a
string into buf after it has already been freed.

In each case, the solution is to go back to the source code file, fix the errors, and pass the
corrected code back through lclint. Besides flagging actual and potential errors, howev-
er, lclint supports stylized comments, annotations, and control comments. Stylized
comments give lclint additional information about a type, a variable, or a function
interface that enhances lclint’s checks. Annotations are stylized comments that follow a
specific syntax defined by lclint that allows you explicitly to express any assumptions
about variables, parameters, return values, structure fields, and type definitions. This
chapter will not go into any more detail about lclint due to space restrictions, but you
are strongly encouraged to invest the time and energy into learning to use it—the benefits
will amply repay the effort.

Summary
This chapter covered a potpourri of memory management tools and techniques. It
reviewed the standard C functions for obtaining and manipulating memory regions and
also looked at using memory mapped files using the mmap() family of system calls.
Finally, you were introduced to three tools for locating and correcting memory bugs: mpr,
Electric Fence, and LCLint.

Memory Management

CHAPTER 14
265

14

M
EM

O
RY

M
A

N
A

G
EM

EN
T

1772316072 CH14 7/26/99 2:32 PM Page 265

266

1772316072 CH14 7/26/99 2:32 PM Page 266

Interprocess
Communication and
Network
Programming

PART

III
IN THIS PART

• Introduction to IPC: Using Pipes 269

• Message Queues 275

• Shared Memory 281

• Semaphores 287

• TCP/IP and Socket Programming 295

• UDP: The User Data Protocol 311

• Using Multicast Sockets 317

• Non-blocking Socket I/O 325

• A C++ Class Library for TCP Sockets 331

• Using Libraries 341

• Device Drivers 359

1872316072 part3 7/26/99 2:12 PM Page 267

1872316072 part3 7/26/99 2:12 PM Page 268

IN THIS CHAPTER

• Introduction to Using Pipes 271

15
C

H
A

PT
ER

Introduction to
IPC: Using Pipes

by Mark Watson

1972316072 CH15 7/26/99 2:36 PM Page 269

This chapter starts the discussion of building distributed applications using Interprocess
Communication (IPC). Linux provides a powerful platform for building distributed
applications. The World Wide Web (WWW) could be considered the ultimate distributed
application, and more Web servers run on Linux than any other operating system. Even
if you are building applications to run on a single computer, it still often makes sense
to use IPC to break up a program into modules, with well-defined interfaces defined
across IPC boundaries. Chapters 16–23 cover “classic” methods of IPC, including
the following:

• Message queues

• Shared memory

• Semaphores

• TCP socket programming

• UDP socket programming

• Multicast IP

• Non-blocking socket I/O

• A C++ class library for IPC

This chapter, as well as Chapters 16 through 22, uses the C language for all program
examples. Chapter 23 uses the C++ language. All programs for these chapters are located
on the CD-ROM in the IPC directory, which contains the following subdirectories:

C++

MULTICAST

PIPES

SHARED

UDP

MESSAGEQ

NOBLOCK

SEMAPHORES

SOCKETS

You should copy the entire directory tree under the IPC directory to a convenient work-
ing directory on your local disk. The text of the chapters in this Part refers to the exam-
ple source code in the subdirectories of the IPC directory. The chapter text also contains
small “snippets” of the example programs for use in explaining how the example pro-
grams work. You might find it useful to print out the complete listings of the sample pro-
grams to augment reading of the text.

Interprocess Communication and Network Programming

PART III
270

1972316072 CH15 7/26/99 2:36 PM Page 270

This Part will not cover other useful (and higher level) techniques for building distributed
applications like CORBA, Remote Procedure Calls (RPC), Distributed Computing
Environment (DCE), and Java’s Remote Method Invocation (RMI).

Updates to the examples in this Part and corrected errors will be posted to
http://www.markwatson.com/books/linux_prog.html.

Introduction to Using Pipes
Pipes are a one-way communication channel and are accessed through a socket descrip-
tor. Operations on pipes look like operations on local files. Two short examples will be
used to illustrate both unnamed and named pipes. Typically, unnamed pipes are used for
communication between a parent process and a child (or forked) process. Named pipes
are most useful for communication between different programs that share the same file
system. Pipes are easy to use, but lack the generality of sockets (which are covered in
Chapter 19, “TCP/IP and Socket Programming”).

Unnamed Pipes
Unnamed pipes are used when a Linux program forks off a separate process after using
the pipe library call to create two file descriptors (one for each end of the pipe). The file
unnamed_pipe.c implements both ends of a pipe reader/writer by creating two input/
output file descriptors:

int file_descriptors[2];
pipe(file_descriptors);

and then forking off a new process using the fork library call:

pid_t spawned_process_pid = fork();

After the call to fork, there are two copies of the program executing, so we need to
check which process is the original (spawning or parent) process, and which process is
the copied (spawned or child) process:

if(spawned_process_pid == 0) {
printf(“in the spawned (child) process...\n”);

} else {
printf(“in the spawning (parent) process...\n”);

}

In this snippet of code, we simply printed out whether the current process was the parent
or child process. In a real application, the functionality of parent and child processes is
usually quite different. In this example, the spawned (child) process closes the input file
descriptor and writes some data to the output file descriptor:

Introduction to IPC: Using Pipes

CHAPTER 15
271

15

IN
TR

O
D

U
C

TIO
N

TO
IPC

: U
SIN

G
P

IPES

1972316072 CH15 7/26/99 2:36 PM Page 271

#define INPUT 0
#define OUTPUT 1

close(file_descriptors[INPUT]);
write(file_descriptors[OUTPUT],

“test data”, strlen(“test data”));

The original (spawning or parent) process closes the output file descriptor and reads data
from the input file descriptor:

close(file_descriptors[OUTPUT]);
// wait for data sent by the spawned (child) process:
returned_count = read(file_descriptors[INPUT],

buf,
sizeof(buf));

Unnamed pipes are the standard method for communication between parent and child
processes. In Chapter 19, you will learn how to write socket- based client and server pro-
grams. As you will see, sockets are often the right technology for communication
between programs in the general case that one program does not spawn another, and
when programs are running on different computer systems.

A very common use of unnamed pipes is in server applications that spawn off one or
more processes to handle long-running computational tasks. Figure 15.1 shows an exam-
ple of a server program that uses a child (or spawned) process to handle service requests.

Interprocess Communication and Network Programming

PART III
272

Input queue

Remove next
service request

Return processed
request to requestor

Parent process

Process service
request

Spawned work process

Internet Service Requests

FIGURE 15.1
A server process
spawns off a child
process to handle
long-running
tasks.

1972316072 CH15 7/26/99 2:36 PM Page 272

Named Pipes
Named pipes (also referred to as FIFOs) can only be used for communication between
two processes that share a common file system. One advantage of named pipes over
unnamed pipes is the ability to communicate between two processes that are started inde-
pendently—where one process does not fork off a new process). The following man
pages will be useful when writing applications that use named pipes:

• man 2 open—Opens a named pipe created with mknod

• man 2 read—Reads from a pipe

• man 2 write—Writes to a pipe

The directory src/IPC/PIPES on the CD-ROM contains two example programs,
read_pipe.c and write_pipe.c, and a “read me” file explaining how to set up a named
pipe using the UNIX mknod utility. Although it is also possible to create unnamed pipes
using the UNIX pipe system call, I find named pipes to be more convenient. Named
pipes are used in the following example. I assume that you have copied the entire
src directory from the CD-ROM; change directory to src/IPC/PIPES and execute
the following:

mknod a_pipe p
make

The mknod utility is used to create special files. mknod takes both an argument that
appears before the filename, and a file type that appears after the filename on the com-
mand line. The argument p indicates that the special file a_pipe is a FIFO file. When
mknod is used to create a FIFO file, no arguments are allowed before the filename.

You can then run the read_pipe and write_pipe example programs in two separate ter-
minal windows. As you can see in the read_pipe.c source file, opening and reading
from a named pipe is exactly like reading from a “normal” file:

FILE * in_file;
char buf[80];
in_file = fopen(“a_pipe”, “r”);
if (in_file == NULL) {

perror(“Error in fopen”);
exit(1);

}
fread(buf, 1, 80, in_file);
printf(“received from pipe: %s\n”, buf);
fclose(in_file);

Introduction to IPC: Using Pipes

CHAPTER 15
273

15

IN
TR

O
D

U
C

TIO
N

TO
IPC

: U
SIN

G
P

IPES

1972316072 CH15 7/26/99 2:36 PM Page 273

The system utility function perror is useful for both printing a string message argument
(in this example, this is “Error in fopen”) and the last system error. Because named pipes
can be used with the standard file I/O functions fopen, fread, and fwrite, named pipes
are simple to use. Also, in the write_pipe.c source file, we see that writing to a named
pipe is the same as writing to a “normal” file:

FILE * out_file;
char buf[80];
out_file = fopen(“a_pipe”, “w”);
if (out_file == NULL){

perror(“Error opening pipe”);
exit(1);

}
sprintf(buf,”this is test data for the named pipe example\n”);
fwrite(buf, 1, 80, out_file);
fclose(out_file);

Using named pipes is a simple way to pass data between two programs that have access
to the same file system. When reading the source to the example programs, you can look
at the man pages for fopen, fread, fwrite, and fclose for documentation on these
system calls. These example programs simply pass a C-style string as data. You may also
want to pass binary data like a struct of a C++ object (if the struct or object contains no
pointers or references to other objects) through a pipe. If you are passing binary data
between computers with a different CPU type, you may have to worry about incompati-
ble data types for primitive types like int, long, float, and packing of structs and C++
objects. If you are programming distributed applications for heterogeneous computer
environments, then you may want to use RPC or CORBA.

Summary
Pipes provide a simple method for IPC between a parent process and a child using
unnamed pipes and between any two processes running on the same machine using
named pipes. The next seven chapters will cover alternative methods of IPC. Even
though the use of sockets (covered in Chapter 19) is the most general method for imple-
menting IPC, you should know how to program using pipes because many older UNIX
utilities were written using them.

Interprocess Communication and Network Programming

PART III
274

1972316072 CH15 7/26/99 2:36 PM Page 274

IN THIS CHAPTER

• Creating a Sample Message Queue
Program 276

• Running the Sample Message Queue
Program 278

16
C

H
A

PT
ER

Message Queues

by Mark Watson

2072316072 CH16 7/26/99 2:04 PM Page 275

Message queues are similar to using pipes but have the advantage of allowing messages
to be tagged with specific message types. A message recipient can ask for the next avail-
able message ignoring message type (by specifying a desired message type of zero), or
the next message of a specific type by specifying a positive non-zero message type.
Message queues are used for communication between processes that are running on the
same computer. In Chapter 19, “TCP/IP and Socket Programming,” socket programming
is used to provide a solution for communication between programs running on different
computers. Any corrections and updates for this chapter can be found at
http://www.markwatson.com/books/linux_prog.html.

Like pipes, message queues are largely interesting for historical reasons. Many older
UNIX programs use message queues.

Creating a Sample Message
Queue Program
This section uses a sample program, message_q.c, to show how to set up a message
queue, and then uses it to send and receive a message. This single sample program writes
to and reads from a message queue. In real applications, one program typically writes to
a message queue and another program reads from the message queue. When reading the
source to the sample program message_q.c, you will want to check the man pages for
msgget, msgsnd, msgrcv, and msgctl. In the example in the following chapter,
“Semaphores,” the ftok system function is used to get a unique key based on the current
directory name; ftok is also used here:

key_t unique_key = ftok(“.”, ‘a’); // ‘a’ can be any character

The ftok system call provides a convenient way to calculate a key based on the current
directory where a program is running. If we start multiple programs from the same direc-
tory and use the preceding call to ftok to calculate a unique key, then they can access a
common message queue. The msgget system function gets a queue identifier based on
the unique key:

int id = msgget(unique_key, IPC_CREAT | 0666);

The first argument to msgget is a unique key that we calculated by calling ftok. The sec-
ond argument specifies the file permissions for the message queue. In this example, the
same program reads and writes from the message queue, so the call to msgget uses the
IPC_CREAT flag. If you send data through a message queue between two separate pro-
grams (obviously, the normal way to use message queues), only one program should
create the message queue using the IPC_CREAT flag. The sample program message_q.c
deletes the message queue before terminating, but it is also possible to create a message

Interprocess Communication and Network Programming

PART III
276

2072316072 CH16 7/26/99 2:04 PM Page 276

queue and to reuse it with many programs. The value of the variable id (the return value
from the call to msgget) will be passed to all calls to msgsnd, msgrcv, and msgctl to
identify the message queue. The structure data type msgbuf is defined in the file
/usr/include/linux/msg.h:

/* message buffer for msgsnd and msgrcv calls */
struct msgbuf {

long mtype; /* type of message */
char mtext[1]; /* message text */

};

In applications using message queues, we need to define our own data structure like msg-
buf because the msgbuf struct contains only one character. In the sample program, we
allocate 80 bytes for message data. In message_q.c, we define:

struct amsgbuf {
long mtype;
char mtext[80];

} mq_test_buf;

Before sending a message in message_q.c, we fill in values in the variable mq_test_buf:

mq_test_buf.mtype = 123;
sprintf(mq_test_buf.mtext,”test message”);

We can then use the msgsnd system call to add the message to the message queue:

msgsnd(id, (struct msgbuf *)&mq_test_buf,
sizeof(“test message”) + 1, 0);

When calling msgsnd, the second argument is the address of a struct like msgbuf; the
third argument is the length of the data in the msgbuf struct (in this case the field mtext).
Passing a zero value for the fourth (last) argument to msgsnd effectively turns off error
checking. The data copied into mq_test_buf.mtext is a null terminated string, so I
added one to the size of the string to allow for the null termination character. When
receiving messages, I usually use the flag IPC_NOWAIT so that the msgrcv system call
returns immediately, even if no message is available:

int status = msgrcv(id, (struct msgbuf *)&mq_test_buf,
80, 123, IPC_NOWAIT);

Here, the return value, saved in the variable status, equals -1 if no message is available.
The third argument (80 in this example) specifies the size of the mtext field in the mes-
sage buffer. The fourth argument (123 in this example) specifies the message type to be
returned. Only messages with the field mtype equaling 123 will be returned in this exam-
ple call to msgrcv. If the fourth argument is zero, then the next available message will be
returned, regardless of the value of the mtext field in the message buffer. The fifth argu-
ment (IPC_NOWAIT in this example) specifies whether the call to msgrcv should wait for a
message if none is currently available. Using IPC_NOWAIT causes the call to msgrcv to

Message Queues

CHAPTER 16
277

16

M
ESSA

G
E

Q
U

EU
ES

2072316072 CH16 7/26/99 2:04 PM Page 277

immediately return if no messages are available. Using IPC_NOWAIT effectively turns off
error checking. You can use the value zero instead of IPC_NOWAIT if you want the call to
msgrvc to block, waiting for a message.

When you are done using a message queue, you can close it using the msgctl system
call:

msgctl(id, IPC_RMID, 0);

The second argument to msgctl (IPC_RMID in this example) specifies a command. The
IPC_RMID command indicates that the message queue identified by the value of the vari-
able id should be removed; any current blocking (or waiting) calls to msgrcv for this
queue will immediately return without a message; the system errno variable will be set
to EIDRM.

Message queues are a great technique for reliably passing data between two programs
running on the same computer. Another technique, socket programming, will be used in
Chapter 19. Sockets are useful for solving the general communications problem—IPC
between programs running on different computers.

Running the Sample Message
Queue Program
Assuming that you have copied the IPC directory contents from the CD-ROM to your
local file system, open a new command window, change the directory to IPC/MESSAGEQ,
make the test program, and run it by typing the following commands:

make
message_q

You should see the following output:

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/MESSAGEQ > make
cc -o message_q message_q.c
markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/MESSAGEQ > message_q
unique key=1627570461
message queue id=129
Sending message...
message of type 123 received with data: test message
markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/MESSAGEQ >

The sample program prints out a unique key that is calculated from the program’s direc-
tory pathname. The test message is sent and received on message queue with id equal to
129. You will probably get different message queue id numbers when you rerun the sam-
ple program.

Interprocess Communication and Network Programming

PART III
278

2072316072 CH16 7/26/99 2:04 PM Page 278

There are two very useful UNIX utility programs that you should use when you are
developing and running programs using shared memory, semaphores, and/or message
queues: ipcs and ipcrm. The ipcs utility prints out information on currently allocated
shared memory, semaphores, and message queues. The ipcrm utility is useful for
freeing system resources that were not freed because a program crashed or was not
written correctly.

Summary
Message queues are used mostly in older UNIX programs. Usually, it is preferable to use
sockets. Message queues are probably most useful when you want to send several types
of messages and the message recipient wants to filter messages by type.

Message Queues

CHAPTER 16
279

16

M
ESSA

G
E

Q
U

EU
ES

2072316072 CH16 7/26/99 2:04 PM Page 279

280

2072316072 CH16 7/26/99 2:04 PM Page 280

IN THIS CHAPTER

• Configuring Linux to Use Shared
Memory 282

• Sample Program Using Shared
Memory 283

• Running the Shared Memory Program
Example 285

17
C

H
A

PT
ER

Shared Memory

by Mark Watson

2172316072 CH17 7/26/99 2:03 PM Page 281

Shared memory is the fastest method of IPC for processes that are running on the same
computer. One process can create a shared memory area and other processes can access
it. You can use shared memory when you need very high performance IPC between
processes running on the same machine. There are two ways that shared memory is often
used: mapping the /dev/mem device and memory mapping a file. It is much safer to
memory map files, rather than /dev/mem (which can crash a system), but memory
mapped files have the overhead of using the file system. This chapter looks at a single
example that memory maps /dev/mem.

Interprocess Communication and Network Programming

PART III
282

CAUTION

When you write programs and test programs that use shared memory, do not
use a computer that is critical to your business. It is best to test shared memory
programs on a personal development system.

You will see in this chapter that you need to configure your Linux system to dedicate
some real memory for shared memory allocations. This dedicated memory cannot be
used by Linux or application programs.

Configuring Linux to Use Shared
Memory
You will have to allocate a small block of memory when you boot up Linux by modify-
ing your /etc/lilo.config file and rebooting your system. Here are the changes that I
made to my /etc/lilo.config file to allow using shared memory:

Linux bootable (use 1 megabyte for shared memory)
image = /vmlinuz
append=”mem=63m”
root = /dev/hda2
label = linux
Linux bootable partition config ends

I added the append statement to my lilo.config file to indicate that my system only
has 63 megabytes of physical memory. My system actually has 64 megabytes of physical
memory, so this effectively reserves 1 megabyte of physical memory as shared memory.

2172316072 CH17 7/26/99 2:03 PM Page 282

Sample Program Using Shared
Memory
The source file shared_mem.c shows a very simple example of reading and writing
shared memory. We will use the library functions mmap and munmap in this example; I rec-
ommend that you read the man pages for both mmap and munmap. The following C code
sets up shared memory to use (assuming that it starts at the 63 megabyte address):

#define ADDRESS (63*0x100000)
void main() {
char *mem_pointer;
int f;
if ((f=open(“/dev/mem”, O_RDWR)) < 0) {

printf(“Error opening /dev/mem\n”);
exit(1);

}
mem_pointer = (char *)mmap(0, 8192,

PROT_READ | PROT_WRITE,
MAP_FILE | MAP_SHARED,
f, ADDRESS);

In this code example, we use the open function to open the shared memory device, just
as we would open a disk file for reading and writing. The first argument to mmap (zero in
this example) specifies the starting location for a block of shared memory. A value of
zero specifies that mmap should allocate the requested block of shared memory at the
beginning of the space that is available for shared memory. The second argument
specifies the allocation size block of shared memory. In this call to mmap, we are only
declaring the use of 8192 bytes of shared memory (we allocated a whole megabyte when
booting Linux; see the file /etc/lilo.conf). The third argument is used to specify pro-
tections for the block of shared memory; in this example we have specified that shared
memory pages can be read and written to. The fourth argument specifies flags for shared
memory; in this example the shared memory pages are mapped as a file and sharable

Shared Memory

CHAPTER 17
283

17

S
H

A
R

ED
M

EM
O

RY

CAUTION

You have to run the lilo program as root and then reboot your system
before changes to lilo.config take effect. Make sure that you test shared
memory programs, and share memory configuration (using lilo) on non-critical
computers.

2172316072 CH17 7/26/99 2:03 PM Page 283

between processes. The fifth argument to mmap is a file handle; in this case, the value of
the variable f was set as the returned value for calling open on the shared memory device
(/dev/mem). The sixth argument to mmap is the physical address of the shared memory
block; in this example, the expression (63*0x100000) evaluates to 63 megabytes, the
start of the shared memory area reserved at Linux boot up time (remember our changes
to /etc/lilo.conf).

Figure 17.1 shows two programs accessing the same block of shared (physical) memory.

Interprocess Communication and Network Programming

PART III
284

FIGURE 17.1
Two programs
reading and writ-
ing into a shared
memory segment.

Block of shared memory
(used by programs A and B)

Physical shared memory
allocated at boot up time

Program
A

Program
B

The following code reads and writes the first two bytes of shared memory every two
seconds:

for (i=0; i<10; i++) {
printf(“Test iteration %d\n”, i);
printf(“first two bytes: %d %d\n”,

mem_pointer[0], mem_pointer[1]);
mem_pointer[0] = 2*i; // write into shared memory
mem_pointer[1] = 3*i; // write into shared memory
printf(“first two bytes: %d %d\n”,

mem_pointer[0], mem_pointer[1]); // read from shared memory
sleep(2); // wait 2 seconds

}

This example uses the system call sleep to pause the program’s execution for two sec-
onds without wasting CPU cycles. When you are finished using shared memory, use the
munmap function to free the block:

munmap(mem_pointer, 8192);

This example (built from the source file shared_mem.c) must be run as root or using an
account with superuser privileges. If you run this demo program in two separate xterm
windows (and start them a few seconds apart), you will see the effects of two programs
reading and writing the same two bytes of shared memory. Shared memory is a great
way to efficiently share data between programs. However, the simple example in the
source file shared_mem.c ignores the problem of simultaneous access of shared memory
by different executing programs.

2172316072 CH17 7/26/99 2:03 PM Page 284

The best way to insure atomic read/writes to shared memory is to use a semaphore (see
Chapter 18, “Semaphores”) to prevent more than one program from accessing shared
memory for either reading or writing at one time. The problem is that a process writing
to shared memory might be interrupted by the kernel, and another program reading the
shared memory might be executed and read partially written data. For some applications,
it might be safe to simply use a single byte of shared memory for a flag that indicates
that some process is using shared memory. If a process writing to shared memory sets
this flag byte to a non-zero value and then is interrupted before updating (writing) data
in shared memory, any other process that is run can check the single flag byte and see
that shared memory is in use. Then, it can sleep for a while before attempting to re-
access shared memory.

Running the Shared Memory
Program Example
You must have followed the shared memory configuration instructions in the first section
of this chapter before running the shared_mem.c example program. Change directories to
IPC/SHARED and type the following command to build the example program:

make

Then, do a “su root” to get root privileges and run the shared_mem example program;
you should see the following output:

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/SHARED > make
cc -o shared_mem shared_mem.c
markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/SHARED > su
Password:
colossus:/home/markw/MyDocs/LinuxBook/src/IPC/SHARED # ./shared_mem
Test iteration 0
first two bytes: 0 0
first two bytes: 0 0
Test iteration 1
first two bytes: 0 0
first two bytes: 2 3
Test iteration 2
first two bytes: 2 3
first two bytes: 4 6
Test iteration 3
first two bytes: 4 6
first two bytes: 6 9
Test iteration 4
first two bytes: 6 9
first two bytes: 8 12
Test iteration 5
first two bytes: 8 12

Shared Memory

CHAPTER 17
285

17

S
H

A
R

ED
M

EM
O

RY

2172316072 CH17 7/26/99 2:03 PM Page 285

first two bytes: 10 15
Test iteration 6
first two bytes: 10 15
first two bytes: 12 18
Test iteration 7
first two bytes: 12 18
first two bytes: 14 21
Test iteration 8
first two bytes: 14 21
first two bytes: 16 24
Test iteration 9
first two bytes: 16 24
first two bytes: 18 27
colossus:/home/markw/MyDocs/LinuxBook/src/IPC/SHARED #

There are two very useful UNIX utility programs that you should use when you are
developing and running programs using shared memory: ipcs and ipcrm. The ipcs utili-
ty prints out information on currently allocated shared memory, semaphores, and mes-
sage queues. The ipcrm utility is useful for freeing system resources that were not freed
because a program crashed or was not written correctly.

Summary
Using shared memory is a great technique when you need the fastest possible perfor-
mance for sharing large amounts of data. The example in this chapter ignored the prob-
lems caused by two or more programs writing to shared memory at the same time on
multi-processor computers. In the next chapter, you will see how to use semaphores to
coordinate access to shared resources.

Interprocess Communication and Network Programming

PART III
286

2172316072 CH17 7/26/99 2:03 PM Page 286

IN THIS CHAPTER

• An Example Program Using
Semaphores 288

• Running the Semaphore Example
Program 293

18
C

H
A

PT
ER

Semaphores

by Mark Watson

2272316072 CH18 7/26/99 2:02 PM Page 287

Semaphores are data objects that are used to coordinate actions between separate
processes. Semaphores are frequently used to share resources that can only be used by
one process at a time. In Chapter 17, “Shared Memory,” you saw a simple example of
using shared memory between two processes; in this shared memory example, the possi-
ble problems of both processes simultaneously accessing the same shared memory are
ignored. You can avoid these potential problems by using semaphores to coordinate write
access to shared memory and access to other system resources.

The kernel Linux operating system needs to maintain the state of semaphores, rather than
user processes. If you have the Linux kernel source code installed on your system, you
can examine the include file sem.h to see the definition of the semid_ds data structure
that is used by the kernel for maintaining semaphore state information. A semaphore is
really a set of data; you can individually use each element of the set. In this chapter, you
will use the following three system calls to create, use, and release semaphores:

• semget—Returns an integer semaphore index that is assigned by the kernel

• semop—Performs operations on the semaphore set

• semctl—Performs control operations on the semaphore set

Using semaphores is fairly easy, as you will see in the example program in the next sec-
tion. However, even though the technique of using semaphores is simple, there are a two
problems to be aware of: deadlock and freeing semaphore resources. Deadlock can occur
if there is more than one resource whose access is controlled by semaphores. For exam-
ple, if two processes require access to two non-sharable resources, one process may
obtain a semaphore lock on one resource and wait forever for the other because the other
process has the second resource locked, waiting for the first resource. When using sema-
phores it is very important to free semaphores before terminating a program.

An Example Program Using
Semaphores
The example program in the file IPC/SEMAPHORE/semaphore.c shows how to create a
semaphore set and how to access the elements of that set. When using semaphores and
reading through the example program semaphore.c, I encourage you to read the man
pages for semget, semop, and semctl. We will use a simple example in this section for
two processes coordinating access to a single resource. The resource is identified using
an arbitrary integer value. The example program both reads and sets semaphores. In an
actual application, two or more programs would access the same semaphore set, so they
must all use the same resource value. This simple example can be reused for simple
semaphore requirements in your applications without your having to dig too deeply into
the full API available for using semaphores.

Interprocess Communication and Network Programming

PART III
288

2272316072 CH18 7/26/99 2:02 PM Page 288

The example program semaphore.c does the following:

• Creates a unique key and creates a semaphore

• Checks to make sure that the semaphore is created OK

• Prints out the value of the semaphore at index 0 (should be 1)

• Sets the semaphore (decrements the value of semaphore at index 0 to 0)

• Prints out the value of the semaphore at index 0 (should be 0)

• Un-sets the semaphore (increments the value of semaphore at index 0 back to 1)

• Prints out the value of the semaphore at index 0 (should be 1)

• Removes the semaphore

Setting the values for semaphores seems counter-intuitive. An element of a semaphore
set is considered to be set (that is, indicating that some process is using the associated
resource) if the counter value is zero. You free a semaphore (un-set it) by incrementing
its value to a value of one.

Figure 18.1 shows the example program’s relationship to the Linux kernel and internal
data. An application program has no direct access to the data used to maintain semaphore
sets; rather, an application program uses the semget, semop, and semctl system calls to
create and use semaphore sets.

Semaphores

CHAPTER 18
289

18

S
EM

A
PH

O
R

ES

FIGURE 18.1
The Linux kernel
is responsible for
maintaining data
for semaphore
sets.

System data

Data for maintaining
semaphores for user
processes

Linux system kernel System calls to create a semaphore set,
read a value of elements of semaphore set,
and increment and decrement the integer
values of members of the semaphore set.

The Linux kernel maintains
semaphore data. All use of
semaphores is through
system calls, and not by direct
access to system data.

Use a Semaphore Set to coordinate
access to a system resource

Semaphore.c
example

The following code fragment creates a semaphore:

// Start by creating a semaphore:
unique_key = ftok(“.”, ‘s’);
id = semget(unique_key, 1, IPC_CREAT | IPC_EXCL | 0666);
printf(“semaphore id=%d\n”, id);

2272316072 CH18 7/26/99 2:02 PM Page 289

The function ftok creates a key value based on both a directory path and a seed charac-
ter. The first argument to semget is the unique key returned from ftok. The second argu-
ment is the number of semaphores in the set to create; just one semaphore is needed for
this example. The third argument specifies that the semaphore is created and that the cre-
ation should fail if the semaphore already exists. The flags (third argument) are analo-
gous to the flags used in calls to open to open a file, but substituting “IPC_” for “O_”.

The following code shows how to set a specified member of a semaphore set:

union semun options;
options.val = 1; // specify the value
semctl(id, 0, SETVAL, options); // operate on semaphore at index 0

// make sure that everything is set up OK:
if (semctl(id, 0, GETVAL, 0) == 0) {
printf(“can not lock semaphore.\n”);
exit(1);

}

The union semun is defined in the include file sys/sem.h (or in another include file
included in sys/sem.h, such as linux/sem.h) and has the following value:

/* arg for semctl system calls. */
union semun {
int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT & IPC_SET */
ushort *array; /* array for GETALL & SETALL */
struct seminfo *__buf; /* buffer for IPC_INFO */
void *__pad;

};

In this example, we used a call to semctl to get the current value of the semaphore at
index zero (second argument). The first argument to this call to semctl is the semaphore
ID that was returned from the call to semget. The second argument is the integer index
of the member of the semaphore set that we want to access. The third argument to
semctl is the constant flag SETVAL (check the man page documentation using
man semctl to see other options) used to specify that we want to increment the value of
the member of the semaphore set at index zero. The constant SETVAL is defined in the
include file sys.sem.h. The fourth argument to semctl is used to provide the data for the
set operation. The following code fragment prints out the value of the semaphore at
index zero:

// Print out the value of the semaphore:
i = semctl(id, 0, GETVAL, 0);
printf(“value of semaphore at index 0 is %d\n”, i);

Interprocess Communication and Network Programming

PART III
290

2272316072 CH18 7/26/99 2:02 PM Page 290

Again, we have used a call to semctl to get the value of the semaphore at index zero
(second argument to semctl). The third value, GETVAL, specifies that we want to get the
value of the semaphore set member at index zero. The following code sets the semaphore
(decrements its value) by calling semop:

// Set the semaphore:
struct sembuf lock_it;
lock_it.sem_num = 0; // semaphore index
lock_it.sem_op = -1; // operation
lock_it.sem_flg = IPC_NOWAIT; // operation flags
if (semop(id, &lock_it, 1) == -1) {
printf(“can not lock semaphore.\n”);
exit(1);

}

The struct sembuf is defined in sys/sem.h, and has the following definition:

/* semop system calls takes an array of these. */
struct sembuf {
ushort sem_num; /* semaphore index in array */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

};

The second argument to semop is an array of sembuf structures; here we only want to
perform one operation, so we created a single sembuf structure, and passed a value of 1
for the third argument that is used to specify the number of commands to execute. The
following code un-sets the semaphore (increments its value):

// Un-set the semaphore:
lock_it.sem_num = 0;
lock_it.sem_op = 1;
lock_it.sem_flg = IPC_NOWAIT;
if (semop(id, &lock_it, 1) == -1) {
printf(“could not unlock semaphore.\n”);
exit(1);

}

The following code removes a semaphore set. Note that if you do not delete a sema-
phore, then you will not be able to rerun the example program without either rebooting
your Linux system, or by running it from a different directory (which creates a different
key).

// Remove the semaphore:
semctl(id, 0, IPC_RMID, 0);

The constant IPC_RMID is defined in the include file sys/ipc.h (which includes the file
linux/ipc.h). Listing 18.1 shows the entire example semaphore program.

Semaphores

CHAPTER 18
291

18

S
EM

A
PH

O
R

ES

2272316072 CH18 7/26/99 2:02 PM Page 291

LISTING 18.1 EXAMPLE SEMAPHORE PROGRAM

/* semaphore.c
Copyright Mark Watson, 1988. Open Source Software License

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/sem.h>
#include <sys/ipc.h>

#if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)
/* union semun is defined by including <sys/sem.h> */

#else
/* according to X/OPEN we have to define it ourselves */

union semun {
int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo *__buf; /* buffer for IPC_INFO */

};
#endif

void main() {
key_t unique_key;
int id;
struct sembuf lock_it;
union semun options;
int i;

// Start by creating a semaphore:
unique_key = ftok(“.”, ‘a’); // ‘a’ can be any character
// Create a new semaphore with 1 member of the set; Note that
// if you want to use a semaphore created by another program
// then use 0 instead of 1 for the second argument:
id = semget(unique_key, 1, IPC_CREAT | IPC_EXCL | 0666);
printf(“semaphore id=%d\n”, id);
options.val = 1;
semctl(id, 0, SETVAL, options);

// make sure that everything is set up OK:
if (semctl(id, 0, GETVAL, 0) == 0) {
printf(“can not lock semaphore.\n”);
exit(1);

}

// Now print out the value of the semaphore:
i = semctl(id, 0, GETVAL, 0);
printf(“value of semaphore at index 0 is %d\n”, i);

Interprocess Communication and Network Programming

PART III
292

2272316072 CH18 7/26/99 2:02 PM Page 292

// Now set the semaphore:
lock_it.sem_num = 0; // semaphore index
lock_it.sem_op = -1; // operation
lock_it.sem_flg = IPC_NOWAIT; // operation flags
if (semop(id, &lock_it, 1) == -1) {
printf(“can not lock semaphore.\n”);
exit(1);

}

// Now print out the value of the semaphore:
i = semctl(id, 0, GETVAL, 0);
printf(“value of semaphore at index 0 is %d\n”, i);

// now un-set the semaphore:
lock_it.sem_num = 0;
lock_it.sem_op = 1;
lock_it.sem_flg = IPC_NOWAIT;
if (semop(id, &lock_it, 1) == -1) {
printf(“could not unlock semaphore.\n”);
exit(1);

}

// Now print out the value of the semaphore:
i = semctl(id, 0, GETVAL, 0);
printf(“value of semaphore at index 0 is %d\n”, i);

// Now remove the semaphore:
semctl(id, 0, IPC_RMID, 0);

}

Running the Semaphore Example
Program
The example program for this chapter is the file semaphore.c in the directory IPC/
SEMAPHORE. Change directory to IPC/SEMAPHORE on your system, use make to build the
example program, and type semaphore to run it. You should see the following output:

markw@:/home/markw/MyDocs/LinuxBook/src/IPC/SEMAPHORES > make
cc -o semaphore semaphore.c
markwcolossus:/home/markw/MyDocs/LinuxBook/src/IPC/SEMAPHORES > semaphore
semaphore id=0
value of semaphore at index 0 is 1
value of semaphore at index 0 is 0
value of semaphore at index 0 is 1
markw:/home/markw/MyDocs/LinuxBook/src/IPC/SEMAPHORES >

Semaphores

CHAPTER 18
293

18

S
EM

A
PH

O
R

ES

2272316072 CH18 7/26/99 2:02 PM Page 293

As you saw in the discussion in the preceding section, the example program creates a
semaphore set and operates on the first element (at index zero) of this semaphore set.
The initial value of the element at index zero is 1, it is decremented to 0, then increment-
ed back to 1. The use of semaphores is important to prevent simultaneous access to sys-
tem resources by separate processes or separate threads inside the same process.

There are two very useful UNIX utility programs that you should use when you are
developing and running programs using semaphores: ipcs and ipcrm. The ipcs utility
prints out information on currently allocated shared memory, semaphores, and message
queues. The ipcrm utility is useful for freeing system resources that were not freed
because a program crashed or was not written correctly.

Summary
The use of semaphores is often crucial when more than one program wants to modify a
shared resource. Usually it is fine for multiple programs to have read-only access to
shared resources. The important idea here is that the Linux operating system maintains
the state of semaphores, guaranteeing that only one process at a time gets to set an ele-
ment of a semaphore set.

Interprocess Communication and Network Programming

PART III
294

2272316072 CH18 7/26/99 2:02 PM Page 294

IN THIS CHAPTER

• System Calls to Support Socket
Programming 296

• Client/Server Examples Using
Sockets 301

• A Simple Web Server and Sample
Web Client 304

19
C

H
A

PT
ER

TCP/IP and Socket
Programming

by Mark Watson

2372316072 CH19 7/26/99 2:01 PM Page 295

TCP and UDP are transfer layer protocols. TCP is a connection-oriented protocol with
guaranteed delivery, whereas UDP is a connectionless protocol without guaranteed
message delivery. This chapter covers TCP and socket programming; UDP and socket
programming are covered in Chapter 20, “UDP: The User Data Protocol.” Socket pro-
gramming using either TCP or UDP is low-level, “pedal to the metal” technology.
Alternatives such as RPC and CORBA provide automatic translation of primitive data
types between different types of computers and other high-level functionality, but
presently, although there are RPC and CORBA implementations available for Linux,
they are not yet part of standard Linux installations. The spirit of Linux and the Internet
is to use common, standard protocols and tools, and I have to admit a personal bias
toward building distributed systems with simple socket-based interfaces. In this chapter
and the next, you will see several examples of socket programming that should be useful
for your programming projects. Since all of the examples in this book are Open Source
software, you should feel free to reuse the example code in any way that is helpful to
you.

Historically, TCP and socket programming started on early UNIX systems. You may see
references to UNIX Domain sockets and Berkeley sockets. UNIX Domain sockets were
developed for communication between UNIX programs, whereas the more modern
Berkeley sockets formed the basis for socket support in modern UNIX systems,
Windows, OS/2, Macintosh, and other computer systems. At the risk of slighting histori-
cally important UNIX Domain sockets, the examples in this chapter will all use Berkeley
style sockets. We will develop two useful examples in this chapter:

• A peer to peer client/server (client.c and server.c)

• A simple, extensible Web server that also supports XML (Extended Markup
Language) (web_client.c and web_server.c)

System Calls to Support Socket
Programming
You will be using the system functions socket, bind, listen, connect, accept, recv,
and send to build several sample programs in this chapter. The arguments for these sys-
tem calls are briefly discussed in the following sections before moving on to the sample
programs.

Interprocess Communication and Network Programming

PART III
296

2372316072 CH19 7/26/99 2:01 PM Page 296

socket
A socket is a data communication channel. Once two processes are connected through a
socket, they use a socket descriptor to read and write data to the socket. The socket sys-
tem call takes the following arguments:

int domain

int type

int protocol

There are several possible domain types for sockets. They are defined in /usr/
include/sys/socket.h. You can find them either directly in /usr/include/sys/
socket.h, or, in later versions of the C library you can find them in the OS specific
/usr/include/bits/socket.h (which is included in /usr/include/sys/socket.h).

AF_UNIX—UNIX internal protocols

AF_INET—ARPA Internet protocols (most frequently used option)

AF_ISO—International Standards Organization protocols

AF_NS—Xerox Network System protocols

You will almost always use the AF_INET protocol. There are several types of sockets:

SOCK_STREAM—Provides a reliable, sequenced, two-way connection (most fre-
quently used option)

SOCK_DGRAM—Connectionless and unreliable connection

SOCK_RAW—Used for internal network protocols (superuser only)

SOCK_SEQPACKET—Only used in AF_NS protocol

SOCK_RDM—Not implemented

You will almost always use SOCK_STREAM type sockets. The third argument to the
socket function is the protocol number; a zero value is used for all of the sample pro-
grams and other socket programs.

bind
The bind function associates a process with a socket. bind is usually used in server
processes to set up a socket for incoming client connections. The arguments to the bind
system function are:

int socket

struct sockaddr * my_addr

int my_addr_length

TCP/IP and Socket Programming

CHAPTER 19
297

19

TC
P/IP A

N
D

S
O

C
K

ET
P

R
O

G
R

A
M

M
IN

G

2372316072 CH19 7/26/99 2:01 PM Page 297

The first argument to bind is the socket value returned from a previous call to the func-
tion socket. The second argument is the address of a sockaddr structure that has the fol-
lowing definition in /usr/include/linux/socket.h:

struct sockaddr {
unsigned short sa_family; // address family, AF_xxx
char sa_data[14]; // 14 bytes of protocol address

};

A sockaddr struct must be allocated and passed as the second argument to the function
bind, but is not directly accessed in the sample program except for initializing its data.
For instance, in the server.c example, we initialize a sockaddr struct:

struct sockaddr_in sin;
bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(port);
bind(sock_descriptor, (struct sockaddr *)&sin, sizeof(sin);

The sockaddr_in struct is equivalent to the sockaddr struct except that it names the indi-
vidual data sub-elements for setting the protocol address.

listen
After a socket is created and associated to a process with bind, a server-type process can
call the listen function to listen for incoming socket connections. The arguments to the
listen system call are:

int socket

int input_queue_size

The first argument to listen is the integer socket value returned by a previous call to the
function socket (and after bind is called). The second argument sets the incoming queue
size. Often server processes use the fork system call to create a duplicate of themselves
to handle incoming socket calls; this approach makes a lot of sense if you expect many
simultaneous client connections. For most programs, however, it is usually adequate—
and simpler—to process incoming connections one at a time and set the incoming queue
size to a fairly large value.

connect
The connect system call is used to connect a local socket to a remote service. A typical
use, as you will see in the socket client example later in this chapter, is to specify the

Interprocess Communication and Network Programming

PART III
298

2372316072 CH19 7/26/99 2:01 PM Page 298

host computer information for a server process running on a remote computer. The
arguments to connect are:

int socket

struct sockaddr * server_address

int server_address_length

The socket argument is defined by the return value from calling the system socket func-
tion. The use of the data structure sockaddr is discussed in the socket client example
later in this chapter. The first data field in sockaddr (family) allows the specification of
the connection type, or family, before calling connect (not all families are listed; see man
connect for a full list):

AF_UNIX—Unix domain sockets (useful for high performance socket interfaces
for processes running on the same computer)

AF_INET—Internet IP Protocol (this is the most commonly used family since it
allows processes to communicate using general Internet IP addresses)

AF_IPX—Novel IPX (also frequently used in Windows networks)

AF_APPLETALK—Appletalk protocol

The second data element in the sockaddr data structure is a 14 8-bit block of data used
to specify the protocol address. You will see in the “Server Example” section later in the
chapter how to set up the protocol address for the AF_INET family. In the description of
the bind function, you have seen that an equivalent struct sockaddr_in is used that spec-
ifies data sub-elements for the protocol address.

recv
The recv function is used to receive messages from a connected socket—a socket that
has been connected to a socket using a call to connect. Two other calls that are not used
in the examples, recvfrom and recvmsg, are used to receive messages from sockets that
are not connection oriented. recvfrom is used in Chapter 20 for UDP socket program-
ming.

The arguments to recv are:

int socket

void * buf

int buf_len

unsigned int flags

TCP/IP and Socket Programming

CHAPTER 19
299

19

TC
P/IP A

N
D

S
O

C
K

ET
P

R
O

G
R

A
M

M
IN

G

2372316072 CH19 7/26/99 2:01 PM Page 299

The socket defined by the first argument must have already been connected to a port
using connect. The second argument is a pointer to a block or memory where a received
message will be stored. The third argument specifies the size (in 8-bit bytes) of the
reserved memory block. The fourth argument indicates operation flags; the following
values can be combined with the Boolean and (|) operator for the fourth argument (a zero
value is always used for the flags in the examples in this chapter):

MSG_OOB—Process out-of-band data (useful for handling high priority control
messages), usually zero is used for normal (not out of band) behavior

MSG_PEEK—Peek at an incoming message without reading it

MSG_WAITALL—Wait for the receiving data buffer to be completely full before
returning

send
The send system call is used to pass data using a socket to another program. Both client
and server applications use the send function; client applications use send to send ser-
vice requests to remote server processes, and server processes use send to return data to
clients. You will see many examples of the use of send in the example programs. The
send function takes the following arguments:

int socket

const void * message_data

int message_data_length

unsigned int flags

The first argument is just the socket value returned from a call to the socket function.
The second argument contains any data to be transferred. The third argument specifies
the size in 8-bit bytes of the message data. The fourth argument is always zero in the
example programs developed in this chapter, but the following constants can be used
(although they rarely are):

MSG_OOB—Process out of band data (out of band send calls are useful for
high priority control messages), usually zero is used for normal (not out of band)
behavior

MSG_DONTROUTE—Do not use routing

Interprocess Communication and Network Programming

PART III
300

2372316072 CH19 7/26/99 2:01 PM Page 300

Client/Server Examples Using
Sockets
The source files client.c and server.c on the CD-ROM contain the simple client and
server examples that we will develop in this section. The sample server listens on a sock-
et (port 8000) for incoming requests. Any program, like the client.c example, can con-
nect to this server and pass up to 16,384 bytes of data to the server. The server treats the
data as ASCII data and converts it to uppercase before returning it to the client program.
These two simple programs can be easily reused when writing socket-based client/server
programs. The server example does not use fork (use man fork to view documentation)
to create new copies of itself; it does set up an input queue for a backlog of 20 service
requests. Servers that might potentially receive many simultaneous requests should use
fork to create a separate process for handling computationally expensive service
requests.

Server Example
The server.c example creates one permanent socket for listening for service requests;
when a client connects with the server, a temporary socket is created. Each time a client
connects to a server, a new temporary socket is opened between the client and the server.
The following data support creating both the permanent socket and the temporary sockets
that are created for client connections:

struct sockaddr_in sin;
struct sockaddr_in pin;
int sock_descriptor;
int temp_sock_descriptor;
int address_size;

We must first define the socket descriptor:

sock_descriptor = socket(AF_INET, SOCK_STREAM, 0);

We must then fill in the required fields of the struct sockaddr_in sin:

bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(8000); // we will use port 8000

Now we are ready to bind the new socket to port 8000:

bind(sock_descriptor, (struct sockaddr *)&sin,
sizeof(sin));

TCP/IP and Socket Programming

CHAPTER 19
301

19

TC
P/IP A

N
D

S
O

C
K

ET
P

R
O

G
R

A
M

M
IN

G

2372316072 CH19 7/26/99 2:02 PM Page 301

Finally, we need to start listening on the new socket to port 8000:

listen(sock_descriptor,20); //queue up to 20 connections

At this point, the example in server.c goes into an infinite loop waiting for socket con-
nections from clients:

while(1) {
// get a temporary socket to handle client request:
temp_sock_descriptor =
accept(sock_descriptor, (struct sockaddr *)&pin,

&address_size);
// receive data from client:
recv(temp_sock_descriptor, buf, 16384, 0);

// ... here we can process the client request ...

// return data to the client:
send(temp_sock_descriptor, buf, len, 0);
// close the temporary socket (we are done with it)
close(temp_sock_descriptor);

}

In the server.c sample program, the server listens forever for incoming client socket
connections. If the program is killed, the permanent socket used for the initial connection
with clients is closed automatically by the operating system. Under Linux, this automatic
closing occurs very quickly; under Windows NT it may take five or ten seconds.

Client Example
The client.c example creates a temporary socket for listening for sending a service
request to the example server defined in server.c. The following data is used to make
the temporary socket connection to the server:

int socket_descriptor;
struct sockaddr_in pin;
struct hostent *server_host_name;

A client program must know the host IP address. Typically, this might look like
www.a_company.com or on a local network with names like colossus and carol (the
names of my and my wife’s computers on our local area network at home). The sample
programs can be run on your Linux computer by referring to the standard IP address for
the local computer, 127.0.0.1, which is usually aliased to localhost. Try substituting
localhost for 127.0.0.1 in the example client.c. The following gets the host computer
information:

server_host_name = gethostbyname(“127.0.0.1”);

Interprocess Communication and Network Programming

PART III
302

2372316072 CH19 7/26/99 2:02 PM Page 302

Now that we have the host computer information, we can fill in the struct sockaddr_in
pin data:

bzero(&pin, sizeof(pin));
pin.sin_family = AF_INET;
pin.sin_addr.s_addr = htonl(INADDR_ANY);
pin.sin_addr.s_addr =
((struct in_addr *)(server_host_name->h_addr))->s_addr;
pin.sin_port = htons(port);

We are ready to construct a socket connection to the host:

socket_descriptor = socket(AF_INET, SOCK_STREAM, 0);

Finally, we can connect to the host using this socket:

connect(socket_descriptor, (void *)&pin, sizeof(pin));

If the server is busy, this call might block (wait) for a while. When the call to connect
returns, then we can send data to the server:

send(socket_descriptor, “test data”,
strlen(“test data”) + 1, 0);

The following call to recv waits for a response from the server (the variable buf is an
array of bytes of length 8192):

recv(socket_descriptor, buf, 8192, 0);

The data in the variable buf contains data returned from the server. The client can now
close the temporary socket connection to the server:

close(socket_descriptor);

Running the Client and Server Examples
You can open two xterm windows, one for the server and one for the client. Go to the
directory that contains the files client.c and server.c (ignore the other files in this
directory for now) and type

make

to build the example programs. The server can be started by typing

server

The client (in the other xterm, after changing to the correct directory) can be run by
typing

client “This is test data to send to the server.”

TCP/IP and Socket Programming

CHAPTER 19
303

19

TC
P/IP A

N
D

S
O

C
K

ET
P

R
O

G
R

A
M

M
IN

G

2372316072 CH19 7/26/99 2:02 PM Page 303

You can stop the server by pressing Control-C in the xterm window where the server is
running. You should see the following output from the server sample program:

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/SOCKETS > server
Accepting connections ...
received from client:This is test data to send to the server.

You should see the following output from the client sample program:

markw > client “This is test data to send to the server.”
Sending message This is test data to send to the server. to server...
..sent message.. wait for response...

Response from server:

THIS IS TEST DATA TO SEND TO THE SERVER.

Running the Server Example Using a Web
Browser as a Client
Instead of testing the server.c sample program with the client.c example, we can also
use a Web browser. Try opening the Netscape Web browser and entering the following
URL:

http://127.0.0.1:8000

Here, 127.0.0.1 is the IP address of the local computer and 8000 is the port number to
send to. The Netscape browser will send a request to the server.c program, thinking
that it is a Web server. The server.c program will take this request, convert all charac-
ters to uppercase, and return this data to the Web browser. The following should show up
on your browser:

GET / HTTP/1.0 CONNECTION: KEEP-ALIVE USER-AGENT: MOZILLA/4.5 [EN]
(X11; I; LINUX 2.0.35 I686)
HOST:127.0.0.1:8000 ACCEPT: IMAGE/GIF, IMAGE/X-XBITMAP, IMAGE/JPEG,
IMAGE/PJPEG, IMAGE/PNG,
/ ACCEPT-ENCODING: GZIP ACCEPT-LANGUAGE: EN
ACCEPT-CHARSET: ISO-8859-1,*,UTF-8

That was fun, right?

A Simple Web Server and Sample
Web Client
In this section, you will implement a simple Web server and a text-based client Web
application. You will test the Web server both with the client and by using Netscape
Navigator. The source files used in this example are web_server.c and web_client.c.

Interprocess Communication and Network Programming

PART III
304

2372316072 CH19 7/26/99 2:02 PM Page 304

Implementing a Simple Web Server
The sample program web_server.c uses a utility function read_file to read a local file
and return the contents of the file as one large character buffer (variable ret_buf). The
variable error_return has the value of an HTML formatted error message.

The following code implements the read_file function for reading the contents of a
local file into a buffer:

char ret_buf[32768];
char * error_return = “<HTML>\n<BODY>File not found\n</BODY>\n</HTML>”;

char * read_file(char * buf, int num_buf) {
int i;
char *cp, *cp2;
FILE *f;
cp = buf + 5;
cp2 = strstr(cp, “ HTTP”);
if (cp2 != NULL) *cp2 = ‘\0’;
if (DEBUG) printf(“file: |%s|\n”, cp);
// fetch file:
f = fopen(cp, “r”);
if (f == NULL) return error_return;
i = fread(ret_buf, 1, 32768, f);
if (DEBUG) printf(“%d bytes read from file %s\n”, i, cp);
if (i == 0) { fclose(f); return error_return; }
ret_buf[i] = ‘\0’;
fclose(s);
return ret_buf;

}

In the web_server.c example, the function main opens up a socket for listening for ser-
vice requests in the usual way. web_server.c checks the error codes for all system calls;
these checks are left out in the following short description of how the Web server works.
The following code is similar to the server socket setup code in the example server.c:

int sock;
int serverSocket;
struct sockaddr_in serverAddr;
struct sockaddr_in clientAddr;
int clientAddrSize;
struct hostent* entity;
serverSocket = socket(AF_INET, SOCK_STREAM, 0);
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons(port);
serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);
memset(&(serverAddr.sin_zero), 0, 8);

TCP/IP and Socket Programming

CHAPTER 19
305

19

TC
P/IP A

N
D

S
O

C
K

ET
P

R
O

G
R

A
M

M
IN

G

2372316072 CH19 7/26/99 2:02 PM Page 305

The following call to bind associates this socket with the desired port number (from the
variable port):

bind(serverSocket, (struct sockaddr*) &serverAddr,
sizeof(struct sockaddr));

The following call to listen sets a limit of 10 queued requests, and indicates that the
program is now ready to accept incoming service requests:

listen(serverSocket, 10); // allow 10 queued requests

The example in web_server.c is now ready to loop, waiting for incoming connections. A
new socket is opened for each incoming service request; the data for a service request is
read, the request is processed with data returned to the client, and finally the temporary
socket (variable sock)is closed.

The following code fragment from the web_server.c example implements a processing
loop that waits for incoming client request:

while (1) {
clientAddrSize = sizeof(struct sockaddr_in);
do
sock = accept(serverSocket,

(struct sockaddr*) &clientAddr,
&clientAddrSize);

while ((sock == -1) && (errno == EINTR));
if (sock == -1) {
printf(“Bad accept\n”);
exit(1);

}

entity = gethostbyaddr((char*) &clientAddr.sin_addr,
sizeof(struct in_addr), AF_INET);

if (DEBUG) printf(“Connection from %d\n”,
inet_ntoa((struct in_addr) clientAddr.sin_addr));

i = recv(sock, recvBuffer, 4000, 0);

if (i == -1) break;
if (recvBuffer[i - 1] != ‘\n’) break;
recvBuffer[i] = ‘\0’;
if (DEBUG) {
printf(“Received from client: %s\n”, recvBuffer);

}

// call a separate work function to process request:
cbuf = read_file(recvBuffer, totalReceived);
size = strlen(cbuf);
totalSent = 0;
do {

Interprocess Communication and Network Programming

PART III
306

2372316072 CH19 7/26/99 2:02 PM Page 306

bytesSent = send(sock, cbuf + totalSent,
strlen(cbuf + totalSent), 0);

if (bytesSent == -1) break;
totalSent += bytesSent;

} while (totalSent < size);
if (DEBUG) printf(“Connection closed by client.\n”);
close(sock);

}

This code is very similar to the example server.c except here, data received from the
client is interpreted as a request for a local file. The requested local file is read into a
buffer, and the buffer is sent back to the client.

Implementing a Simple Web Client
The short example program web_client.c shows how you might want to interact with a
Web server in a program, rather than using a Web browser. This sample program checks
all error return values from system calls, but these error checks are left out of the follow-
ing discussion to make the code listings shorter. As always, an error return less than zero
indicates a problem.

The variables host_name and port are used to specify the host computer name and the
port. In the example file web_server.c, the host name is specified as an absolute IP
address (127.0.0.1) specifying the local machine, but any value such as www.lycos.com
or www.markwatson.com would work. Web servers, by default, listen on port 80; port
8000 is used to run the web_server.c example so as to not conflict with the apache Web
server that is installed and run by default in most Linux distributions:

char * host_name = “127.0.0.1”; // local host
int port = 8000;

The following code (this should look familiar to you by now) gets the Web server host
information and opens a socket connection to the Web server (the file web_server.c con-
tains code for error checking that is not shown here for the sake of brevity):

int sd;
struct sockaddr_in pin;
struct hostent *nlp_host;
nlp_host = gethostbyname(host_name);
bzero(&pin, sizeof(pin));
pin.sin_family = AF_INET;
pin.sin_addr.s_addr = htonl(INADDR_ANY);
pin.sin_addr.s_addr = ((struct in_addr *)(nlp_host->h_addr))->s_addr;
pin.sin_port = htons(port);

sd = socket(AF_INET, SOCK_STREAM, 0);
connect(sd, (void *)&pin, sizeof(pin));

TCP/IP and Socket Programming

CHAPTER 19
307

19

TC
P/IP A

N
D

S
O

C
K

ET
P

R
O

G
R

A
M

M
IN

G

2372316072 CH19 7/26/99 2:02 PM Page 307

// NOTE: must send a carriage return at end of message:
sprintf(message,”GET /index.html HTTP/1.1\n”);
send(sd, message, strlen(message), 0);
printf(“..sent message.. wait for response...\n”);
recv(sd, buf, 8192, 0); // buf is 8192 bytes long
printf(“\nResponse from NLPserver:\n\n%s\n”, buf);
close(sd); //we are done, close the socket and quit

Testing the Web Server and Web Client
Open two xterm windows, and change directory to the IPC/SOCKETS directory in both
windows. In the first window, type

make
web_server

In the second window, type

web_client

You should now see the following output in the window where the web_server sample
program is running:

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/SOCKETS > web_server
Binding server socket to port 8000
Accepting connections ...
Connection from 1074380876
Received from client: GET /index.html HTTP/1.1

file: |index.html|
473 bytes read from file index.html
Connection closed by client.

You should see the following output in the window where the web_client sample pro-
gram is running:

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/SOCKETS > web_client
Sending message GET /index.html HTTP/1.1
to web_server...
..sent message.. wait for response...

Response from NLPserver:

<HTML>
<HEAD>
<TITLE>Mark’s test page for the web_server</TITLE>

</HEAD>
<BODY>
<H2>This is a test page for the web_server</H2>
<p>In order to test with another local file, please
click here to load a local

Interprocess Communication and Network Programming

PART III
308

2372316072 CH19 7/26/99 2:02 PM Page 308

file (local to web_server).<p>
In order to test the web server with a remote link,
here is a link to Mark Watson’s home page on the net.<p>
Please click here.

</BODY>
</HTML>

Running the Simple Web Server Using
Netscape Navigator as a Client
You can easily try the sample Web server using a Web browser like Netscape Navigator.
Open a Web browser and enter the following URL:

http://127.0.0.1:8000/index.html

Note that you must specify a filename in the URL because the example Web server does
not try default values like index.html or index.htm.

The UNIX netstat utility is very useful to see open socket connections on your comput-
er. Use the following option to see all connections:

netstat -a

Summary
In this chapter, you learned how to program using TCP sockets with both client and serv-
er examples. Socket programming is the basis for most distributed systems. Other, higher
level techniques such as CORBA and Java’s RMI are also popular, but most existing sys-
tems are written using sockets. Even if you use CORBA and RMI, sockets are more effi-
cient, so socket programming is a good technique to know.

TCP/IP and Socket Programming

CHAPTER 19
309

19

TC
P/IP A

N
D

S
O

C
K

ET
P

R
O

G
R

A
M

M
IN

G

2372316072 CH19 7/26/99 2:02 PM Page 309

310

2372316072 CH19 7/26/99 2:02 PM Page 310

IN THIS CHAPTER

• An Example Program for Sending
Data with UDP 313

• An Example Program for Receiving
UDP Data 314

• Running the UDP Example
Programs 315

20
C

H
A

PT
ER

UDP: The User
Data Protocol

by Mark Watson

2472316072 CH20 7/26/99 2:23 PM Page 311

The User Data Protocol (UDP) is a lower level protocol than TCP. Specifically, UDP
does not provide either guaranteed message delivery or guaranteed notice of delivery
failure. Also, UDP messages are not guaranteed to be delivered in the order that they
were sent. It is a common opinion that using TCP sockets rather than UDP is a better
approach for almost all applications. To be fair, there are several advantages to using
TCP, including the following:

• TCP sockets provide either guaranteed delivery or an error condition.

• If large blocks of data must be transferred, using TCP and keeping a socket open
can be more efficient than breaking data into small pieces (the physical block size
limit for UDP packets is 8192 bytes, but the space available for user data is about
5200 bytes per packet).

• Software is more complex when lost packets need to be detected and re-sent.

I have, however, used UDP on several projects (the NMRD monitoring system for
DARPA, the Sleuth real-time fraud detection expert system for PacBell, and a PC-based
networked hovercraft racing game for Angel Studios). Using UDP can be far more effi-
cient than using TCP, but I only recommend using it if the following conditions apply:

• The data that needs to be sent fits in one physical UDP packet. UDP packets are
8192 bytes in length, but because of the data for headers I only assume that I can
put 5000 bytes of data in one UDP packet.

• Some transmitted data can be lost without destroying the integrity of the system.

• Any lost data does not have to be re-sent.

An ideal candidate for using UDP is a computer game that runs on a local area network.
UDP packets are rarely lost on local area networks. Also, if you use UDP packets to send
updated game information, then it is reasonable to expect a network game to function
adequately if a very small fraction of transmitted data packets are lost.

You will see in the next two sections that using UDP sockets is very similar to the exam-
ples using TCP sockets in Chapter 19. If you studied and ran the example programs in
Chapter 19, you (almost) already know how to use UDP. You need only change a single
argument when calling the function socket to select UDP. The following two short
example programs are used in this chapter:

• send.c—Sends 20 text messages to a receiver

• receive.c—Receives text messages from the sender and prints them

Using UDP is a powerful technique for the right type of applications. The overhead for
using UDP is much less than using TCP.

Interprocess Communication and Network Programming

PART III
312

2472316072 CH20 7/26/99 2:23 PM Page 312

An Example Program for Sending
Data with UDP
The following example (file send.c in the src/IPC/UDP directory) looks like the earlier
socket examples, except that we use SOCK_DGRAM instead of SOCK_STREAM for the sec-
ond argument when calling socket. We specify AF_INET for the address family so that
our example will work with general Internet IP addresses (for example, we could specify
something like “markwatson.com” for a host name; a Domain Name Server (DNS)
would resolve “markwatson.com” into an absolute IP address like 209.238.119.186). The
sockaddr in_address variable is filled exactly the same as the socket example program
client.c in the SOCKETS directory on the CD-ROM. The IP address used is 127.0.0.1,
which refers to the local machine, so the send.c and receive.c example programs will
only work when run on the same computer. This restriction can be easily removed by
changing the IP address set in send.c.

#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

int port = 6789;

void main() {
int socket_descriptor; int iter = 0;
int process;
char buf[80]; // for sending messages
struct sockaddr_in address;
// Here, we use SOCK_DGRAM (for UDP) instead of SOCK_STREAM (TCP):
socket_descriptor = socket(AF_INET, SOCK_DGRAM, 0);
memset(&address, 0, sizeof(address));
address.sin_family = AF_INET;
address.sin_addr.s_addr = inet_addr(“127.0.0.1”); // local computer
address.sin_port = htons(port);
process = 1; // flag for breaking out the do-while loop
do {
sprintf(buf,”data packet with ID %d\n”, iter);
if (iter >20) {
sprintf(buf, “stop\n”);
process = 0;

}
sendto(socket_descriptor,

buf, sizeof(buf),
0, (struct sockaddr *)&address, sizeof(address));

iter++;
} while (process);

}

UDP: The User Data Protocol

CHAPTER 20
313

20

U
D

P: T
H

E
U

SER
D

A
TA

P
R

O
TO

C
O

L

2472316072 CH20 7/26/99 2:23 PM Page 313

The do-while loop sends 20 messages using UDP. The message simply contains text
with the message number for reference (this will be printed by the receive.c program in
the UDP directory).

An Example Program for
Receiving UDP Data
This example program (receive.c in the UDP directory) is similar to the server.c exam-
ple program in the SOCKETS directory, except that we use SOCK_DGRAM instead of
SOCK_STREAM for the second argument when calling socket. For both TCP and UDP, we
use gethostbyname to resolve either a computer name or absolute IP address into a hos-
tent struct. The setup of the struct sockaddr in_sin data and the call to bind is identi-
cal to the TCP socket example.

#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

char * host_name = “127.0.0.1”; // local host

void main() {
int sin_len;
int port = 8080;
char message[256];
int socket_descriptor;
struct sockaddr_in sin;
struct hostent *server_host_name;
server_host_name = gethostbyname(“127.0.0.1”);
bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(port);
// set socket using SOCK_DGRAM for UDP:
socket_descriptor = socket(PF_INET, SOCK_DGRAM, 0);
bind(socket_descriptor, (struct sockaddr *)&sin, sizeof(sin));
while (1) {
sin_len = sizeof(sin);
recvfrom(socket_descriptor, message, 256, 0,

(struct sockaddr *)&sin, &sin_len);
printf(“\nResponse from server:\n\n%s\n”, message);
if (strncmp(message, “stop”, 4) == 0) break;

}
close(socket_descriptor);

}

Interprocess Communication and Network Programming

PART III
314

2472316072 CH20 7/26/99 2:23 PM Page 314

In this example, the while loop runs forever, until a message is received from the send.c
example program that starts with the characters stop. In the TCP socket examples, we
used recv, whereas here we use recvfrom. We use recvfrom when we want to receive
data from a connectionless socket (like UDP). The fifth argument to recvfrom is the
address of a struct sockaddr_in sin data object. The source address of this sockad-
dr_in object is filled in when receiving UDP messages, but the source address is not
used in the example program.

Running the UDP Example
Programs
To run the UDP example programs, change directory to the UDP directory that you have
copied from the CD-ROM, and type the following:

make
receive

This will build both the send and receive example programs and start the receive pro-
gram. You should see the following output:

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/UDP > make
cc -o receive receive.c
cc -o send send.c
markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/UDP > receive

In another window, change directory to the UDP directory and run the send program;
you should see:

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/UDP > send
markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/UDP >

In the first window, where you ran receive, you should see many lines of output, begin-
ning with:

Response from server:

data packet with ID 0

Response from server:

data packet with ID 1

Response from server:

data packet with ID 2

UDP: The User Data Protocol

CHAPTER 20
315

20

U
D

P: T
H

E
U

SER
D

A
TA

P
R

O
TO

C
O

L

2472316072 CH20 7/26/99 2:23 PM Page 315

The receive program terminates when it receives a message starting with stop:

Response from server:

stop

Summary
These UDP example programs show that using UDP is simple, if we do not have to
worry about lost messages. Remember that on local area networks, losing UDP message
packets is not likely, so a minimal amount of “handshaking” will often suffice to make
sure that both sending and receiving programs are running correctly. Even though you
will usually use TCP sockets, using UDP is a powerful technique for increasing perfor-
mance of distributed systems. In Chapter 21, “Using Multicast Sockets,” you will see
how to use multicast broadcasts from one sender to many receivers. We will use UDP,
rather than TCP, for multicast broadcasts. You will see that the code for sending multicast
broadcasts is almost identical to using UDP, but you have to do extra work to receive
multicast IP broadcasts.

Interprocess Communication and Network Programming

PART III
316

2472316072 CH20 7/26/99 2:23 PM Page 316

IN THIS CHAPTER

• Configuring Linux to Support
Multicast IP 318

• Sample Programs for Multicast IP
Broadcast 319

21
C

H
A

PT
ER

Using Multicast
Sockets

by Mark Watson

2572316072 CH21 7/26/99 2:23 PM Page 317

Multicast broadcasting is a great technology for building distributed systems such as chat
tools, community blackboard drawing tools, and video teleconferencing systems.
Programs that use multicast broadcasting are very similar to programs that send mes-
sages using UDP to a single receiver. The principle change is that you use a special mul-
ticast IP address. For example, the IP address of the local computer is 127.0.0.1, whereas
the multicast IP address of the local computer is 224.0.0.1. You will see that programs
that receive multicast broadcasts are very different from programs that receive normal
UDP messages.

Not all computer systems are configured for IP multicast. In the next section, you learn
how to configure Linux to support IP multicast. If you use a heterogeneous computer
network, then you should know that Windows NT supports multicast IP, but Windows 95
requires a free patch. Most modern network cards support IP multicast. Even if your net-
work card does not support IP multicast, which is unlikely, the examples in this chapter
are set up to run on a single computer so you can still experiment with multicast IP pro-
gramming.

Configuring Linux to Support
Multicast IP
Most Linux systems have multicast IP capability turned off by default. In order to use
multicast sockets on my Linux system, I had to reconfigure and build my kernel, and
then run the following command as root after re-booting:

route add -net 224.0.0.0 netmask 240.0.0.0 dev lo

Make sure that this route has been added by typing

route -e

You should see output like this:

markw@colossus:/home/markw > su
Password:
markw # route add -net 224.0.0.0 netmask 240.0.0.0 dev lo
colossus:/home/markw # route -e
Kernel IP routing table
Destination Gateway Genmask Flags MSS Windowirtt Iface
loopback * 255.0.0.0 U 3584 0 0 lo
224.0.0.0 * 240.0.0.0 U 3584 0 0 lo
markw #

Please note that I ran the route commands as root. I don’t permanently add this route
for multicasting to my Linux development system; rather, I manually add the route (as
root) when I need to use multicast IP. Re-configuring and building the kernel is also

Interprocess Communication and Network Programming

PART III
318

2572316072 CH21 7/26/99 2:23 PM Page 318

fairly simple. On my Linux system, I use the following steps to configure and build a
new kernel with multicast IP support:

1. cd /usr/src/linux

2. make menuconfig

select networking options

check the box labeled “enable multicast IP”

save and exit from menuconfig

3. make dep; make clean; make zImage

4. cp /vmlinux /vmlinux_good

5. cp arch/i386/boot/zImage /vmlinux

6. cd /etc

7. edit lilo.conf, adding a new entry for the /vmlinux_good kernel

8. lilo

Using Muticast Sockets

CHAPTER 21
319

21

U
SIN

G
M

U
LTIC

A
ST

S
O

C
K

ETS

TIP

Please read the available documentation for building and installing a new Linux
kernel. Linux comes with great online documentation in the form of HOWTO
documents. Please read the HOWTO documents for building a new kernel and
for configuring for multicast IP before you get started.

I already had a multicast IP application written in Java, and it took me about one hour to
read the HOWTO documents, rebuild the kernel, and get my existing application run-
ning.

Sample Programs for Multicast IP
Broadcast
There are no new system API calls to support multicast IP; rather, the existing functions
getsockopt and setsockopt have been extended with options to support multicast IP.
These functions have the following signatures:

int getsockopt(int socket, int level, int optname,
void *optval, int *optlen);

int setsockopt(int socket, int level, int optname,
const void *optval, int optlen);

2572316072 CH21 7/26/99 2:23 PM Page 319

Complete documentation for both functions can be seen by using man getsockopt; the
following discussion addresses the use of getsockopt and setsockopt for setting up a
socket for use with multicast IP. The second argument, level, sets the protocol level that
the selected operation should affect. We will always specify the level as IPPROTO_IP in
our examples. The third argument, optname, is an integer value for possible options. The
options used for multicast IP are:

SO_REUSEADDR—Enables a given address to be used by more than one process at
the same time on the same computer.

SO_BROADCAST—Enables multicast broadcast

IP_ADD_MEMBERSHIP—Notifies the Linux kernel that this socket will be used for
multicast

IP_DROP_MEMBERSHIP—Notifies the Linux kernel that this socket will no longer be
participating in multicast IP

IP_MULTICAST_TTL—Specifies the time-to-live value for broadcast messages

IP_MULTICAST_LOOP—Specifies whether messages also get broadcast to the send-
ing computer; the default is true, so when a program on your Linux computer
broadcasts a message, other programs running on the same computer can receive
the message

You will see examples of setting some of these values in the two sample programs
broadcast.c and listen.c. The error return values of these functions should always be
checked. An error return is a value less than zero. It is usually sufficient to check for a
less than zero error condition, and to call the system perror function to print out the last
system error. However, you might want to detect the exact error in your program; you
can use the following defined constants for specific error codes:

EBADF—Bad socket descriptor (first argument)

ENOTSOCK—Socket (first argument) is a file, not a socket

ENOPROTOOPT—The option is unknown at the specified protocol level

EFAULT—The address referenced by optval (fourth argument) is not in the current
process’s address space

Sample Program to Broadcast Data with
Multicast IP
Broadcasting using multicast IP will look similar to sending data using UDP (see
Chapter 20). The sample program source code for this section is the file broadcast.c in
the directory IPC/MULTICAST. You first have to set up the socket, as usual:

int socket_descriptor;
struct sockaddr_in address;

Interprocess Communication and Network Programming

PART III
320

2572316072 CH21 7/26/99 2:23 PM Page 320

socket_descriptor = socket(AF_INET, SOCK_DGRAM, 0);
if (socket_descriptor == -1) {
perror(“Opening socket”);
exit(1);

}

Notice that like the UDP examples in the previous chapter, the second argument to the
socket call is SOCK_DGRAM, which specifies a connectionless socket. Set up the data used
to send the data, as usual, for a socket using UDP:

memset(&address, 0, sizeof(address));
address.sin_family = AF_INET;
address.sin_addr.s_addr = inet_addr(“224.0.0.1”);
address.sin_port = htons(6789); // we are using port 6789

Here, one thing out of the ordinary is the IP address 224.0.0.1 that is the multicast equiv-
alent of the localhost IP address 127.0.0.1. In a loop, we will broadcast data every two
seconds:

while (1) {
if (sendto(socket_descriptor,

“test from broadcast”, sizeof(“test from broadcast”),
0, (struct sockaddr *)&address, sizeof(address))

< 0) {
perror(“Trying to broadcast with sendto”);
exit(1);

}
sleep(2);

}

Except for the multicast IP address 224.0.0.1, this is identical to the example for sending
data using UDP (source file send.c in the IPC/UDP directory).

Sample Program to Listen for Multicast IP
Broadcasts
The sample program for listening to multicast IP broadcast messages (listen.c in the
directory IPC/MULTICAST) is very different than the UDP example. You must do several
new things in this example:

• Notify the Linux kernel that a specified socket will participate in a multicast IP
broadcast group.

• Enable a socket for multiple use by different processes running on the same com-
puter.

• Set the socket so that broadcast messages are sent to the same machine (this is
actually the default) so that we can test multiple copies of the broadcast and listen
programs on one test machine.

Using Muticast Sockets

CHAPTER 21
321

21

U
SIN

G
M

U
LTIC

A
ST

S
O

C
K

ETS

2572316072 CH21 7/26/99 2:23 PM Page 321

In the sample program listen.c, we first need to set up the socket (in the usual way):

int socket_descriptor;
struct sockaddr_in sin;
struct hostent *server_host_name;

if ((server_host_name = gethostbyname(host_name)) == 0) {
perror(“Error resolving local host\n”);
exit(1);

}

if ((socket_descriptor = socket(PF_INET, SOCK_DGRAM, 0)) == -1) {
perror(“Error opening socket\n”);
exit(1);

}

Before we actually call bind, we will set options on the socket for multicast IP. The first
thing that we need to do is to allow multiple processes to share the same port:

u_char share = 1; // we will need to pass the address of this value
if (setsockopt(socket_descriptor, SOL_SOCKET, SO_REUSEADDR,

&share, sizeof(share)) < 0) {
perror(“setsockopt(allow multiple socket use”);

}

Now that we have set up the socket for shared use, it is OK to bind it to a port (the usual
bind setup and call):

bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(port);
if (bind(socket_descriptor,

(struct sockaddr *)&sin, sizeof(sin)) < 0) {
perror(“call to bind”);

}

After the call to bind, we can set the socket for broadcasting to the same machine; this
makes it convenient to test multicast IP broadcasting on a single development computer:

u_char loop = 1;
if (setsockopt(socket_descriptor, IPPROTO_IP, IP_MULTICAST_LOOP,

&loop, sizeof(loop)) < 0) {
perror(“setsockopt(multicast loop on)”);

}

We have to join a broadcast group. This informs the Linux kernel that incoming data to
the specified socket is broadcast data:

command.imr_multiaddr.s_addr = inet_addr(“224.0.0.1”);
command.imr_interface.s_addr = htonl(INADDR_ANY);

Interprocess Communication and Network Programming

PART III
322

2572316072 CH21 7/26/99 2:23 PM Page 322

// check to make sure that we are using a legal broadcast IP address:
if (command.imr_multiaddr.s_addr == -1) {
printf(“Error: group of 224.0.0.1 not a legal multicast address\n”);

}

// We have a legal broadcast IP address, so join the broadcast group:
if (setsockopt(socket_descriptor, IPPROTO_IP, IP_ADD_MEMBERSHIP,

&command, sizeof(command)) < 0) {
perror(“Error in setsocket(add membership)”);

}

Now that the socket is configured for multicast IP broadcast, we loop, listening for
broadcasts:

while (iter++ < 10) {
sin_len = sizeof(sin);
if (recvfrom(socket_descriptor, message, 256, 0,

(struct sockaddr *)&sin, &sin_len) == -1) {
perror(“Error in receiving response from server\n”);

}

printf(“\nResponse from server:\n\n%s\n”, message);
sleep(2);

}

We only loop ten times. Then, the listen.c sample program leaves the broadcast group
and closes down the socket:

if (setsockopt(socket_descriptor, IPPROTO_IP, IP_DROP_MEMBERSHIP,
&command, sizeof(command)) < 0) {

perror(“Error in setsocket(drop membership)”);
}
close(socket_descriptor);

Running the Sample Multicast IP Programs
You should open two command windows, and in each change directory to the
src/IPC/MULTICAST directory that you have copied from the CD-ROM. In either of these
two windows, type make to build the broadcast and listen executables. In the first win-
dow, type listen and type broadcast in the second window. Here is what you should
see in the first window (only the first few lines of output are shown since the broadcast
program sends the same message ten times):

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/MULTICAST > listen

Response from server:

test from broadcast

Using Muticast Sockets

CHAPTER 21
323

21

U
SIN

G
M

U
LTIC

A
ST

S
O

C
K

ETS

2572316072 CH21 7/26/99 2:23 PM Page 323

Response from server:

test from broadcast

Here is what you should see in the second window:

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/MULTICAST > broadcast

Notice that both programs were run from a normal user account, not root. It is only nec-
essary to run as root while building a new kernel and executing the route commands.

Summary
Multicast IP is a great technique for efficiently broadcasting information to several pro-
grams simultaneously. In this chapter, you learned that broadcasting multicast IP is
almost identical to sending data over a socket using UDP, but you have to do some extra
work to receive multicast IP broadcasts. Possible applications for multicast IP are net-
worked games and broadcasting audio and video data.

Interprocess Communication and Network Programming

PART III
324

2572316072 CH21 7/26/99 2:23 PM Page 324

IN THIS CHAPTER

• Sample Program for
Non-blocking IO 326

• Running the Non-blocking Sample
Program 329

22
C

H
A

PT
ER

Non-blocking
Socket I/O

by Mark Watson

2672316072 CH22 7/26/99 2:22 PM Page 325

In all of the examples that you have seen so far, the sample programs block (or wait)
when calling accept, recv, and recvfrom (recvfrom was used for connectionless sock-
ets for UDP and multicast IP, and recv for the earlier examples using TCP protocol
sockets). This blocking behavior may be the default, but it is not strictly necessary. You
can use fcntl (with some care to preserve file attributes) to change sockets to non-
blocking. What you do not want to do, however, is set a socket to non-blocking and have
your program continually check (or poll) the socket to see if data is available; this wastes
CPU time! One example of a good use of non-blocking I/O is a distributed game running
on a local area network using UDP and multicast IP.

For a simple example, suppose that the game only supports a small number of players.
At initialization, the game program reads a local configuration file containing the host
name (or absolute IP address) of everyone on the local network who likes to play the
game. This file also contains the standard port number for playing the game. The same
port number is used for transmitting and receiving data. Most of the CPU time for the
game is spent in calculating 3D geometries for solid figures, applying textures, and per-
forming rendering. After each rendering cycle for a display frame, the program could
quickly check non-blocking sockets for incoming messages. The sample program in the
next section is much simpler: a single program broadcasts messages and checks for new
messages using non-blocking sockets.

Sample Program for
Non-blocking IO
Listing 22.1 shows an example for both sending and receiving data using multicast IP,
UDP, and non-blocking sockets. While this sample program contains error checks on all
system calls, these error checks are left out of the following discussion for brevity; as
usual, any system call that returns a value less than zero indicates an error condition. The
discussion in this section uses code fragments from the file broadcast_and_listen.c.
The following statements declare the variables required for this sample program:

Listing 22.1 nb_broadcast_and_listen.c

// for setting up for broadcast:
int out_socket_descriptor;
struct sockaddr_in address;
// for setting up for listening for broadcasts
struct ip_mreq command;
u_char loop = 1; // we want broadcast to also

// loop back to this computer
int i, iter = 0;

Interprocess Communication and Network Programming

PART III
326

2672316072 CH22 7/26/99 2:22 PM Page 326

int sin_len;
char message[256];
int in_socket_descriptor;
struct sockaddr_in sin;
struct hostent *server_host_name;
long save_file_flags;

Most of these statements have been seen repeatedly in earlier examples, with a few
additions:

1. We define both a socket descriptor (variable name is out_socket_descriptor) for
broadcasting and data (struct sockaddr_in address and struct sockaddr_in
sin) for a listening socket.

2. We define the struct ip_mreq command data object for setting group membership
using the setsocket system call.

In the following code (from the broadcast_and_listen.c example), we call the socket
function to create the output (or broadcast) socket with SOCK_DGRAM as the second argu-
ment so that the socket will be connectionless:

// For broadcasting, this socket can be treated like a UDP socket:
out_socket_descriptor = socket(AF_INET, SOCK_DGRAM, 0);

We want multiple processes on the same computer to have access to the same port, so we
must use setsockopt to make the socket shareable:

// allow multiple processes to use this same port:
loop = 1;
setsockopt(out_socket_descriptor, SOL_SOCKET, SO_REUSEADDR,

&loop, sizeof(loop));

We want to set the input socket in the normal way, except we specify a multicast IP
address 224.0.0.1:

memset(&address, 0, sizeof(address));
address.sin_family = AF_INET;
address.sin_addr.s_addr = inet_addr(“224.0.0.1”);
address.sin_port = htons(port);
// Set up for listening:
server_host_name = gethostbyname(host_name);
bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(port);

in_socket_descriptor = socket(PF_INET, SOCK_DGRAM, 0);

Non-blocking Socket I/O

CHAPTER 22
327

22

N
O

N-B
LO

C
K

IN
G

S
O

C
K

ET
I/O

2672316072 CH22 7/26/99 2:22 PM Page 327

It is often convenient to test on a single computer, so we set up the input socket so that
multiple processes can share a port:

// allow multiple processes to use this same port:
loop = 1;
setsockopt(in_socket_descriptor, SOL_SOCKET, SO_REUSEADDR,

&loop, sizeof(loop));

If you don’t use this code to enable multiple listeners on a single port, you will need to
test using two computers on the same network. We can now bind the input (or listening)
socket to the shared port:

bind(in_socket_descriptor, (struct sockaddr *)&sin,
sizeof(sin));

For testing on a single computer, we will specify that the input socket also listens for
broadcasts from other processes running on the local machine:

// allow broadcast to this machine”
loop = 1;
setsockopt(in_socket_descriptor, IPPROTO_IP, IP_MULTICAST_LOOP,

&loop, sizeof(loop));

We want to join a multicast broadcast group, as we did in the listen.c program in the
directory IPC/MULTICAST that we saw in the last chapter.

// join the broadcast group:
command.imr_multiaddr.s_addr = inet_addr(“224.0.0.1”);
command.imr_interface.s_addr = htonl(INADDR_ANY);
if (command.imr_multiaddr.s_addr == -1) {
printf(“Error: group of 224.0.0.1 not a legal multicast address\n”);

}
setsockopt(in_socket_descriptor, IPPROTO_IP, IP_ADD_MEMBERSHIP,

&command, sizeof(command));

Finally, we must set the input socket as non-blocking. We first get the “file permissions”
of the input socket descriptor, then add the NONBLOCK flag, then save the permissions
back to the input socket descriptor using the fcntl system function:

// set socket to non-blocking:
save_file_flags = fcntl(in_socket_descriptor, F_GETFL);
save_file_flags |= O_NONBLOCK;
fcntl(in_socket_descriptor, F_SETFL, save_file_flags);

The main loop of the sample program both broadcasts over the output socket, and listens
for messages on the non-blocking input socket. Notice that we broadcast a new message
only every seven times through the while loop, but we check the non-blocking input
socket every time through the loop:

// main loop that both broadcasts and listens:
while (iter++ < 20) {
printf(“%d iteration\n”, iter);

Interprocess Communication and Network Programming

PART III
328

2672316072 CH22 7/26/99 2:22 PM Page 328

if ((iter % 7) == 0) { // do a broadcast every 7 times through loop
printf(“sending data...\n”);
sendto(out_socket_descriptor,

“test from broadcast”, sizeof(“test from broadcast”),
0, (struct sockaddr *)&address, sizeof(address));

}
sleep(1); // wait a second
// see if there is any data to read on the non-blocking socket:
sin_len = sizeof(sin);
i = recvfrom(in_socket_descriptor, message, 256, 0,

(struct sockaddr *)&sin, &sin_len);
if (i > 0) {
printf(“Response from server:\n\n%s\n”, message);

} else {
printf(“No data available to read\n”);

}
}

Running the Non-blocking Sample
Program
To test the non-blocking sample program in file nb_broadcast_and_listen.c, you
should open two or more xterm windows and run nb_broadcast_and_listen in each
window. I created three windows, and ran nb_broadcast_and_listen in all three (start-
ing them as close together in time as possible). Here is example output from one of the
windows:

~/test/IPC/NOBLOCK > nb_broadcast_and_listen
file flags=2
file flags after setting non-blocking=2050
Starting main loop to broadcast and listen...
1 iteration
Response from server:

test from broadcast
2 iteration
No data available to read
3 iteration
No data available to read
4 iteration
No data available to read
5 iteration
No data available to read
6 iteration
Response from server:

test from broadcast
7 iteration

Non-blocking Socket I/O

CHAPTER 22
329

22

N
O

N-B
LO

C
K

IN
G

S
O

C
K

ET
I/O

2672316072 CH22 7/26/99 2:22 PM Page 329

sending data...
Response from server:

test from broadcast
8 iteration
Response from server:

test from broadcast
9 iteration
No data available to read
10 iteration
No data available to read

There were two other copies of the test program running in other windows. You will
notice that in most of the iterations through the test loop, there was no data available on
the non-blocking input socket.

Summary
The sample program in this chapter was fairly simple to implement. We did have to take
special care to allow multiple socket listeners on a single computer and change the file
permissions on the socket to non-blocking mode. There are many applications for non-
blocking broadcast sockets such as networked games, local broadcast of audio and video
data, and some distributed server applications. The best applications for non-blocking
broadcast sockets usually require high performance and can tolerate occasional missed
data packets.

Interprocess Communication and Network Programming

PART III
330

2672316072 CH22 7/26/99 2:22 PM Page 330

IN THIS CHAPTER

• Design of C++ Client/Server
Classes 332

• Implementation of C++ Client/Server
Classes 335

• Testing the C++ Client/Server
Classes 339

23
C

H
A

PT
ER

A C++ Class
Library for TCP
Sockets

by Mark Watson

2772316072 CH23 7/26/99 2:21 PM Page 331

This chapter presents two simple C++ classes that you can use to add client/server socket
communication between two programs by simply creating two objects: a client object
and a server object. The actual code to perform the socket communications is copied
directly from the client.c and server.c examples used in Chapter 19, “TCP/IP and
Socket Programming.”

Even though most of the examples in this book are written in the C language, I encour-
age you to consider C++ as the programming language of choice for Linux (in addition
to Java, and special purpose languages like Perl, LISP, Prolog, and so on that are includ-
ed with your Linux distribution). In fact, even if you prefer the non–object-oriented pro-
gramming style of C, I still encourage you to build your C programs as C++ programs
because the C++ compiler detects more errors at compilation time and C++ uses “type
safe” linkages when calling functions and methods. “Type safe” linkages make it more
difficult to call a function or method with an incorrect number of arguments, or argu-
ments of the wrong data type. I have found C++ to be more effective on very large pro-
jects that I have worked on (with many developers) than C, including PC and Nintendo
video games and a realtime fraud detection expert system. The “type safe” linkages in
C++ make it easier to integrate code written by large programming teams.

Unfortunately, there is not space in this chapter to accommodate a tutorial on the use of
C++, but you can open your favorite Web search engine and search for “C++ program-
ming tutorial”. I will also try to keep a few current links to C++ tutorials on my Web
page, which supports my contributions to this book:

http://www.markwatson.com/books/linux_prog.html

Design of C++ Client/Server
Classes
The primary requirement for the C++ Client and Server classes that we will develop in
this chapter is ease of use when using these classes in your own programs. This is one of
the major benefits of object-oriented programming: the “dirty details” of an object’s
behavior (the code that does the real work) are hidden in private code, working on pri-
vate data. You should try to design your classes in any object-oriented language (for
example, Java, C++, Smalltalk) with a small and clean public interface, hiding imple-
mentation details as private data and code.

Understanding Client Design
The public interface to the Client class is very simple: you construct a new client object
with the name of the machine that the server object is running on, and the port number

Interprocess Communication and Network Programming

PART III
332

2772316072 CH23 7/26/99 2:21 PM Page 332

that the server object is listening to. The method signature for the constructor for the
Client class looks like the following:

Client(char * host = “127.0.0.1”, int port = 8080);

If you are just beginning to use C++, you may not have seen default values for argu-
ments used before. With default values for both arguments, you can use a single con-
structor in many ways to build a new client object, as in the following examples:

Client client_1; // host=”127.0.0.1”, port=8080
Client client_2(“buster.acomputercompany.com”); // port=8080
Client * p_client_3 = new Client(“buster”, 9020);

You want to make it easy for programs using the Client class to call a server object. The
public method getResponseFromServer provides a simple interface to a remote server
object. This method has the following method signature:

char * getResponseFromServer(char *command);

This method either blocks or waits for a response from a remote server object, or termi-
nates on an error condition. Figure 23.1 shows the Unified Modeling Language (UML)
class diagram for the Client class. If you can run Java on your system, you can get a
free UML modeling tool at www.togetherj.com. This Web site also contains good tutori-
al information on using UML.

A C++ Class Library for TCP Sockets

CHAPTER 23
333

23

A
 C

+
+

 C
LA

SS
L

IB
R

A
RY

FO
R

TC
P

S
O

C
K

ETSFIGURE 23.1
UML class dia-
gram for the C++
Client class.

Client

+getResponseFromServer(char* char*):char*{constructor}

-port:int
-host_name:char*
-buf:char
-message:char
-socket_descriptor:int
…

Listing 23.1 shows the public and private interface for the Client class:

Listing 23.1 Client.hxx

class Client {
public:
Client(char * host = “127.0.0.1”, int port = 8080);
char * getResponseFromServer(char * command);

private:
int port;
char * host_name;

continues

2772316072 CH23 7/26/99 2:21 PM Page 333

char buf[8192];
char message[256];
int socket_descriptor;
struct sockaddr_in pin;
struct hostent *server_host_name;

};

The class definition for Client has only two public methods: the class constructor and
the method getResponseFromServer. The class definition for Client does not contain
any public data.

Understanding Server Design
The Server class will not be quite as easy to use as the Client class because in a real
application, each server object typically performs unique tasks. The Server class con-
tains only one public method: a class constructor. The first (and required) argument for
the class constructor is a pointer to a function that will be called by the server object to
process client requests. After this work function calculates the results for the client, the
server object returns the data prepared by the work function to the client. The public
method signatures for the constructor is:

Server(void (*do_work)(char *, char *, int), int port=8080);

The Server class allocates a protected memory buffer temp_buf that is used to hold data
that will eventually be returned to the client object. Before calling the Server class con-
structor, your program must create a function with the following function signature:

void my_work_func(char *command,
char *return_buffer,
int return_buffer_size);

This function is passed as the first argument to the Server class constructor and is called
to process each service request. You will see an example server application in the next
section. Figure 23.2 shows the UML class diagram for the Server class.

Interprocess Communication and Network Programming

PART III
334

Listing 23.1 CONTINUED

FIGURE 23.2
UML class dia-
gram for the C++
Server class.

Server

+Server(int){constructor}
+doWork(char*):void {virtual}
+~Server() {destructor}

#port:int
#sin:sin
#pin:pin
#sock_descriptor:int
#temp_sock_descriptor:int
…

2772316072 CH23 7/26/99 2:21 PM Page 334

Listing 23.2 shows the public and protected methods and data for the class Server.

Listing 23.2 Server.hxx

class Server {
public:
Server(void (*a_work_func)(char *, char *, int), int port = 8080);
~Server(); // closes socket, etc.

private:
void (*work_func)(char *, char *, int);
int port;
struct sockaddr_in sin;
struct sockaddr_in pin;
int sock_descriptor;
int temp_sock_descriptor;
char * temp_buf;

};

Implementation of C++
Client/Server Classes
The source files Client.cxx and Server.cxx in the IPC/C++ directory implement the
Client and Server classes. These classes were simple to implement: mainly pasting in
code from the files client.c and server.c in the directory IPC/SOCKETS. Since the actu-
al implementation code was described in Chapter 19 (the socket programming examples
server.c and client.c), this section will gloss over the socket programming code, and
concentrate on the differences between the C and C++ code.

We have already performed the most important task in implementing the Client and
Server classes in the preceding section: writing down the class requirements and design-
ing the public interface for the classes. In large development teams using C++, the most
senior developers usually design the classes and interfaces, and more junior team mem-
bers “turn the crank” and implement the private class behavior. In the Client and Server
classes, implementing the private behavior is as easy as cutting and pasting the example
C code into the structure imposed by your simple design.

A C++ Class Library for TCP Sockets

CHAPTER 23
335

23

A
 C

+
+

 C
LA

SS
L

IB
R

A
RY

FO
R

TC
P

S
O

C
K

ETS

2772316072 CH23 7/26/99 2:21 PM Page 335

Implementing the Client
In implementing the Client class, you want to be able to reuse a single client object
many times to make service requests to a specified server object. Here is the implementa-
tion of the Client class constructor:

Client::Client(char * my_host_name, int my_port) {
port = my_port;
host_name = my_host_name;

if ((server_host_name = gethostbyname(host_name)) == 0) {
perror(“Error resolving local host\n”);
exit(1);

}

bzero(&pin, sizeof(pin));
pin.sin_family = AF_INET;
pin.sin_addr.s_addr=htonl(INADDR_ANY);
pin.sin_addr.s_addr =

((struct in_addr*)(server_host_name->h_addr))->s_addr;
pin.sin_port = htons(port);

}

You resolve the host computer name and set up the data required to open a socket con-
nection in the Client constructor, but you do not actually create a socket interface. The
rationale for this is simple: a client object might be created, used for a service request,
then not reused for hours, or days. You do not want to tie up a socket connection with the
server. Instead, you put the behavior of creating the socket connection in the method
getResponseFromServer:

char * Client::getResponseFromServer(char * str) {

if ((socket_descriptor = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{
perror(“Error opening socket\n”);
exit(1);

}

if (connect(socket_descriptor,
(const sockaddr *)&pin, sizeof(pin)) == -1) {

perror(“Error connecting to socket\n”);
exit(1);

}
cout << “Sending message ‘“ << str << “‘ to server...\n”;

if (send(socket_descriptor, str, strlen(str), 0) == -1) {
perror(“Error in send\n”);

Interprocess Communication and Network Programming

PART III
336

2772316072 CH23 7/26/99 2:21 PM Page 336

exit(1);
}

cout << “..sent message.. wait for response...\n”;

if (recv(socket_descriptor, buf, 8192, 0) == -1) {
perror(“Error in receiving response from server\n”);
exit(1);

}

close(socket_descriptor);

cout << “\nResponse from server:\n” << buf << “\n”;
return buf;

}

The system calls for socket, connect, send, recv, and close were described in
Chapter 19.

Implementing the Server
The constructor for the Server class is unusual in the sense that the constructor does not
return to the calling program. The constructor sets up a processing loop and runs forever.
The implementation of the Server class constructor is similar to the server.c sample
program seen in Chapter 19:

Server::Server(void (*a_work_func)(char *,
char *,
int),

int my_port) {
work_func = a_work_func;
port = my_port;
int address_size;
int i, len;
char buf[4000]; // for receiving data from clients

temp_buf = new char[16384]; // space for return data

sock_descriptor = socket(AF_INET, SOCK_STREAM, 0);
if (sock_descriptor == -1) {
perror(“call to socket”);
exit(1);

}

bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;

A C++ Class Library for TCP Sockets

CHAPTER 23
337

23

A
 C

+
+

 C
LA

SS
L

IB
R

A
RY

FO
R

TC
P

S
O

C
K

ETS

2772316072 CH23 7/26/99 2:21 PM Page 337

sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(port);

if (bind(sock_descriptor, (struct sockaddr *)&sin,
sizeof(sin)) == -1) {

perror(“call to bind”);
exit(1);

}

if (listen(sock_descriptor, 20) == -1) {
perror(“call to listen”);
exit(1);

}
while(1) {
temp_sock_descriptor =
accept(sock_descriptor, (struct sockaddr *)&pin,

&address_size);
if (temp_sock_descriptor == -1) {
perror(“call to accept”);
exit(1);

}

if (recv(temp_sock_descriptor, buf, 4000, 0) == -1) {
perror(“call to recv”);
exit(1);

}

// this calls the work function passed
// to the class constructor:
work_func(buf, temp_buf, 16384);

// the virtual function doWork has filled in the
// data to be returned to the client in ‘temp_buf’:

len = strlen(temp_buf);

if (send(temp_sock_descriptor,
temp_buf, len, 0) == -1) {

perror(“call to send”);
exit(1);

}

close(temp_sock_descriptor);

}
}

The Server class constructor uses calls to socket, bind, listen, accept, and recv to set
up socket connections to remote client objects. The main processing loop in the construc-
tor calls the my_work function with each new service request, waits for my_work to place

Interprocess Communication and Network Programming

PART III
338

2772316072 CH23 7/26/99 2:21 PM Page 338

return data in the temp_buf buffer, then returns data to the client object. The following
section contains an example of writing a work function, creating a server object, and
handling client requests.

Testing the C++ Client/Server
Classes
The Server class contains as private data a pointer to a work function that is called to
process each client request. The following simple test program defines a simple work
function that returns a message to the client, and then creates a server object to handle
remote client requests.

#include <iostream.h>
#include “Server.hxx”

void my_work_func(char *command, char *return_buffer,
int return_buffer_size) {

cout << “entering my_work_func(“ << command << “,...)\n”;
sprintf(return_buffer,”overriden my_work_func. %s”, command);

}

void main() {
Server * server = new Server(my_work_func); // default to port=8080

}

In this example, you could also have created a server object directly instead of using the
new operator:

Server server(my_work_func);

The following short program can be used to test the Client class:

#include <iostream.h>
#include “Client.hxx”

void main() {
// default to host=”127.0.0.1”, port=8080
// in the CLient constructor call:

Client * client = new Client();char * s;
char buf[100];
sprintf(buf,”This is a test”);
s = client->getResponseFromServer(buf);
cout << “Server response: “ << s << “\n”;
sprintf(buf,”This is a another test”);
s = client->getResponseFromServer(buf);
cout << “Server response: “ << s << “\n”;
delete client; // closes the socket connection

}

A C++ Class Library for TCP Sockets

CHAPTER 23
339

23

A
 C

+
+

 C
LA

SS
L

IB
R

A
RY

FO
R

TC
P

S
O

C
K

ETS

2772316072 CH23 7/26/99 2:21 PM Page 339

The following output is seen when running the test_client.cpp sample program:

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/C++ > make
g++ -c Client.cpp
g++ -o test_client test_client.cpp Client.o
g++ -c Server.cpp
g++ -o test_server test_server.cpp Server.o
markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/C++ > test_client
Sending message ‘This is a test’ to server...
..sent message.. wait for response...

Response from server:
overriden my_work_func. This is a test
Server response: overriden my_work_func. This is a test
Sending message ‘This is a another test’ to server...
..sent message.. wait for response...

Response from server:
overriden my_work_func. This is a another test
Server response: overriden my_work_func. This is a another test
markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/C++ >

The following output is seen when running the test_server.cpp sample program:

markw@colossus:/home/markw/MyDocs/LinuxBook/src/IPC/C++ > test_server
entering my_work_func(This is a test,...)
entering my_work_func(This is a another test,...)

Summary
This chapter hopefully serves two purposes: introducing some readers to C++ and pro-
viding an example of wrapping socket programs in C++ classes to make using sockets
easier. This chapter was not a tutorial on C++; interested readers should search the
Internet for “C++ programming tutorial” and invest some time in learning the language.
C is a great language for writing small programs with a small number of programmers,
but C++ is a much better language for large projects.

Interprocess Communication and Network Programming

PART III
340

2772316072 CH23 7/26/99 2:21 PM Page 340

IN THIS CHAPTER

• Comparing libc5 and libc6 342

• Library Tools 343

• Writing and Using Static Libraries 346

• Writing and Using Shared
Libraries 352

• Using Dynamically Loaded Shared
Objects 354

24
C

H
A

PT
ER

Using Libraries

by Kurt Wall

2872316072 CH24 7/26/99 2:20 PM Page 341

This chapter looks at creating and using programming libraries, collections of code that
can be used (and reused) across multiple software projects. First, though, we’ll examine
some of the issues surrounding the two versions of the Linux C library (yes, there are
two fundamentally incompatible versions out there).

Libraries are a classic example of software development’s Holy Grail, code reuse. They
collect commonly used programming routines into a single location. The system C
library is an example. It contains hundreds of frequently used routines, such as the output
function printf() and the input function getchar() that would be tedious to rewrite
each time you create a new program. Beyond code reuse and programmer convenience,
however, libraries provide a great deal of utility code, such as functions for network pro-
gramming, graphics handling, data manipulation, and, most importantly, system calls.

Comparing libc5 and libc6
Before delving into library usage proper, you need to know about the two competing C
libraries, libc5 and libc6, also known as glibc2. libc5 and libc6 do not actually
compete, but the Linux world is moving from the old, very Linux-specific libc5 (some
systems use glibc1 as a synonym) to the more general, faster, and much more standards-
compliant and extensible libc6.

libc5 evolved in parallel with Linux—as Linux matured, the original GNU C library
was modified to coincide with kernel changes. While this made for the C library tightly
integrated with Linux, it also made the basic library difficult to maintain for other operat-
ing systems using GNU’s C library. In addition, libc5’s heavy reliance on Linux’s kernel
headers created an unwise set of dependencies. As Linus made changes to kernel head-
ers, these changes had to be regressed into the C library, creating maintenance problems
for Linus, the kernel development team, and the C library maintainer. It also slowed ker-
nel development. Conversely, as the C library changed, these changes had to be incorpo-
rated into the kernel. In fact, some parts of the kernel relied on undocumented, and thus
subject to change, features of the C library and, in some cases, outright bugs.

This situation changed dramatically in 1997 with the first release of libc6/glibc2.
Almost all of its dependencies on the Linux kernel headers were eliminated, in addition
to the following changes:

• The new library was made thread-safe.

• An easily extensible scheme for handling name databases was added.

Interprocess Communication and Network Programming

PART III
342

2872316072 CH24 7/26/99 2:20 PM Page 342

• The math library was corrected and in many cases speeded up.

• Standards compliance, such as with POSIX.1, POSIX.2, ISO/ANSI C,
and XPG4.2 became a reality, or much closer to it.

The price for these enhancements and improvements, however, was introducing funda-
mental incompatibilities between libc5 and libc6. Until all Linux distributions move to
libc6, Linux users have to be aware of and deal with this incompatibility. Distribution
builders, such as Caldera and Red Hat, have to provide compatibility libraries to enable
users to run programs that depend on one or the other of the library versions while simul-
taneously basing their distributions on the other library. Worse still, because the C library
is so pervasive and fundamental on any Linux (or UNIX) system, upgrading from libc5
to libc6 is a difficult undertaking and, if done incorrectly or carelessly, can render a sys-
tem unusable.

“What’s your point?” I hear you asking. There are several. First, if you are in the market
for a new Linux distribution, you can finesse the whole upgrade issue by using a libc6-
based distribution. Secondly, if you are a developer, you have to decide whether you will
support libc5, libc6, or both. Finally, the entire discussion provides an excellent object
lesson in software development, highlighting in international orange the importance of
good design and the far-reaching impact of interface changes in core software compo-
nents. The lesson is simply that thoughtful software design will at least attempt to pro-
vide a general, extensible public interface and minimize the necessity for changes that
will introduce core incompatibilities.

Library Tools
Before jumping into library creation and usage, this section takes a quick tour of the
tools you will need to create, maintain, and manage programming libraries. More
detailed information can be found in the manual pages and info documents for each of
the commands and programs discussed in the following sections.

Understanding the nm Command
The nm command lists all of the symbols encoded in an object or binary file. One use
would be to see what function calls a program makes. Another might be to see if a
library or object files provides a needed function. nm uses the following syntax:

nm [options] file

nm lists the symbols stored in file. Table 24.1 describes useful options for nm.

Using Libraries

CHAPTER 24
343

24

U
SIN

G
L

IB
R

A
R

IES

2872316072 CH24 7/26/99 2:20 PM Page 343

Table 24.1 nm OPTIONS

Option Description

-C|-demangle Convert symbol names into user-level names, especially
useful for making C++ function names readable.

-s|-print-armap When used on archive (.a) files, also print the index that
maps symbol names to the modules or member names in
which the symbol is defined.

-u|-undefined-only Only display undefined symbols, symbols defined external-
ly to the file being examined.

-l|-line-numbers Use debugging information to print the line number where
each symbol is defined, or the relocation entry if the
symbol is undefined.

Understanding the ar Command
The ar command uses the following syntax:

ar {dmpqrtx} [member] archive files...

ar creates, modifies, or extracts archives. It is most commonly used to create static
libraries—files that contain one or more object files, called members, of subroutines in
precompiled format. ar also creates and maintains a table that cross-references symbol
names to the members in which they are defined. Table 24.2 describes the most common-
ly used ar options.

Table 24.2 ar OPTIONS

Option Description

-c Create archive if it doesn’t exist from files, suppressing the warning ar
would emit if archive doesn’t exist.

-s Create or update the map linking symbols to the member in which they are
defined.

-r Insert files into the archive, replacing any existing members whose name
matches that being added. New members are added at the end of the archive.

-q Add files to the end of archive without checking for replacements.

Interprocess Communication and Network Programming

PART III
344

2872316072 CH24 7/26/99 2:20 PM Page 344

Understanding the ldd Command
The nm command lists the symbols defined in an object file, but unless you know what
library defines which functions, ldd is much more useful. ldd lists the shared libraries
that a program requires in order to run. Its syntax is:

ldd [options] file

ldd prints the names of the shared libraries required by file. For example, on my sys-
tem, the mail client mutt requires five shared libraries, as illustrated below:

$ ldd /usr/bin/mutt
libnsl.so.1 => /lib/libnsl.so.1 (0x40019000)
libslang.so.1 => /usr/lib/libslang.so.1 (0x4002e000)
libm.so.6 => /lib/libm.so.6 (0x40072000)
libc.so.6 => /lib/libc.so.6 (0x4008f000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Table 24.3 describes some of ldd’s useful options.

Table 24.3 ldd OPTIONS

Option Description

-d Perform relocations and report any missing functions

-r Perform relocations for both function and data objects and report any missing
functions or data objects

Using Libraries

CHAPTER 24
345

24

U
SIN

G
L

IB
R

A
R

IES

TIP

Given an archive created with the ar command, you can speed up access to the
archive by creating an index to the archive. Ranlib does precisely this, storing
the index in the archive file itself. ranlib’s syntax is:

ranlib [-v|-V] file

This generates a symbol map in file. It is equivalent to ar -s file.

2872316072 CH24 7/26/99 2:20 PM Page 345

Understanding ldconfig
The ldconfig command uses the following syntax:

ldconfig [options] [libs]

ldconfig determines the runtime links required by shared libraries that are located in
/usr/lib and /lib, specified in libs on the command-line, and stored in
/etc/ld.so.conf. ldconfig works in conjunction with ld.so, the dynamic
linker/loader, to create and maintain links to the most current versions of shared libraries.
Table 24.4 describes typically used options; a bare ldconfig updates the cache file.

Table 24.4 ldconfig OPTIONS

Option Description

-p Merely print the contents of /etc/ld.so.cache, the current list of shared
libraries about which ld.so knows.

-v Verbosely update /etc/ld.so.cache, listing each library’s version number, the
directory scanned, and any links that are created or updated.

Environment Variables and Configuration Files
The dynamic linker/loader ld.so uses two environment variables. The first is
$LD_LIBRARY_PATH, a colon-separated list of directories in which to search for shared
libraries at runtime. It is similar to the $PATH environment variable. The second variable
is $LD_PRELOAD, a whitespace-separated list of additional, user-specified, shared libraries
to be loaded before all others. This can be used to selectively override functions in other
shared libraries.

ld.so also uses two configuration files whose purposes parallel the environment vari-
ables mentioned in the preceding paragraph. /etc/ld.so.conf is a list of directories that
the linker/loader should search for shared libraries in addition to the standard directories,
/usr/lib and /lib. /etc/ld.so.preload is a disk-based version of the $LD_PRELOAD
environment variable: it contains a whitespace-separated list of shared libraries to be
loaded prior to executing a program.

Writing and Using Static Libraries
Static libraries (and shared libraries, for that matter) are files that contain object files,
called modules or members, of reusable, precompiled code. They are stored in a special

Interprocess Communication and Network Programming

PART III
346

2872316072 CH24 7/26/99 2:20 PM Page 346

format along with a table or map linking symbol names to the members in which the
symbols are defined. The map speeds up compilation and linking. Static libraries are typ-
ically named with a .a (for archive) extension.

To use library code, include its header file in your source code and link against the
library. For example, consider Listing 24.1, a header file for a simple error-handling
library, and Listing 24.2, the corresponding source code.

Listing 24.1 liberr.h

1 /*
2 * liberr.h
3 * Declarations for simple error-handling library
4 * Listing 24.1
5 */
6 #ifndef _LIBERR_H
7 #define _LIBERR_H
8
9 #include <stdarg.h>
10
11 #define MAXLINELEN 4096
12
13 /*
14 * Print an error message to stderr and return to caller
15 */
16 void err_ret(const char *fmt, ...);
17
18 /*
19 * Print an error message to stderr and exit
20 */
21 void err_quit(const char *fmt, ...);
22
23 /*
24 * Print an error message to logfile and return to caller
25 */
26 void log_ret(char *logfile, const char *fmt, ...);
27
28 /*
29 * Print a error message to logfile and exit
30 */
31 void log_quit(char *logfile, const char *fmt, ...);
32
33 /*
34 * Print an error message and return to caller
35 */
36 void err_prn(const char *fmt, va_list ap, char *logfile);
37
38 #endif _LIBERR_H

Using Libraries

CHAPTER 24
347

24

U
SIN

G
L

IB
R

A
R

IES

2872316072 CH24 7/26/99 2:20 PM Page 347

Listing 24.2 liberr.c

1 /*
2 * liberr.c
3 * Implementation of error-handling library
4 * Listing 24.2
5 */
6 #include <errno.h> /* for definition of errno */
7 #include <stdarg.h>
8 #include <stdlib.h>
9 #include <stdio.h>
10 #include ?liberr.h”
11
12 void err_ret(const char *fmt, ...)
13 {
14 va_list ap;
15
16 va_start(ap, fmt);
17 err_prn(fmt, ap, NULL);
18 va_end(ap);
19 return;
20 }
21
22 void err_quit(const char *fmt, ...)
23 {
24 va_list ap;
25
26 va_start(ap, fmt);
27 err_prn(fmt, ap, NULL);
28 va_end(ap);
29 exit(1);
30 }
31
32 void log_ret(char *logfile, const char *fmt, ...)
33 {
34 va_list ap;
35
36 va_start(ap, fmt);
37 err_prn(fmt, ap, logfile);
38 va_end(ap);
39 return;
40 }
41
42 void log_quit(char *logfile, const char *fmt, ...)
43 {
44 va_list ap;
45
46 va_start(ap, fmt);
47 err_prn(fmt, ap, logfile);
48 va_end(ap);
49 exit(1);

Interprocess Communication and Network Programming

PART III
348

2872316072 CH24 7/26/99 2:20 PM Page 348

50 }
51
52 extern void err_prn(const char *fmt, va_list ap, char *logfile)
53 {
54 int save_err;
55 char buf[MAXLINELEN];
56 FILE *plf;
57
58 save_err = errno; /* value caller might want printed */
59 vsprintf(buf, fmt, ap);
60 sprintf(buf + strlen(buf), ?: %s”, strerror(save_err));
61 strcat(buf, ?\n”);
62 fflush(stdout); /* in case stdout and stderr are the same */
63 if(logfile != NULL)
64 if((plf = fopen(logfile, ?a”)) != NULL) {
65 fputs(buf, plf);
66 fclose(plf);
67 } else
68 fputs(?failed to open log file\n, stderr);
69 else
70 fputs(buf, stderr);
71 fflush(NULL); /* flush everything */
72 return;
73 }

Using Libraries

CHAPTER 24
349

24

U
SIN

G
L

IB
R

A
R

IES

Note

Readers of Richard Stevens’ Advanced Programming in the UNIX Environment
will recognize much of this code. I have used this code for many years because
it neatly met my needs for basic error-handling routines. I am indebted to
Stevens’ generosity in allowing me to reproduce this code here.

A few remarks about the code may be helpful. We include <stdarg.h> in Listing 24.1
because we use ANSI C’s variable length argument list facility (If you are unfamiliar
with variable length argument lists, consult your favorite C reference manual). To protect
against multiple inclusion of the header file, we wrap the header in a preprocessor
macro, _LIBERR_H. Do not use these error logging functions log_ret() and log_quit()
in production code; the system logging facility defined in <syslog.h> is more appropri-
ate. Finally, this library should not be used in a program that runs as a daemon because it
writes to stderr. Such output makes no sense for a daemon because daemons usually do
not have a controlling terminal.

2872316072 CH24 7/26/99 2:20 PM Page 349

To create a static library, the first step is compiling your code to object form:

$ gcc -H -c liberr.c -o liberr.o

Next, use the ar utility to create an archive:

$ ar rcs liberr.a liberr.o

If all went well, the static library liberr.a was created. The output of nm liberr.a
should prove instructive:

1
2 liberr.o:
3 U _IO_stderr_
4 U _IO_stdout_
5 000000f0 T err_prn
6 00000030 T err_quit
7 00000000 T err_ret
8 U errno
9 U exit
10 U fclose
11 U fflush
12 U fopen
13 U fputs
14 000000b0 T log_quit
15 00000070 T log_ret
16 U sprintf
17 U strcat
18 U strerror
19 U strlen
20 U vsprintf

Line 2 is the member name. Lines 3–20 list the symbols defined in this archive. The
default output format is a three-column list consisting of the symbol value, the symbol
type, and the symbol name. A symbol type of U means that the symbol, for example,
fopen (line 12), is undefined in this member; a T means the symbol exists in the text or
code area of the object file. See the binutils info page (info binutils nm) for a com-
plete description of nm’s output.

With the archive created, we need a driver program to test it. Listing 24.3 shows the
results of our test. We attempt to open a non-existent file four times, once for each of the
four error-handling functions in the library.

Listing 24.3 errtest.c

1 /*
2 * errtest.c

Interprocess Communication and Network Programming

PART III
350

2872316072 CH24 7/26/99 2:20 PM Page 350

3 * Test program for error-handling library
4 * Listing 24.3
5 */
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include “liberr.h”
10
11 #define ERR_QUIT_SKIP 1
12 #define LOG_QUIT_SKIP 1
13
14 int main(void)
15 {
16 FILE *pf;
17
18 fputs(“Testing err_ret()...\n”, stdout);
19 if((pf = fopen(“foo”, “r”)) == NULL)
20 err_ret(“%s %s”, “err_ret()”, “failed to open foo”);
21
22 fputs(“Testing log_ret()...\n”, stdout);
23 if((pf = fopen(“foo”, “r”)) == NULL);
24 log_ret(“errtest.log”, “%s %s”, “log_ret()”,
25 “failed to open foo”);
26
27 #ifndef ERR_QUIT_SKIP
28 fputs(“Testing err_quit()...\n”, stdout);
29 if((pf = fopen(“foo”, “r”)) == NULL)
30 err_ret(“%s %s”, “err_quit()”, “failed to open foo”);
31 #endif /* ERR_QUIT_SKIP */
32
33 #ifndef LOG_QUIT_SKIP
34 fputs(“Testing log_quit()...\n”, stdout);
35 if((pf = fopen(“foo”, “r”)) == NULL)
36 log_ret(“errtest.log”, “%s %s”, “log_quit()”,
37 “failed to open foo”);
38 #endif /* LOG_QUIT_SKIP */
39
40 return EXIT_SUCCESS;
41 }

The macros on lines 11 and 12 prevent execution of the *_quit() functions on lines
26–30 and 32–36, respectively. To test them, comment out one of the macros and recom-
pile, and then comment out the other and recompile.

Compile the test program using this command line:

$ gcc -g errtest.c -o errtest -L. -lerr

Using Libraries

CHAPTER 24
351

24

U
SIN

G
L

IB
R

A
R

IES

2872316072 CH24 7/26/99 2:20 PM Page 351

As discussed in Chapter 3, “GNU cc,” -L. tells the linker to look in the current directory
for additional libraries, and -lerr specifies the library against which we want to link.
Running the program gives the following results:

$./errtest
Testing err_ret()...
err_ret() failed to open foo: No such file or directory
Testing log_ret()...

The function log_ret() writes its output to errtest.log. Using the cat command on
errtest.log yields the following:

$ cat errtest.log
log_ret() failed to open foo: No such file or directory

The testing of the *_quit() functions are left as exercises for you.

Writing and Using Shared
Libraries
Shared libraries have several advantages over static libraries. First, shared libraries con-
sume fewer system resources. They use less disk space because shared library code is not
compiled into each binary but linked and loaded dynamically at runtime. They use less
system memory because the kernel shares the memory the library occupies among all the
programs that use the library. Second, shared libraries are marginally faster because they
only need to be loaded into memory once. Finally, shared libraries simplify code mainte-
nance. As bugs are fixed or features added, users need only obtain the updated library
and install it. With static libraries, each program that uses the library must be recompiled.

The dynamic linker/loader, ld.so, links symbol names to the appropriate shared library
at runtime. Shared libraries have a special name, the soname, that consists of the library
name and the major version number. The full name of the C library on one of my sys-
tems, for example, is libc.so.5.4.46. The library name is libc.so; the major version
number is 5; the minor version number is 4; 46 is the release or patch level. So, the C
library’s soname is libc.so.5. The new C library, libc6 (discussed at the beginning of
this chapter) has an soname of libc.so.6—the change in major version numbers indi-
cates a significant library change, to the extent that the two libraries are incompatible.
Minor version numbers and patch level numbers change as bugs are fixed, but the son-
ame remains the same and newer versions are usually compatible with older versions.

Applications link against the soname. The ldconfig utility creates a symbolic link from
the actual library, libc.so.5.4.46, to the soname, libc.so.5, and stores this informa-
tion in the /etc/ld.so.cache. At runtime, ld.so reads the cache, finds the required

Interprocess Communication and Network Programming

PART III
352

2872316072 CH24 7/26/99 2:20 PM Page 352

soname and, because of the symbolic link, loads the actual library into memory and links
application function calls to the appropriate symbols in the loaded library.

Library versions become incompatible under the following conditions:

• Exported function interfaces change

• New function interfaces are added

• Function behavior changes from the original specification

• Exported data structures change

• Exported data structures are added

To maintain library compatibility, follow these guidelines:

• Add functions to your library with new names instead of changing existing func-
tions or changing their behavior

• Only add items to the end of existing data structures, and either make them option-
al or initialize them inside the library

• Don’t expand data structures used in arrays

Building shared libraries differs slightly from building static libraries. The process of
building shared libraries is outlined in the list below:

1. When compiling the object file, use gcc’s –fPIC option, which generates Position
Independent Code that can link and load at any address.

2. Don’t strip (remove debugging symbols from) the object file and don’t use gcc’s
-fomit-frame-pointer option—doing so could possibly make debugging impossi-
ble.

3. Use gcc’s -shared and -soname options.

4. Use gcc’s -Wl option to pass arguments to the linker, ld.

5. Explicitly link against the C library, using gcc’s -l option.

Returning to the error-handling library, to create a shared library, first build the object
file:

$ gcc -fPIC -g -c liberr.c -o liberr.o

Next, link the library:

$ gcc -g -shared -Wl,-soname,liberr.so -o liberr.so.1.0.0 liberr.o -lc

Because we will not install this library as a system library in /usr or /usr/lib, we need
to create two links, one for the soname:

$ ln -s liberr.so.1.0.0 liberr.so.1

Using Libraries

CHAPTER 24
353

24

U
SIN

G
L

IB
R

A
R

IES

2872316072 CH24 7/26/99 2:20 PM Page 353

and one for the linker to use when linking against liberr, using -lerr:

$ ln -s liberr.so.1.0.0 liberr.so

Now, to use the new shared library, we revisit the test program introduced in the last sec-
tion in Listing 24.3. We need to tell the linker what library to use and where to find it, so
we will use the -l and -L options:

$ gcc -g errtest.c -o errtest -L. -lerr

Finally, to execute the program, we need to tell ld.so, the dynamic linker/loader, where
to find the shared library:

$ LD_LIBRARY_PATH=$(pwd) ./errtest

As pointed out earlier, the environment variable $LD_LIBRARY_PATH adds the path it con-
tains to the trusted library directories /lib and /usr/lib. ld.so will search the path
specified in the environment variable first, ensuring that it finds your library. An alterna-
tive to the awkward command line is to add the path to your library to /etc/ld.so.conf
and update the cache (/etc/ld.so.cache) by running (as root) ldconfig. Yet another
alternative is to place your library in /usr/lib, create a symbolic link to the soname, and
run (as root) ldconfig to update the cache file. The advantage of the last method is that
you do not have to add the library search path using gcc’s -L option.

Using Dynamically Loaded Shared
Objects
One more way to use shared libraries is to load them dynamically at runtime, not as
libraries linked and loaded automatically, but as entirely separate modules you explicitly
load using the dlopen interface. You might want to use the dl (dynamic loading) inter-
face because it provides greater flexibility for both the programmer and end user, and
because the dl interface is a more general solution.

Suppose, for example, you are writing the next killer graphics manipulation and creation
program. Within your application, you handle graphical data in a proprietary but easy-to-
use way. However, you want to be able to import and export from and to any of the liter-
ally hundreds of available graphics file formats. One way to achieve this would be to
write one or more libraries, of the sort discussed in this chapter, to handle importing and
exporting from and to the various formats. Although it is a modular approach, each
library change would require recompilation, as would the addition of new formats.

Interprocess Communication and Network Programming

PART III
354

2872316072 CH24 7/26/99 2:20 PM Page 354

The dl interface enables a different approach: designing a generic, format-neutral inter-
face for reading, writing, and manipulating graphics files of any format. To add a new or
modified graphics format to your application, you simply write a new module to deal
with that format and make your application aware that it exists, perhaps by modifying a
configuration file or placing the new module in a predefined directory (the plug-ins that
augment the Netscape Web browser’s capabilities use a variation of this approach). To
extend your application’s capabilities, users simply need to obtain new modules (or plug-
ins); they (or you) do not need to recompile your application, only to edit a configuration
file or copy the module to a preset directory. Existing code in your application loads the
new modules and, voilá, you can import and export a new graphic format.

The dl interface (which is itself implemented as a library, libdl), contains functions to
load, search, and unload shared objects. To use these functions, include <dlfcn.h> in
your source code and link against libdl using -ldl in your compilation command or
make file. Notice that you don’t have to link against the library you want to use. Even
though you use a standard shared library, you do not use it the normal way. The linker
never knows about shared objects and, in fact, the modules do not even need to exist
when you build the application.

Understanding the dl Interface
The dl interface provides four functions to handle all of the tasks necessary to load, use,
and unload shared objects.

Loading Shared Objects
To load a shared object, use the dlopen() function, which is prototyped below:

void *dlopen(const char *filename, int flag);

dlopen() loads the shared object specified in filename in the mode specified by flag.
filename can be an absolute pathname, a bare filename, or NULL. If it is NULL, dlopen
opens the currently executing program, that is, your program. If filename is an absolute
pathname, dlopen opens that file. If it is a bare filename, dlopen looks in the following
locations, in the order given, to find the file: $LD_ELF_LIBRARY_PATH,
$LD_LIBRARY_PATH, /etc/ld.so.cache, /usr/lib, and /lib.

flag can be RTLD_LAZY, meaning that symbols from the loaded object will be resolved as
they are called, or RTLD_NOW, which means that that all symbols from the loaded object
will be resolved before dlopen() returns. Either flag, if logically OR-ed with
RTLD_GLOBAL, will cause all symbols to be exported, just as if they had been directly
linked.

Using Libraries

CHAPTER 24
355

24

U
SIN

G
L

IB
R

A
R

IES

2872316072 CH24 7/26/99 2:20 PM Page 355

dlopen() returns a handle to the loaded object if it finds filename, or returns NULL
otherwise.

Using Shared Objects
Before you can use any code in a demand-loaded library, you have to know what you are
looking for and be able to access it somehow. The dlsym() function meets both needs. It
is prototyped as:

void *dlsym(void *handle, char *symbol);

dlsym() searches for the symbol or function named in symbol in the loaded object to
which handle refers. handle must be a handle returned by dlopen(); symbol is a stan-
dard, C-style string.

dlsym() returns a void pointer to the symbol or NULL on failure.

Checking for Errors
As I wrote in Chapter 13, “Handling Errors,” robust code checks for and handles as
many errors as possible. The dlerror() function allows you to find out more about an
error that occurs when using dynamically loaded objects.

const char *dlerror(void);

If any of the other functions fails, dlerror() returns a string describing the error and
resets the error string to NULL. As a result, a second immediate call to dlerror() will
return NULL.

Dlerror() returns a string describing the most recent error, or returns NULL otherwise.

Unloading Shared Objects
In order to conserve system resources, particularly memory, when you are through using
the code in a shared object, unload it. However, because of the time overhead involved in
loading and unloading shared objects, be certain you will not need it at all, or soon,
before unloading it. Dlclose(), prototyped below, closes a shared object.

int dlclose(void *handle);

dlclose() unloads the shared object to which handle refers. The call also invalidates
handle. Because the dl library maintains link counts for dynamic libraries, they are not
deallocated and their resources returned to the operating system until dlclose() has
been called on a dynamic library as many times as dlopen() was successfully called
on it.

Interprocess Communication and Network Programming

PART III
356

2872316072 CH24 7/26/99 2:20 PM Page 356

Using the dl Interface
To illustrate the usage of the dl interface, we revisit our trusty error-handling library one
last time, providing a new driver program, shown in Listing 24.4.

Listing 24.4 dltest.c

1 /*
2 * dltest.c
3 * Dynamically load liberr.so and call err_ret()
4 * Listing 24.4
5 */
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <dlfcn.h>
9
10 int main(void)
11 {
12 void *handle;
13 void (*errfcn)();
14 const char *errmsg;
15 FILE *pf;
16
17 handle = dlopen(“liberr.so”, RTLD_NOW);
18 if(handle == NULL) {
19 fprintf(stderr, “Failed to load liberr.so: %s\n”, dlerror());
20 exit(EXIT_FAILURE);
21 }
22
23 dlerror();
24 errfcn = dlsym(handle, “err_ret”);
25 if((errmsg = dlerror()) != NULL) {
26 fprintf(stderr, “Didn’t find err_ret(): %s\n”, errmsg);
27 exit(EXIT_FAILURE);
28 }
29 if((pf = fopen(“foobar”, “r”)) == NULL)
30 errfcn(“couldn’t open foobar”);
31
32 dlclose(handle);
33 return EXIT_SUCCESS;
34 }

The command line used to compile Listing 24.4 was:

$ gcc -g -Wall dltest.c -o dltest -ldl

Using Libraries

CHAPTER 24
357

24

U
SIN

G
L

IB
R

A
R

IES

2872316072 CH24 7/26/99 2:20 PM Page 357

As you can see, we neither link against liberr nor include liberr.h in the source code.
All access to liberr.so comes through the dl interface. With the possible exception of
the use of a function pointer, Listing 24.4 is straightforward. Lines 23–27 illustrate the
correct way to use the dlerror() function. We call dlerror() once to reset the error
string to NULL (line 23), call dlsym(), then call dlerror() again, saving its return value
in another variable so we can use the string later. On line 30, we call errfcn() as we
normally would. Finally, we unload the shared object and exit. If all has gone well, a
sample session of dltest will resemble the following:

$ LD_LIBRARY_PATH=$(pwd) ./dltest
couldn’t open foobar: No such file or directory

This is the output we expected. Compare it to the output of Listing 24.2.

Interprocess Communication and Network Programming

PART III
358

NOTE

If you are not familiar with function pointers (see lines 13, 24, and 30 of Listing
24.4), quickly review them in the reference manual of you choice. Briefly, how-
ever, line 13 says that errfcn is a pointer to a function that has no arguments
and that returns nothing (void).

NOTE

Appendix A introduces a symbol table library developed by Mark Whitis. It illus-
trates the design issues involved in creating a programming library as well as
the nuts and bolts of building and maintaining library code. The library itself is
also intrinsically useful. I encourage you to check it out.

Summary
This chapter examined a variety of ways to reuse code, using static and shared libraries
and dynamically loading shared objects at runtime. The most common usage under
Linux is shared libraries.

2872316072 CH24 7/26/99 2:20 PM Page 358

IN THIS CHAPTER

• Types of Drivers 360

• The Demonstration Hardware 363

• Development Configuration 369

• Low Level Port I/O 370

• Initiating Interrupts to Utilize Device
Drivers 372

• Accessing Memory Using DMA 373

• Simple Usermode Test Driver 374

• Debugging Kernel Level Drivers 375

• Bottom Half and Top Half 376

• Creating a Kernel Driver 376

• Other Sources of Information 408

25
C

H
A

PT
ER

Device Drivers

by Mark Whitis

2972316072 CH25 7/26/99 2:19 PM Page 359

This chapter shows how to write a kernel level device driver, specifically in the form of a
loadable kernel module. I will present a real world device driver for a stepper motor con-
troller.

Three levels of experimentation are possible with this driver. You can actually build the
circuit from the included schematic (see Figure 25.1 in “The Demonstration Hardware”
section later in the chapter). You can run the driver on an unused parallel printer port
without the circuit attached and optionally view the signals with a logic probe, oscillo-
scope, or similar device. Or, you can run the driver with the port I/O operations disabled,
which will allow you to experiment with the driver without a free parallel port.

The stepper motor driver was chosen both because I need such a driver for my own use
and because it is one of the simplest drivers I could think of that would illustrate the use
of most of the programming needed to implement a real driver; many other drivers
would either be too simple or too complex. It was also selected because I can provide
documentation for the hardware along with the driver.

Types of Drivers
Kernel level device drivers are not necessary for many devices. However, there are a
variety of types for when they are. This section introduces the different types of drivers
and how they are used with the kernel.

Statically Linked Kernel Device Drivers
Device drivers can be compiled and linked directly into the kernel. Statically linked mod-
ules once compiled into the kernel remain attached to the kernel until it is rebuilt. Now
that loadable kernel modules (LKM) exist, they are preferable. These modules can be
loaded and removed without having to relink your kernel. This allows for dynamic con-
figuration of your system. Writing a statically linked driver is almost the same as writing
a loadable kernel module. The statically linked and loadable kernel modules are very
similar in nature, but the LKM is now the more accepted method.

Loadable Kernel Modules
Loadable Kernel Modules can be loaded and unloaded while the system is running,
hence the name. This is a great improvement over having to modify, recompile, and rein-
stall a new kernel and then reboot every time you want to test a new version. Because it
is optional and loaded at runtime, the GPL license on the kernel should not taint your
driver code. LKMs do not use up kernel memory when they are not being used and can
easily be distributed separately from the kernel.

Interprocess Communication and Network Programming

PART III
360

2972316072 CH25 7/26/99 2:19 PM Page 360

Shared Libraries
In some cases, the driver can be implemented as a shared library. This is not appropriate
if the driver needs special privileges or has special timing needs. Typically, these will be
used for higher level drivers that communicate with the hardware using a standard low-
level driver (such as the generic SCSI driver).

The SANE scanner library, mentioned in Chapter 2, “Setting Up a Development
System,” is an example of a shared-library based driver system. The generic SANE scan-
ner shared library selects the appropriate model-specific shared library and dynamically
loads it. The model-specific shared library communicates with the scanner over the SCSI
bus through the generic SCSI kernel driver.

If you want to write a driver for a scanner or similar imaging device, write a SANE dri-
ver. While you are debugging, you might find it easier to structure your program as a
plain, unprivileged usermode program and add the SANE interface later.

Unprivileged Usermode Program
Code executes in either kernel mode or user mode. The preceding types run in kernel
mode but the others run in user mode (or user space). Code running in kernel mode has
unlimited low-level access to the hardware, but access to higher level things such as files
and TCP network connections is not that easy to get.

Many devices connect to the computer through a standard communications channel such
as SCSI, IDE, serial ports, parallel ports (if they use standard parallel port protocols—
many don’t), USB, IRDA, and so on. The higher level drivers for these devices frequent-
ly do not need any special privileges except for write access on the appropriate /dev file,
which can often have its privileges relaxed.

Printer drivers are a good example of drivers of this type. To write a driver for a printer,
you write a driver module for the ghostscript postscript interpreter. You can also imple-
ment it as a simple standalone program that takes a PBM (Portable BitMap) file (or
stream) as input. Ghostscript can be configured to output in PBM files and you can then
modify the print queue to pipe the output of ghostscript into your standalone program.

Most RS-232 devices fit in this category. The kernel RS-232 drivers provide the low-
level interface to ordinary dumb serial ports as well as to smart multiport serial cards.
Some examples of devices that may fit into this category are PDAs, weather stations,
GPS receivers, some voice/fax/data modems, some EPROM programmers, and serial
printers (including label printers). I use this type of driver for my digital camera although
a SANE driver would be more appropriate. The X10 and Slink-e devices, mentioned in

Device Drivers

CHAPTER 25
361

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 361

Chapter 2, which are RS-232 devices that control lights, coffee pots, CD changers,
VCRs, receivers, and other appliances found around the home or office, also fit in this
category.

Privileged Usermode Programs
If you need special privileges, such as raw port I/O, an ordinary usermode program run-
ning as root may be the way to go, particularly during the early experimentation stage. If
you make this program suid or otherwise allow ordinary users (or worse yet remote
users) to control or communicate with the program, there can be serious security implica-
tions. Chapter 35, “Secure Programming,” will discuss the security issues in more detail.

Daemons
Privileged or unprivileged usermode driver programs can be extended into a daemon. In
some cases, the daemon will pretty much run by itself. In other cases, you will allow
local or remote users to communicate with the daemon; in that case, again, you need to
exercise security precautions.

Character Devices Versus Block Devices
Most Linux kernel drivers are likely to implement character special devices. Applications
communicate with these devices by reading and writing streams of data to character spe-
cial files created in /dev using the mknod command.

Block mode drivers are used for disk and CD-ROM I/O and similar operations. These are
typically used for devices you would mount a filesystem on. This chapter will not cover
block mode drivers; support for new devices will, in most cases, simply require modifi-
cations to the existing drivers.

Drivers for SCSI host adapters implement both block (for disk I/O) and character devices
(for the generic device interface). They do this through the existing SCSI infrastructure.
Network interface drivers are yet another type that does not use the normal character or
block mode interface. Drivers for sound cards use character device interfaces. Drivers for
the PCI bus, PCMCIA cards, and SBUS (on Sparc systems) have their own peculiar
interface and provide infrastructure for other drivers.

Device drivers can also be written that do not actually interact with any hardware device.
The null device, /dev/null, is a simple example. Device drivers can be used to add
general-purpose kernel code. A device driver can add new system calls or replace
existing ones.

Interprocess Communication and Network Programming

PART III
362

2972316072 CH25 7/26/99 2:19 PM Page 362

The Demonstration Hardware
To demonstrate writing a device driver, I will use a very simple piece of hardware: a
three axis stepper motor driver. Stepper motors are a type of motor that lend themselves
to simple computer control. The name comes from the fact that these motors move in
discrete steps. By energizing different combinations of windings, the computer can com-
mand the motor to move a single step clockwise or counterclockwise.

Stepper motors are used in a variety of computer peripherals. Table 25.1 shows how step-
pers are commonly used.

Table 25.1 STEPPER MOTOR FUNCTIONS IN COMPUTER PERIPHERALS

Peripheral Function(s)

Printer Paper advance, carriage movement

Pen plotters Movement of pen and/or paper in X and Y axis

Scanners Move scanner carriage, filter wheel (3 pass scanners)

Some tape drives Move head relative to tape

Floppy drives Head positioning

Old hard drives Head positioning

Many computer peripherals have an onboard processor that controls the stepper motors,
among other things, so you won’t need to drive the motor directly in that case. Other
devices have no onboard intelligence (no microprocessor); in this case, you will need to
control the motor directly in order to write a driver for the device.

Stepper motors are also widely used in robotics and industrial systems. I wrote this dri-
ver to control my computerized vertical milling machine. This machine can be used to
cut (machine) metal, plastics, circuit boards, and other materials into desired shapes. The
X and Y axes move the work and the Z axis moves the spinning cutter bit up and down.

Understanding the Workings of a Stepper
Motor
A simple stepper motor has two electromagnet coils, oriented ninety degrees from one
another. Each coil can be off or on and it can have two different polarities. To simplify
the drive electronics, at the expense of performance, most stepper motors have center
tapped windings. By connecting the center to the positive supply voltage and grounding
one or the other end of the winding, you can effectively magnetize the winding in either

Device Drivers

CHAPTER 25
363

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 363

positive or negative polarity (thus reversing the polarity of the magnetic field). These
types of motors are called unipolar stepper motors. Unipolar stepper motors have 5, 6, or
8 wires. Four of the wires will connect directly to the driver transistors. All of the
remaining wires will connect to the positive supply voltage.

You can make a crude stepper motor from a couple scraps of iron, some wire, and a com-
pass; actually, you can dispense with the iron. If you try this, be sure to use a current
limiting resistor to prevent burning out the coil, damaging the driver circuit or power
supply, or re-magnetizing the compass in a different orientation. Imagine yourself hold-
ing the compass so the axis of rotation faces you. Now wind copper wire around the top
and bottom edges of the compass to make one coil. Make the second coil by winding
around the left and right sides.

Figure 25.1 shows my no-frills stepper motor driver circuit. This circuit can also be used
to drive relays, lights, solenoids, and many other devices. More sophisticated circuits will
provide higher performance (more torque and/or faster speeds) and greater safety, but
this circuit is inexpensive, has a low parts count, and is easy to build and understand with
only four transistors and four resistors per motor. This circuit can be built from parts
costing less than $25.

Whether or not you intend to build a stepper motor driver, this circuit provides a simple
device that can be used to illustrate how to develop Linux device drivers.

There is an insert on the schematic that shows a motor being driven through eight half
steps. The B and B* phases are drawn reversed (so I wouldn’t have to draw wires cross-
ing) so the driver will actually rotate the motor in the opposite direction from the illustra-
tion in the insert. You can change the direction of rotation in the driver by changing the
step tables.

There are basically three ways to drive a four phase (bifillar) wound stepper motor. You
can think of the four (half) coils as pulling the motor’s rotor in the north, east, south, and
west directions (not to be confused with north and south magnetic poles). Single phase
drive energizes one winding at a time in the sequence North (A), East (B), South (A*),
and West (B*); the phase names in parentheses correspond to those on the schematic.
Double phase drive uses more power and delivers more torque and faster operation by
using the sequence North East (A+B), South East (A*+B), South West (A*+B*), and
North West (A+B*). Half stepping provides high torque, high speed, and twice the reso-
lution using the sequence North (A), North East (A+B), East (B), South East (A*+B),
South (A*), South West (A*+B*), West (B*), and North West (A+B*). Half stepping will
be used for this driver. When you get to the end of the sequence, you simply repeat it in
the same order. To reverse the direction of rotation, simply reverse the sequence. To hold
the motor still, simply pause the sequence at the desired position, keeping the winding(s)
energized.

Interprocess Communication and Network Programming

PART III
364

2972316072 CH25 7/26/99 2:19 PM Page 364

FIGURE 25.1
A stepper motor
driver circuit.

Device Drivers

CHAPTER 25
365

25

D
EV

IC
E

D
R

IV
ER

S

S

NV+

V+

S N
V+

V+

S

N

V+

V+

SN
V+

V+

S

NV+

V+

NS

S N
V+

V+

S

N

SN
V+

V+

S

N

S

NV+

V+

N S

V+

V+

V+

S
N

S
N

Motor 0
Phase A

Motor 0
Phase A*

V+

Motor 1
Phase A

Motor 1
Phase A*

V+

Motor 2
Phase A

Motor 2
Phase A*

Motor 0
Phase B

Motor 0
Phase B*

Motor 1
Phase B

Motor 1
Phase B*

Motor 2
Phase B

Motor 2
Phase B*

V+

TIP120
1K

TIP1201K

TIP120
1K

TIP1201K

TIP1201K

TIP1201K

TIP1201K

TIP1201K

TIP1201K

TIP1201K

TIP1201K

TIP1201K

PC
Parallel

Port Pins

2

3

4

5

6

7

8

9

1

14

16

17

Half Step 0 Half Step 1

Half Step 2 Half Step 3

Half Step 4 Half Step 5

Half Step 6 Half Step 7

Stepper Motor Operation

V+

V+

V+

Transistor

Resistor

Connection

Switch

Ground

Motor Power

Junction

Stepper Motor

Motor 0 Low Limit

Motor 1 Low Limit

Motor 2 Low Limit

Motor 0 High Limit

Motor 1 High Limit

Motor 2 High Limit

13

12

11

15

18,19,20,21
22,23,24,25

The example motor used in the preceding descriptions has one electrical revolution per
mechanical revolution. Most real motors have multiple electrical revolutions per mechan-
ical revolution, which increases torque and resolution at the expense of speed. The most
common motors have 24 steps (48 half steps) or 200 steps (400 half steps) per inch.
When I built my milling machine, I used 400 half step per revolution motors in combina-
tion with a 20 turns per inch screw drive; this gives 8000 steps per inch of movement.

WARNING

Misapplication of this circuit can damage the computer, circuit, motor, or even
cause a fire.

2972316072 CH25 7/26/99 2:19 PM Page 365

Use a power supply that has voltage and current ratings compatible with your stepper
motor. This driver circuit has no protection against energizing all four windings simulta-
neously, which in some cases will damage the motor and/or power supply and could even
cause a fire due to overheating. Reduce the supply voltage to 70 percent of the motor’s
rating to protect against this at the expense of performance; some motors’ specifications
are already derated for this reason. Make sure the current draw of the motor windings
does not exceed the current ratings and power dissipation of the transistors; heat sink the
transistors. The stepper motor will generate voltage spikes on the windings during opera-
tion. Instead of clamping these spikes, this simple circuit uses a transistor that can with-
stand the expected voltage spikes; check to make sure the motor you use does not gener-
ate spikes large enough to damage the transistor or the motor’s insulation. Substituting a
TIP122, or other suitable transistor with a higher voltage rating, or adding transient sup-
pression may be required. These transients may cause a painful electric shock if you
touch the stepper motor connections while in operation. The transistors used in this cir-
cuit have a very high gain (greater than 1000); do not substitute low gain transistors.
Some wimpy parallel ports may not be able to supply enough current to drive the transis-
tors, resulting in damage to either the parallel port or transistors. Use of a separate paral-
lel printer card, easily and inexpensively replaced in case of damage, is recommended;
built-in parallel ports on laptop computers will be particularly expensive to replace. Do
not disconnect the parallel port cable unless both the computer and motor power supply
are turned off. Improper ground wiring may result in ground loops. The circuit should be
assembled by a qualified electronics technician or at least a proficient hobbyist.

Heat sinks are required on the transistors in most cases. I actually built my circuit on a
piece of quarter inch thick aluminum plate and mounted the transistors directly to the
plate using mica insulators, insulating shoulder washers used for transistor mounting
(you don’t want the bolt to short out the transistor), nuts, and bolts. I then soldered the
resistors directly to the transistor leads and mounted some terminal strips on standoffs
above the transistors for connection to the motors. This construction provides heat sink-
ing through the aluminum plate and does not require a breadboard or printed circuit
board.

The four output lines on the control port tend to have 4.7K pullup resistors to 5V. You
may want to add smaller pullup resistors to +5V to provide more drive current for the
transistors; I did not need to do that. Power for the motor can be supplied by a laboratory
power supply, a large battery, or even, for small motors, the PC’s 12V supply (available
on the disk drive power connectors).

An external clock (pulse generator) can be connected to the parallel port Ack line to pro-
vide timing for the stepper motor. This provides a timing source for running the motor at

Interprocess Communication and Network Programming

PART III
366

2972316072 CH25 7/26/99 2:19 PM Page 366

a speed faster than 100 pulses per second (the speed of the Linux jiffy clock). The Linux
Real Time extensions could also be used for this purpose.

Standard or Bidirectional Parallel Port
This circuit uses raw output to the PC’s parallel printer port. We cannot use the normal
printer driver because we are using these signals in a non-standard way. You cannot daisy
chain other devices off the same parallel port with this circuit so don’t try to use a print-
er, Zip drive, CD-ROM, or other device on the same port.

I will describe the normal operation of a PC parallel port in standard or bidirectional
mode. EPP or ECP modes, available on some ports, function somewhat differently. You
may need to configure the port into standard or bidirectional mode via jumper settings or
in your machine’s BIOS setup for proper operation.

Bidirectional mode allows the eight data lines to be used as either eight inputs or eight
outputs instead of just eight outputs. Bit C5 in the control register sets the direction.
Some of the chips that are used to provide a parallel port disable the C5 bit unless they
are programmed into bidirectional mode using a special setup specific to that chip; this is
done to prevent old, poorly written programs from accidentally switching the port direc-
tion.

The PC’s parallel ports are normally located starting at IO port address of 0x3BC (lp0),
0x378 (lp1), or 0x278 (lp2). Note that these may not directly correspond to the LPTx
numbering used in DOS and Windows since these remap lp1 to lp0 and lp2 to lp1 if lp0
is not present. The 0x3BC address was traditionally used for the parallel port on some
video cards. The parallel port is programmed using three registers located at three con-
secutive IO port addresses.

Table 25.2 shows the names given to the individual bits in these three registers. Table
25.3 shows the functions of each bit.

Table 25.2 PARALLEL PORT PROGRAMMING INTERFACE

Register Address D7 D6 D5 D4 D3 D2 D1 D0 Read Write

Data base+0 D7 D6 D5 D4 D3 D2 D1 D0 Yes Yes

Status base+1 S7 S6 S5 S4 S3 S2 S1 S0 Yes No

Control base+2 C7 C6 C5 C4 C3 C2 C1 C0 Yes Yes

Device Drivers

CHAPTER 25
367

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 367

Table 25.3 PARALLEL PORT HARDWARE INTERFACE

Bit Signal Pin

D0 Data bit 0 2

D1 Data bit 1 3

D2 Data bit 2 4

D3 Data bit 3 5

D4 Data bit 4 6

D5 Data bit 5 7

D6 Data bit 6 8

D7 Data bit 7 9

S0

S1

S2

S3+ -Error 15

S4+ +Select 13

S5+ +PaperOut 12

S6+ -Ack 10

S7- +Busy 11

C0- -Strobe 1

C1- -AutoFeed 14

C2+ -Init 16

C3- +SelectIn 17

C4 IRQ Enable none

C5 Output Enable none

C6

C7

None Ground 18,19,20,21,22,23,24,25

A negative sign in the first column indicates that there is an inverter between the comput-
er and the port. A negative sign in the second column means that this line is considered
active low when interfacing to a printer.

Table 25.4 shows the stepper motor connections to parallel port signals.

Interprocess Communication and Network Programming

PART III
368

2972316072 CH25 7/26/99 2:19 PM Page 368

Table 25.4 STEPPER MOTOR DRIVER CONNECTIONS

Function Name Bit Pin

Motor 0, Phase A D0 D0 2

Motor 0, Phase A* D1 D1 3

Motor 0, Phase B D2 D2 4

Motor 0, Phase B* D3 D3 5

Motor 1, Phase A D4 D4 6

Motor 1, Phase A* D5 D5 7

Motor 1, Phase B D6 D6 8

Motor 1, Phase B* D7 D7 9

Motor 2, Phase A Strobe C0* 1

Motor 2, Phase A* AutoLF C1* 14

Motor 2, Phase B Init C2 16

Motor 2, Phase B* SelectIn C3* 17

Motor 0, Low limit Select S4 13

Motor 1, Low limit PaperEnd S5 12

Motor 2, Low limit Busy S7* 11

All motors, high limit Error* S3 15

External Timer Ack* S6 10

Grounds 18,19,
20,21,
22,23,
24,25

Development Configuration
For developing kernel device drivers, two separate computers running the same version
of Linux and a way to transfer files between them are recommended. It is very easy to
crash a system while doing driver testing with the possibility of corrupting the filesystem
as a result. An infinite loop is no big deal in a usermode program but in the bottom half
of a device driver it will hang the system. The target system does not need to be very
powerful (unless your driver needs lots of CPU cycles); that old junker system you might
have lying around may be sufficient. This driver was tested on a 386DX25 with 4MB
memory. While this was sufficient to run the driver, loading emacs took over 30 seconds

Device Drivers

CHAPTER 25
369

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 369

and compiling took almost 4 minutes; memory was the limiting factor. If you are not
running the same kernel version on both systems, you may have to recompile on the tar-
get system. You can use a floppy, a network connection, or any other suitable means to
transfer files to the target system.

Interprocess Communication and Network Programming

PART III
370

TIP

You can reduce the possibility of filesystem damage on the target system in the
event of a crash by issuing the sync command before loading the module;
sometimes, I even run while /bin/true; do sync; sleep 1; done & to
repeatedly sync the filesystem.

Low Level Port I/O
Many systems, including Intel processors, have separate address spaces for memory and
I/O ports. I/O ports look something like memory locations, but they may not read back
the same value that was written. This causes problems for some drivers on crude operat-
ing systems (such as DOS) that would like to do a read/modify/write operation to change
one or more bits while leaving the rest unchanged, since they don’t know what state
another program might have set them to. Under Linux, all I/O to a particular device is
normally done by a single device driver, so this is not generally a problem. I/O port loca-
tions normally map to data, control, or status registers in peripheral chips on the system.
Sometimes reading or writing certain I/O port locations can hang the system. Some
NE2000 Ethernet adapters will hang the processor forever if you read from certain I/O
ports; these cards are designed to insert wait states until the requested data is available
(which it will never be if you read an undefined register). Reads and writes may have
side effects. Reading the data register on a serial port UART chip will return the next
character in the receive queue and have the side effect of removing the data from the
queue. Writing to the same register has the side effect of queuing up a character for
transmission.

To enable low-level port I/O in usermode programs running as root, issue the call
iopl(3). This grants unlimited access to I/O ports. If you only need access to ports
below 0x3FF, you can, for example, use ioperm(0x378, 4, 1) to turn on ports 0x378-
0x37B. The second form is more restrictive and will prevent you from accidentally writ-
ing to unintended ports.

2972316072 CH25 7/26/99 2:19 PM Page 370

The outb() function outputs a byte value to an I/O port. The function call
outb(0x378,0x01) will output the value 0x01 to port 0x378. Note that the order of these
two parameters is opposite what DOS programmers are used to. The function call
inb(0x378) will return a byte read from port 0x378. The functions outb_p() and
inb_p() are the same as outb() and inb() except that they add a brief delay afterwards;
many peripheral chips cannot handle port reads and writes at full bus speeds. The func-
tions outw(), outw_p(), inw(), and inw_p() are similar but for 16-bit values; the “w”
stands for word. The functions outl(), outl_p(), inl(), and inl_p() are also similar
but for 32-bit values; the “l” stands for long. The size of the I/O port operations should
be matched to the size(s) supported by the device.

Programs, whether usermode or kernel mode, which use these input and output functions
must be compiled with optimization (-O option to gcc) due to idiosyncrasies in how
these functions are implemented in gcc. You need to #include <asm/io.h> to use these
functions.

The functions insb(port, addr, count) and outs(port, addr, count) move count
bytes between port port and the memory at location addr using efficient repeat string
I/O instructions on Intel compatible processors. No paused versions of these functions
exist; the point of these instructions is to move data as fast as the bus will allow. Word
and long versions also exist. Using the long versions insl() and outsl()should allow
you to transfer data at about 66MB/s on a 33MHz PCI bus (the processor will alternate
I/O and memory operations).

Beware of reading more data than is available from a data port; depending on the device
in question, you will either get garbage or the device will insert wait states until data is
available (which might be next week). Check the flags in an appropriate status register to
determine if a byte is available. If you know that a certain number of bytes are available,
you can read them using a fast string read.

There are similar instructions for memory mapped I/O devices: readb(), readw(),
readl(), writeb(), writew(), writel(), memset_io(), memcpy_fromio(), and mem-
cpy_toio(). On Intel compatible processors, these don’t actually do anything special,
but their use will ease porting to other processors. Memory mapped I/O operations may
need special handling to insure they are not mangled by the cache. Memory addresses
may need to be mapped between bus addresses, virtual memory addresses, and physical
memory addresses (on versions of Linux that don’t use a 1:1:1 mapping) using the func-
tions bus_to_virt(), virt_to_bus(), virt_to_phys(), and phys_to_virt().

Many ethernet devices require that a checksum be calculated for each packet. On modern
processors, this can typically be done while copying the data at full bus speed. The

Device Drivers

CHAPTER 25
371

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 371

functions eth_io_copy_and_sum() and eth_copy_and_sum() are used. Look through the
existing ethernet drivers to see how to use these. Modern processors are frequently limit-
ed by memory and I/O bandwidth; it is often more efficient to process data as it is moved
using processor cycles that would otherwise be wasted.

Initiating Interrupts to Utilize
Device Drivers
When a hardware device needs attention from the device driver, it does so by initiating
an interrupt. The processor responds to an interrupt by saving its state and jumping to the
previously registered interrupt handler. When the interrupt handler returns, the processor
restores its state and continues where it left off. Interrupts may be masked (disabled) dur-
ing the processing of higher priority interrupts or in critical code sections.

A serial port UART, for example, causes an interrupt when the receive buffer is near full
or the transmit buffer is near empty. The processor responds to the interrupt by transfer-
ring data.

Interrupts are not available to usermode programs; if your device driver requires an inter-
rupt handler, it must be implemented as a kernel device driver. An interrupt handler func-
tion is declared using the following syntax:

#include <linux/interrupt.h>
#include <linux/sched.h>
void handler(int irq, void *dev_id, struct pt_regs *regs);

In most cases, you will ignore the actual value of the arguments but your handler must be
declared in this fashion (you can change the function name) or you will get compilation
errors. The first parameter is used to allow one handler to handle multiple interrupts and
tell which one it responded to. The second is a copy of whatever value you passed when
you registered the interrupt (see code below). This value will typically be NULL or a
pointer to a structure you defined to pass information to an interrupt handler that can
modify its operation. Again, this is helpful for using one handler for multiple interrupts
and it also helps you avoid using global variables to communicate with the driver if you
want a cleaner program structure. These features will be most likely to be used where
one device driver controls multiple instances of a device. The pt_regs are the saved
processor registers in case you need to inspect or modify the state of the machine at the
time it was interrupted; you will not need to use these in a normal device driver.

We register an interrupt handler with the kernel using the call

request_irq(irq, handler, flags, device, dev_id);

Interprocess Communication and Network Programming

PART III
372

2972316072 CH25 7/26/99 2:19 PM Page 372

which returns an integer that will be 0 if the operation succeeded. The first parameter is
the number of the interrupt being requested. These are the hardware IRQ numbers, not
the software interrupt numbers they are mapped to; note that IRQs 2 and 9 are weird
because of the way the PC hardware is designed. The second parameter is a pointer to
your handler function. The third parameter contains flags. The SA_SHIRQ flag tells the
kernel you are willing to share this interrupt with other device drivers, assuming that
your driver, the other driver(s), and the hardware support this option. SA_INTERRUPT is
used to affect whether the scheduler ran after the interrupt handler returned. The fourth
parameter gives the name of the driver as a text string, which will show up in
/proc/interrupts. The last parameter is not used by the kernel at all but will be passed
to the handler each time it is invoked. The free_irq() function takes one argument, the
interrupt number, which is used to unregister your handler.

The function cli() disables interrupts (CLear Interrupt enable) and sti() (SeT Interrupt
enable) re-enables them. These are used to protect access to critical data structures.
These will normally be used to protect the top half and the bottom half from each other
or protect one interrupt handler from others, but can be used to protect other important
operations. It is not polite to keep interrupts disabled for very long. Calls to sti() and
cli() can be nested; you must call cli() as many times as you call sti(). In the exam-
ple device driver, I do not need to use these functions directly but they are called by
some of the kernel functions that I use to protect the data structures manipulated by those
functions.

Accessing Memory Using DMA
Direct Memory Access (DMA) allows internal peripherals to access memory without the
processor needing to execute instructions for each transfer. There are two types of DMA;
one uses the DMA controller on the motherboard and the other uses a busmaster con-
troller on the peripheral card.

I suggest you avoid using the motherboard DMA controller if possible. There are a limit-
ed number of DMA channels, which can make it hard to find a free channel. This form
of DMA is very slow. And this form still requires short interrupt latencies (the time
between when the peripheral asserts the interrupt line and the processor responds); when
the DMA controller reaches the end of the buffer, you need to quickly reprogram it to
use another buffer. This controller requires multiple bus cycles per transfer; it reads a
byte of data from the peripheral and then writes it to memory, or vice versa, in two sepa-
rate operations and inserts wait states as well. This controller only supports 8- and 16-bit
transfers.

Device Drivers

CHAPTER 25
373

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 373

Busmaster DMA requires more complicated circuitry on the peripheral card, but can
transfer data much faster and only needs one bus cycle per byte or word transferred.
Busmaster controllers can also execute 32-bit transfers.

The kernel functions set_dma_mode(), set_dma_addr(), set_dma_count() and
enable_dma(), disable_dma(), request_dma(), free_dma(), and clear_dma_ff() are
used to set up DMA transfers; a driver that uses DMA must run in kernel mode. The
example kernel driver in this chapter does not use DMA.

Simple Usermode Test Driver
Listing 25.1 is a very simple program that just causes the stepper motor to slowly make a
number of revolutions. This tests for correct hookup of a single stepper motor (Motor 0)
and demonstrates the use of iopl() and outb().

Listing 25.1 SIMPLE USERMODE DRIVER

/* Must be compiled with -O for outb to be inlined, */
/* otherwise link error /
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <asm/io.h>

int base=0x378;

void verbose_outb(int port, int value)
{

printf(“outb(%02X,%04X)\n”,port,value);
outb(port,value);

}

unsigned char steptable[8]={0x01,0x05,0x04,0x06,0x02,0x0A,0x08,0x09};

slow_sweep()
{

int i;

for(i=0;i<800;i++) {
verbose_outb(steptable[i%8],base+0);

Interprocess Communication and Network Programming

PART III
374

2972316072 CH25 7/26/99 2:19 PM Page 374

usleep(100000);
}

}

main()
{

int i;
int inval;
int outval;

printf(“this program must be run as root\n”);

iopl(3); /* Enable i/o (if root) */

slow_sweep();

}

Debugging Kernel Level Drivers
It is theoretically possible to use the GNU debugger, gdb, in remote debugging mode
with an RS-232 connection between your development machine and your target machine.
More information on this topic is available at
http://www.isi.edu/~johnh/SOFTWARE/XKDEBUG/xkdebug_README.text.

The printk() function is similar to printf but displays output on the console. Beware
of generating too much output, however, or you may effectively lock up your system. I
suggest you pepper your code with statements like if(debug>=5) printk(...). This
will allow you to easily specify the level of debugging information at module load time.
It may be desirable to leave these compiled in so users of your driver can easily debug
problems.

Device Drivers

CHAPTER 25
375

25

D
EV

IC
E

D
R

IV
ER

S

TIP

If you are worried about the overhead of debugging code in your program,
there is an easy way to compile these out without littering your source with
#ifdef DEBUG statements. Use the if(debug>=1) form instead. Then, simply
change the declaration of debug from int to const int using a single #ifdef
NODEBUG. The optimizer (if enabled, which it will always be for kernel modules)
should realize that this code can never be executed and will eliminate the code
from the generated executable. This setup allows the debugging level to be set
at runtime if desired, or debugging can be compiled out entirely.

2972316072 CH25 7/26/99 2:19 PM Page 375

You can set any global or static variable when the module is loaded using insmod. This
allows you to set various debugging variables that change the operation of the program
without recompiling. If you are trying to narrow down a crash in a section of code, you
can enclose various small pieces of code in if(test1) {, if(test2) {, and so on. Then
by insmoding the code and selectively defining these values to 1 until a crash occurs, you
can quickly narrow down the problem.

Eventually, I plan to make a loadable kernel module version of my symbol table library,
described in Chapter 24, “Using Libraries.” This would allow you to interactively set or
query various variables using the /proc filesystem while the driver was running. It would
also provide a way for the user to configure driver features in running drivers. Two sepa-
rate entries in /proc could be created; one would be accessible only to root and have
access to more variables and another might be world accessible and access a smaller set.

Bottom Half and Top Half
When system calls are issued, the current task keeps executing but changes its state to
privileged kernel mode operation. If the kernel code determines that the call should be
handled by our device driver, it invokes the corresponding function in our device driver
that we have previously registered. These functions, collectively, are the top half of the
device driver. These functions normally read data queued by the bottom half, queue data
for reading by the bottom half, change the position of a file, open a file, close a file, or
perform other similar operations. The top half does not normally communicate directly
with the device. The top half functions normally put themselves (and the current task) to
sleep, if necessary, until the bottom half has done the actual work.

The bottom half of a device driver handles actual communication with the hardware
device. The bottom half is usually invoked periodically in response to hardware inter-
rupts from the device or the 100Hz system jiffie clock (which is, itself, triggered by a
hardware interrupt). Bottom half functions may not sleep and should do their work
quickly; if they cannot perform an operation without waiting, they normally return and
try again in response to the next interrupt.

Creating a Kernel Driver
This section outlines the creation of a more complete stepper motor driver that runs as a
kernel driver. More specifically, it is a loadable kernel module. It can also be compiled as
a usermode driver, although performance will be limited.

Interprocess Communication and Network Programming

PART III
376

2972316072 CH25 7/26/99 2:19 PM Page 376

Reviewing the Source Code
This section will go through the source code for the example driver. Many of the kernel
functions used to write drivers will be shown in their native habitats. The source code
had to be mangled a bit to fit with the 65 column limits allowed by the publisher. Of par-
ticular note, some strings were split into two smaller strings on two adjacent lines; the
compiler will automatically concatenate these back into a single string.

Header File
Listing 25.2 shows the header file stepper.h, which defines some ioctls supported by
the driver.

Listing 25.2 stepper.h

/* define ioctls */

#define STEPPER_SET_DEBUG 0x1641
#define STEPPER_SET_SKIPTICKS 0x1642
#define STEPPER_SET_VERBOSE_IO 0x1643
#define STEPPER_SET_VERBOSE_MOVE 0x1644
#define STEPPER_START 0x1645
#define STEPPER_STOP 0x1646
#define STEPPER_CLEAR_BUFFERS 0x1647
#define STEPPER_NOAUTO 0x1648
#define STEPPER_AUTO 0x1649

Ring Buffer Header File
Listing 25.3 shows the header file for the ring buffer code. Listing 25.4 shows the ring
buffer implementation. This module implements a ring buffer or FIFO (First In First Out)
buffer. These ring buffers are used to buffer data between the top half and the bottom
half. These are overkill for the current driver but will be useful for writing more serious
drivers that need more buffering. These functions need to be re-entrant; the bottom half
may interrupt execution of the top half.

These two files define the data structure, an initialization function, and two functions to
write (queue) and read (dequeue) data. Currently, they only accept reads and writes of
one byte at a time although the calling convention will not need to be changed for multi-
byte transfers.

Device Drivers

CHAPTER 25
377

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 377

Listing 25.3 ring.h

#define RING_SIGNATURE 0x175DE210

typedef struct {
long signature;
unsigned char *head_p;
unsigned char *tail_p;
unsigned char *end_p; /* end + 1 */
unsigned char *begin_p;
unsigned char buffer[32768];

} ring_buffer_t;

extern void ring_buffer_init(ring_buffer_t *ring);
extern int ring_buffer_read(ring_buffer_t *ring,

unsigned char *buf, int count);
extern int ring_buffer_write(ring_buffer_t *ring,

unsigned char *buf, int count);

Listing 25.4 ring.c

/* Copyright 1998,1999, Mark Whitis <whitis@dbd.com> */
/* http://www.freelabs.com/~whitis/ */

#include “ring.h”

int ring_debug=1;

#ifdef TEST
#define printk printf
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#endif

void ring_buffer_init(ring_buffer_t *ring)
{

ring->signature=RING_SIGNATURE;
ring->head_p=ring->buffer;
ring->tail_p=ring->buffer;
ring->begin_p=ring->buffer;
ring->end_p=&ring->buffer[sizeof(ring->buffer)];
#if 0

strcpy(ring->buffer,”This is a test.\n”);
ring->head_p +=16;

#endif
}

Interprocess Communication and Network Programming

PART III
378

2972316072 CH25 7/26/99 2:19 PM Page 378

/*
* returns number of bytes read. Will not block (blocking will
* be handled by the calling routine if necessary).
* If you request to read more bytes than are currently
* available, it will return
* a count less than the value you passed in
*/
int ring_buffer_read(ring_buffer_t *ring, unsigned char *buf,

int count)
{
#ifdef PARANOID

if(ring_debug>5) {
printk(“das1600: ring_buffer_read(%08X,%08X,%d)\n”,

ring,buf,count);
}
if(ring->signature != RING_SIGNATURE) {

printk(“ring_buffer_read: signature corrupt\n”);
return(0);

}
if(ring->tail_p < ring->begin_p) {

printk(“ring_buffer_read: tail corrupt\n”);
return(0);

}
if(ring->tail_p > ring->end_p) {

printk(“ring_buffer_read: tail corrupt\n”);
return(0);

}
if(count != 1) {

printk(“ring_buffer_read: count must currently be 1\n”);
return(0);

}
#endif;
if(ring->tail_p == ring->end_p) {

ring->tail_p = ring->begin_p;
}
if(ring->tail_p == ring->head_p) {

if(ring_debug>5) {
printk(“ring_buffer_read: buffer underflow\n”);

}
return(0);

}

*buf = *ring->tail_p++;
return(1);

}

/*
* returns number of bytes written. Will not block (blocking
* will be handled by the calling routine if necessary).

Device Drivers

CHAPTER 25
379

25

D
EV

IC
E

D
R

IV
ER

S

continues

2972316072 CH25 7/26/99 2:19 PM Page 379

* If you request to write more bytes than are currently
* available, it will return
* a count less than the value you passed in
*/
int ring_buffer_write(ring_buffer_t *ring, unsigned char *buf,

int count)
{

unsigned char *tail_p;
#ifdef PARANOID

if(ring->signature != RING_SIGNATURE) {
printk(“ring_buffer_write: signature corrupt\n”);
return(0);

}
if(ring->head_p < ring->begin_p) {

printk(“ring_buffer_write: head corrupt\n”);
return(0);

}
if(ring->head_p > ring->end_p) {

printk(“ring_buffer_write: head corrupt\n”);
return(0);

}
if(count != 1) {

printk(“ring_buffer_write: count must currently be 1\n”);
return(0);

}
#endif
/* Copy tail_p to a local variable in case it changes */
/* between comparisons */
tail_p = ring->tail_p;

if((ring->head_p == (tail_p - 1))
|| ((ring->head_p == (ring->end_p - 1)) && (tail_p==ring->begin_p))) {

if(ring_debug>5) {
printk(“ring_buffer_write: buffer overflow\n”);

}
return(0);

}

*ring->head_p++ = *buf;

if(ring->head_p == ring->end_p) {
ring->head_p = ring->begin_p;

}
return(1);

}

#ifdef TEST

Interprocess Communication and Network Programming

PART III
380

Listing 25.4 CONTINUED

2972316072 CH25 7/26/99 2:19 PM Page 380

ring_buffer_t buffer;
main()
{

char c;
char c2;
int child;
int rc;
int i;
int j;
char lastread;
int errors;
int reads;
int writes;

ring_buffer_init(&buffer);

c=0;
lastread=-1;
errors=0;
reads=0;
writes=0;
for(j=0; j<50000; j++) {

for(i=0; i<31; i++) {
rc=ring_buffer_write(&buffer, &c, 1);
writes++;
if(ring_debug>2) {

printf(“ring_buffer_write returned %d, “
“was passed %d\n”,rc,c);

if(rc==1) c++;
}

for(i=0; i<47; i++) {
rc=ring_buffer_read(&buffer, &c2, 1);
reads++;
if(ring_debug>2) {

printf(“ring_buffer_read returned: rc=%d,c2=%d\n”,
rc,c2);

}
if(rc==1) {
if(c2!=(char)(lastread+1)) {

printf(“ERROR: expected %d, got %d\n”,
(char)(lastread+1),c2);

errors++;
}
lastread=c2;

}
}

}
printf(“number of errors=%d\n”,errors);
printf(“number of reads=%d\n”,reads);

Device Drivers

CHAPTER 25
381

25

D
EV

IC
E

D
R

IV
ER

Scontinues

2972316072 CH25 7/26/99 2:19 PM Page 381

printf(“number of writes=%d\n”,writes);

}
#endif

Prologue
Listing 25.5 shows the prologue. This includes the necessary #include directives and
variable declarations. A number of the variables are described in the section “Using the
Kernel Driver,” later in this chapter. The preprocessor macro __KERNEL__ will be defined
if the program is being compiled as a kernel level driver; note that this will affect many
of the system include files as well as governing conditional compilation in the driver
source.

Listing 25.5 PROLOGUE

/* Copyright 1999 by Mark Whitis. All rights Reserved */

/* Must be compiled with -O for outb to be inlined, otherwise */
/* link error */
/* Usermode: gcc -g -O -o teststep teststep.c */
/* LKM: */
/* gcc -O -DMODULE -D__KERNEL__ -o stepperout.o -c stepper.c */
/* ld -r -o stepper.o stepperout.o ring.o */

#include “stepper.h”

#ifdef __KERNEL__
#include <linux/kernel.h>
#include <linux/config.h>
#ifdef MODULE
#include <linux/module.h>
#include <linux/version.h>

#else

/* This code is GNU copylefted and should not be statically */
/* linked with the kernel. */
#error This device driver must be compiled as a LKM
#define MOD_INC_USE_COUNT
#define MOD_DEC_USE_COUNT

#endif
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/mm.h>

Interprocess Communication and Network Programming

PART III
382

Listing 25.4 CONTINUED

2972316072 CH25 7/26/99 2:19 PM Page 382

#include <linux/errno.h>
#include <asm/segment.h>
#include <asm/io.h>
#include <linux/sched.h>
#include <linux/tqueue.h>

#else
#include <unistd.h>
#include <stdlib.h>
/* including stdio will cause grief */
#include <stdio.h>
#include <asm/io.h>

#endif

#if 0
#include <stdarg.h>
#include <ctype.h>

#endif
#include <string.h>

#ifdef __KERNEL__
#include “ring.h”
ring_buffer_t read_buffer;
ring_buffer_t write_buffer;
/* Parallel port interrupt to use for timing */
/* 0=use Linux 100hz jiffie timer */
static int irq = 0;
/* Major device # to request */
static int major = 31;
/* The device # we actually got */
static int stepper_major = 0;

struct wait_queue *read_wait = NULL ;
/* used to block user read if buffer underflow occurs */

struct wait_queue *write_wait = NULL;
/* used to block user write if buffer overflow occurs */

#endif

static int debug = 1;
static int verbose_io=0;
static int verbose_move=0;
static int base=0x378;
static int power_down_on_exit=1;

/* The following set the delay between steps */
#ifndef __KERNEL__

static int delay = 50000; /* for usleep */
static int fastdelay = 0; /* delay loop */

#else

Device Drivers

CHAPTER 25
383

25

D
EV

IC
E

D
R

IV
ER

S

continues

2972316072 CH25 7/26/99 2:19 PM Page 383

static int skipticks = 0;
#endif

/* the following value can be set to 0 to disable the */
/* actual I/O operations. This will allow experimenting */
/* on a system which does not have a free parallel port */
static int do_io = 1;

#ifdef __KERNEL__
static int read_is_sleeping = 0;
static int write_is_sleeping = 0;
static int abort_read = 0;
static int abort_write = 0;
static int read_is_open = 0;
static int write_is_open = 0;
static int interrupts_are_enabled = 0;
static int autostart=1;

#endif

static int tick_counter=0;

int xdest = 0;
int xuser = 0;
int xpos = 0;

int ydest = 0;
int yuser = 0;
int ypos = 0;

int zdest = 0;
int zuser = 0;
int zpos = 0;

unsigned short word;

verbose_outb()
Listing 25.6 shows a wrapper for the outb() function, which provides optional debug-
ging output and the ability to disable the outb() for experimentation without the neces-
sary hardware.

Listing 25.6 verbose_outb()

void verbose_outb(int port, int value)
{

#ifndef __KERNEL__
if(verbose_io) printf(“outb(%02X,%04X)\n”,port,value);

Interprocess Communication and Network Programming

PART III
384

Listing 25.5 CONTINUED

2972316072 CH25 7/26/99 2:19 PM Page 384

#else
if(verbose_io) printk(“outb(%02X,%04X)\n”,port,value);

#endif

if(do_io) outb(port,value);
}

Delay Function
The function do_delay(), shown in Listing 25.7, is used in a usermode driver only and
provides a delay between steps. It will use the usleep() library function unless fastdelay
is nonzero, in which case it will use a delay loop. These delays only set the minimum
delay; in a usermode program, multitasking can cause additional delays.

Listing 25.7 DELAY FUNCTION

#ifdef __KERNEL__
void do_delay()
{

;
}

#else
void do_delay()
{

int i;

if(fastdelay>0) {
for(i=0;i<fastdelay;i++) {

/* dummy operation so optimizer doesn’t */
/* eliminate loop */
verbose_outb((word&0x00FF),base+0);

}
} else {

usleep(delay);
}

}
#endif

Status Reporting
Listing 25.8 shows a function that reports the positions of the stepper motors on each
axis. In a usermode program, it will be printed to stdout; in a kernel driver, the result
will be stored in a ring buffer for reading using read(), fgets(), fscanf(), or similar
function by a usermode control program. The value of the 16-bit output word is also
reported; this is the value that was last output to the parallel port data and status registers.

Device Drivers

CHAPTER 25
385

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 385

Listing 25.8 STATUS REPORTING

void report_status()
{

char buf[128];
int rc;
int i;
int len;

sprintf(buf,”x=%d,y=%d,z=%d,word=%08X\n”,xpos,ypos,zpos,word);
#ifdef __KERNEL__

len=strlen(buf);

for(i=0;i<len;i++) {
rc=ring_buffer_write(&read_buffer,&buf[i],1);

}
/* we need to wake up read function */
if(read_is_sleeping) {

if(debug>=5) printk(“stepper: waking up read/n”);
wake_up_interruptible(&read_wait);

}
#else

puts(buf);
#endif

}

Stepper Control
Listing 25.9 shows the functions that actually drive the stepper motors. The function
move_one_step() will move each axis up to a single half step. Since the driver bottom
half will be called once each time a step is needed, this needs to be a simple incremental
move instead of a full end-to-end move. In the usermode version, move_all() will be
used to do a complete move.

The arrays x_steptable, y_steptable, and z_steptable indicate which bits need to be
set for each of the eight half steps per electrical revolution. These bits can be changed to
accommodate different wiring or to reverse the “forward” direction of rotation. The vari-
able flipbits is used to invert certain bits to compensate for inverters included in the
standard parallel port interface. The variable irq_enable_bit will be used later to enable
interrupts on the parallel port card.

The function parse_one_char() implements a simple parser for move instructions. It
operates in a character at a time mode; the bottom half will not need to reassemble com-
mands into lines to use this.

Interprocess Communication and Network Programming

PART III
386

2972316072 CH25 7/26/99 2:19 PM Page 386

Listing 25.9 STEPPER CONTROL

unsigned short x_steptable[8]=
{0x0001,0x0005,0x0004,0x0006,0x0002,0x000A,0x0008,0x0009};

unsigned short y_steptable[8]=
{0x0010,0x0050,0x0040,0x0060,0x0020,0x00A0,0x0080,0x0090};

unsigned short z_steptable[8]=
{0x0100,0x0500,0x0400,0x0600,0x0200,0x0A00,0x0800,0x0900};

unsigned short flipbits = 0x0B00;
unsigned short irq_enable_bit=0x1000;

void move_one_step()
{

/* This is a very simple multiaxis move routine */
/* The axis will not move in a coordinate fashion */
/* unless the angle is a multiple of 45 degrees */
if(xdest > xpos) {

xpos++;
} else if(xdest < xpos) {

xpos--;
}

if(ydest > ypos) {
ypos++;

} else if(ydest < ypos) {
ypos--;

}

if(zdest > zpos) {
zpos++;

} else if(zdest < zpos) {
zpos--;

}
word = x_steptable[xpos%8]

| y_steptable[ypos%8]
| z_steptable[zpos%8];

#ifdef __KERNEL__
if(interrupts_are_enabled) word |= irq_enable_bit;

#endif

/* Some of the signals are inverted */
word ^= flipbits;

/* output low byte to data register */
verbose_outb((word & 0x00FF), base+0);

Device Drivers

CHAPTER 25
387

25

D
EV

IC
E

D
R

IV
ER

S

continues

2972316072 CH25 7/26/99 2:19 PM Page 387

/* output high byte to control register */
verbose_outb((word >> 8), base+2);

if(verbose_move) report_status();
}

void move_all()
{

while((xpos!=xdest) || (ypos!=ydest) || (zpos!=zdest)) {
move_one_step();
do_delay();

}
}

void parse_one_char(char c)
{

static int value;
static int dest=’ ‘;
static int negative=0;

#if 0
c = toupper(c);

#else
if((c>’a’) && (c<’z’)) { c = c - ‘a’ + ‘A’; }

#endif

switch(c) {
case(‘X’):
case(‘Y’):
case(‘Z’):

dest=c;
break;

case(‘=’):
break;

case(‘-’):
negative = !negative;
break;

case(‘+’):
negative = 0;

case(‘0’):
case(‘1’):
case(‘2’):
case(‘3’):
case(‘4’):
case(‘5’):
case(‘6’):
case(‘7’):

Interprocess Communication and Network Programming

PART III
388

Listing 25.9 CONTINUED

2972316072 CH25 7/26/99 2:19 PM Page 388

case(‘8’):
case(‘9’):

value *= 10;
value += (c-’0’);
break;

case(‘?’):
report_status();

case(‘\r’):
case(‘\n’):
case(‘,’):

if(negative) {
value = -value;

}
if(dest==’X’) {

xuser = value;
} else if(dest==’Y’) {

yuser = value;
} else if(dest==’Z’) {

zuser = value;
}
value = 0;
negative = 0;

if((c==’\n’)||(c==’\r’)){
xdest = xuser;
ydest = yuser;
zdest = zuser;

#ifdef __KERNEL__
if(debug>=3) {

printk(“xdest=%d ydest=%d zdest=%d\n”,
xdest,ydest,zdest);

}
#endif

}
break;

}
}

Seek Operation
The function stepper_lseek(), shown in Listing 25.10, is actually the first function that
is specific to a kernel level driver and implements part of the top half interface. This
function will be called whenever the lseek() call is issued to set the file position. Note
that open(), seek(), fopen(), and fseek() may also call lseek(). In this case, we can’t
change the file position so we return a value of 0.

Device Drivers

CHAPTER 25
389

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 389

The parameters inode and file provide pointers to the kernel’s internal data structures
defining the file the user has opened and will be passed to all of the top half functions.
These are defined in /usr/include/linux/fs.h.

The parameters offset and orig define the amount of offset and the origin (beginning of
file, end of file, or current position). These values are used to set the current file position
and are documented in more detail in the manual page for lseek.

Listing 25.10 SEEK OPERATION

#ifdef __KERNEL__
static int stepper_lseek(struct inode *inode,

struct file *file, off_t offset, int orig)
{

/* Don’t do anything, other than set offset to 0 */
return(file->f_pos=0);

}
#endif

Read and Write Operations
Listing 25.11 shows the function stepper_read(), which is the top half function that
implements the file read operation. In our example, this will be used to read the status
responses placed in the read ring buffer by report_status(). This function will be
called whenever the read() system call is issued from userspace for a file controlled by
this device driver; fread(), fgets(), fscanf(), fgets(), and other library functions
issue this call.

The parameters node and file are the same as the first two parameters to
stepper_lseek(), described in the preceding section. The remaining two parameters,
buf and count, provide the address of a data buffer to fill and the number of bytes to
read. The kernel function verify_area() must be called to verify that the buffer is valid.

This function calls ring_buffer_read() to get the data. If the data is not available, it
must sleep. It uses the kernel function interruptible_sleep_on() to put itself (and the
calling task) to sleep and adds itself to a queue, read_wait, of tasks (only one in this
case) to be woken up by the bottom half when more data is available. The queue
read_wait was defined in the “Prologue” section earlier in the chapter; we can define
any number of queues. If you want to put more than one task in a wait queue, it is proba-
bly up to you to allocate more wait_queue entries and link them together using the
“next” member. Wait queues are declared in /usr/include/linux/sched.h. The func-
tion interruptible_sleep_on() is declared in /usr/include/linux/sched.h and the
source code to the actual function is in /usr/src/linux/kernel/sched.c.

Interprocess Communication and Network Programming

PART III
390

2972316072 CH25 7/26/99 2:19 PM Page 390

As written, the stepper_read() and stepper_write() functions also wake each other
up; this may not be necessary, since the bottom half should do this, but was included to
help prevent deadlocks between reading and writing. The variable read_is_sleeping is
set to tell the bottom half to wake us up when more data is available.

The function stepper_write() performs the opposite of stepper_read() and looks very
similar except that the direction of data transfer has been reversed. This function will be
called if the write() system call has been issued with a file descriptor that references a
file controlled by our device.

Listing 25.11 READ AND WRITE OPERATIONS

#ifdef __KERNEL__
static int stepper_read(struct inode *node,

struct file *file, char *buf, int count)
{

static char message[] = “hello, world\n”;
static char *p = message;
int i;
int rc;
char xferbuf;
int bytes_transferred;
int newline_read;

newline_read=0;

if(!read_is_open) {
printk(“stepper: ERROR: stepper_read() called while “

“not open for reading\n”);
}
bytes_transferred=0;

if(debug>2) printk(“stepper_read(%08X,%08X,%08X,%d)\n”,
node,file,buf,count);

if(rc=verify_area(VERIFY_WRITE, buf, count) < 0) {
printk(“stepper_read(): verify area failed\n”);
return(rc);

}
for(i=count; i>0; i--) {

#if 0
if(!*p) p=message;
put_fs_byte(*p++,buf++);

#else
while(1) {

rc=ring_buffer_read(&read_buffer,&xferbuf,1);

if(debug>3) {
printk(

Device Drivers

CHAPTER 25
391

25

D
EV

IC
E

D
R

IV
ER

Scontinues

2972316072 CH25 7/26/99 2:19 PM Page 391

“stepper: ring_buffer_read returned %d\n”,
rc);

}
if(rc==1) {

bytes_transferred++;
put_fs_byte(xferbuf,buf++);
if(xferbuf==’\n’) {

printk(“stepper_read(): newline\n”);
newline_read=1;

}
break; /* read successful */

}

read_is_sleeping=1;
if(debug>=3) printk(“stepper: read sleeping\n”);
interruptible_sleep_on(&read_wait);
read_is_sleeping=0;

if(abort_read) return(bytes_transferred);
}

/* we want read to return at the end */
/* of each line */
if(newline_read) break;

#endif
}
if(write_is_sleeping) wake_up_interruptible(&write_wait);

if(debug>=3) {
printk(“stepper_read(): bytes=%d\n”, bytes_transferred);

}
return(bytes_transferred);

}

static int stepper_write(struct inode *inode,
struct file *file, const char *buf, int count)

{
int i;
int rc;
char xferbuf;
int bytes_transferred;

if(!write_is_open) {
printk(“stepper: ERROR: stepper_write() called”

Interprocess Communication and Network Programming

PART III
392

Listing 25.11 CONTINUED

2972316072 CH25 7/26/99 2:19 PM Page 392

“ while not open for writing\n”);
}

bytes_transferred=0;

if(rc=verify_area(VERIFY_READ, buf, count) < 0) {
return(rc);

}

for(i=count; i>0; i--) {
xferbuf = get_fs_byte(buf++);

while(1) {
rc=ring_buffer_write(&write_buffer,&xferbuf,1);
if(rc==1) {

bytes_transferred++;
break;

}
if(debug>10) printk(“stepper: write sleeping\n”);

write_is_sleeping=1;
interruptible_sleep_on(&write_wait);
write_is_sleeping=0;
if(abort_write) return(bytes_transferred);

}
}
if(read_is_sleeping) wake_up_interruptible(&read_wait);
return(bytes_transferred);

}
#endif

Ioctls
The function stepper_ioctl(), shown in Listing 25.12, is called whenever the system
call ioctl() is issued on a file descriptor that references a file controlled by our driver.
According to the man page for ioctl(), ioctls are “a catchall for operations that don’t
cleanly fit the Unix stream I/O model”. Ioctls are commonly used to set the baud rate
and other communications parameters on serial ports, for example, and to perform many
operations for TCP/IP sockets. The various parameters on ethernet and other network
interfaces that are set by the ifconfig program are manipulated using ioctls as are the
ARP table entries. In our case, we will use them to change the values of debugging vari-
ables and to change the speed of motion. They will also be used, in the future, to control
starting and stopping of interrupts (and device motion). I have chosen the numbers
assigned to the various ioctls somewhat randomly, avoiding the values defined in

Device Drivers

CHAPTER 25
393

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 393

/usr/include/ioctls.h. The driver also receives a TCGETS (see Chapter 26, “Terminal
Control the Hard Way”) which I have been simply ignoring; clearing the data structure
pointed to by arg or returning an error of ENOTTY would probably be more appropriate.

Listing 25.12 IOCTLS

void stepper_start()
{
/* do nothing at the moment */

}

void stepper_stop()
{
/* do nothing at the moment */

}

static int stepper_ioctl(struct inode *iNode,
struct file *filePtr, unsigned int cmd, unsigned long arg)

{
switch(cmd) {

case(STEPPER_SET_DEBUG):
/* unfriendly user might crash system */
/* by setting debug too high. Only allow */
/* root to change debug */
if((current->uid==0) || (current->euid==0)) {

debug=arg;
} else {

return(EPERM);
}
break;

case(STEPPER_SET_SKIPTICKS):
skipticks=arg;
break;

case(STEPPER_SET_VERBOSE_IO):
verbose_io=arg;
break;

case(STEPPER_SET_VERBOSE_MOVE):
verbose_move=arg;
break;

case(TCGETS):
break;

#if 0
/* autostart and start/stop are not implemented */

Interprocess Communication and Network Programming

PART III
394

2972316072 CH25 7/26/99 2:19 PM Page 394

/* these would be used to enable interrupts */
/* only when the driver is in use and to */
/* allow a program to turn them on and off */

case(STEPPER_START):
if(debug) printk(“stepper_ioctl(): start\n”);
stepper_start();
break;

case(STEPPER_STOP):
if(debug) printk(“stepper_ioctl(): stop\n”);
stepper_stop();
break;

case(STEPPER_CLEAR_BUFFERS):
if(debug) {

printk(“stepper_ioctl(): clear buffers\n”);
}
ring_buffer_init(&read_buffer);
ring_buffer_init(&write_buffer);
break;

case(STEPPER_AUTO):
if(debug) {

printk(“stepper_ioctl(): enable autostart\n”);
}
autostart = 1;
break;

case(STEPPER_NOAUTO):
if(debug) {

printk(“stepper_ioctl(): disable autostart\n”);
}
autostart = 0;
break;

#endif

default:
printk(“stepper_ioctl(): Unknown ioctl %d\n”,cmd);
break;

}

return(0);
}

#endif

Open and Close Operations
Listing 25.13 shows the functions stepper_open() and stepper_release(), which per-
form open and close operations. These are called when the open() or close() system
calls are issued for files that are controlled by our device driver. In this example, we con-
trol two character special files: /dev/stepper and /dev/stepper_ioctl with minor

Device Drivers

CHAPTER 25
395

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 395

device numbers 0 and 1, respectively. Since we do not allow an arbitrary number of
processes to open and close these devices, we do not need to keep track of which streams
are associated with which process. We allow three simultaneous opens: one open for
write, one open for read, and one (or more) open for ioctl only.

Listing 25.13 OPEN AND CLOSE OPERATIONS

#ifdef __KERNEL__
static int stepper_open(struct inode *inode,

struct file *file)
{

int rc;
int minor;

minor = MINOR(inode->i_rdev);
printk(“stepper: stepper_open() - file->f_mode=%d\n”,

file->f_mode);

/*
* As written, only one process can have the device
* open at once. For some applications, it might be
* nice to have multiple processes (one controlling, for
* example, X and Y while the other controls Z).
* I use two separate entries in /dev/, with
* corresponding minor device numbers, to allow a
* program to open for ioctl while another program
* has the data connection open.
* This would allow a Panic Stop application to be
* written,
* for example.
* Minor device = 0 - read and write
* Minor device = 1 - ioctl() only
*/

/* if minor!=0, we are just opening for ioctl */
if(minor!=0) {

MOD_INC_USE_COUNT;
return(0);

}

if(autostart) stepper_start();

if(file->f_mode==1) {
/* read */
if(read_is_open) {
printk(“stepper: stepper_open() - read busy\n”);
return(-EBUSY);

} else {
read_is_open=1;

Interprocess Communication and Network Programming

PART III
396

2972316072 CH25 7/26/99 2:19 PM Page 396

abort_read=0;
MOD_INC_USE_COUNT;

}
} else if(file->f_mode==2) {
/* write */
if(write_is_open) {
printk(“stepper: stepper_open() - write busy\n”);
return(-EBUSY);

} else {
write_is_open=1;
abort_write=0;
MOD_INC_USE_COUNT;

}
} else {

printk(“stepper: stepper_open() - unknown mode\n”);
return(-EINVAL);

}
if(debug) printk(“stepper: stepper_open() - success\n”);
return(0);

}

void stepper_release(struct inode *inode, struct file *file)
{

int minor;

minor = MINOR(inode->i_rdev);

if(minor!=0) {
MOD_DEC_USE_COUNT;
return;

}

printk(“stepper: stepper_release() - file->f_mode=%d\n”,
file->f_mode);

if(file->f_mode==1) {
/* read */
if(read_is_open) {
abort_read=1;
if(read_is_sleeping) {

wake_up_interruptible(&read_wait);
}
read_is_open=0;
MOD_DEC_USE_COUNT;

} else {
printk(“stepper: ERROR: stepper_release() “

“called unexpectedly (read)\n”);
}

Device Drivers

CHAPTER 25
397

25

D
EV

IC
E

D
R

IV
ER

S

continues

2972316072 CH25 7/26/99 2:19 PM Page 397

} else if(file->f_mode==2) {
/* write */
if(write_is_open) {
abort_write=1;
if(write_is_sleeping) {

wake_up_interruptible(&write_wait);
}
write_is_open=0;
MOD_DEC_USE_COUNT;

} else {
printk(“stepper: ERROR: stepper_release() called”

“ unexpectedly (write)\n”);
}

} else {
printk(“stepper: stepper_release() “

“- invalid file mode\n”);
}

if(!read_is_open && !write_is_open) {
stepper_stop();

}
}

#endif

File Operations Structure
This structure, shown in Listing 25.14, has pointers to all of the top half functions we
have previously defined. We could have also defined some other functions but we will
leave them set to NULL and the kernel will use a default handler. It might make sense to
implement a stepper_fsync() function so we can call fflush() (which calls fsync())
in our user program to keep the user program from getting too far ahead of the driver; we
would then sleep until the write_buffer was empty and the stepper motors had complet-
ed their last move.

Listing 25.14 FILE OPERATIONS STRUCTURE

static struct file_operations stepper_fops = {
stepper_lseek, /* lseek */
stepper_read, /* read */
stepper_write, /* write */
NULL, /* readdir */
NULL, /* select */
stepper_ioctl, /* ioctl */
NULL, /* mmap */
stepper_open, /* open */
stepper_release,/* close */

Interprocess Communication and Network Programming

PART III
398

Listing 25.13 CONTINUED

2972316072 CH25 7/26/99 2:19 PM Page 398

NULL, /* fsync */
NULL, /* fasync */
NULL, /* check_media_change */
NULL /* revalidate */

};

Bottom Half
The functions in Listing 25.15, along with the actual stepper control functions shown
previously in Listing 25.9, implement the bottom half of the device driver. Depending on
whether we are using interrupts or timer ticks (jiffies), either timer_tick_handler() or
interrupt_handler() will be invoked in response to timer ticks or hardware interrupts.
In either case, we want to do the same thing so I simply call another function to do the
work, which I have named bottom_half().

If cleanup_module() is waiting for us to remove ourselves from the timer tick queue by
processing the next tick and then not putting ourselves back on the queue, we simply
wake up cleanup_module() and do nothing else. If the stepper motors are not still pro-
cessing the last move, we will read any available characters queued by stepper_write()
and parse them one at a time until they cause a move to occur. If write is sleeping
because the ring buffer was full, we will wake it up because it may be able to write more
characters now that we may have drained some.

We call move_one_step() to do the actual work of interacting with the device. If we are
using timer ticks, we must put ourselves back on the timer tick queue each time.

Listing 25.15 BOTTOM HALF

static int using_jiffies = 0;

static struct wait_queue *tick_die_wait_queue = NULL;

/* forward declaration to resolve circular reference */
static void timer_tick_handler(void *junk);

static struct tq_struct tick_queue_entry = {
NULL, 0, timer_tick_handler, NULL

};

static void bottom_half()
{

int rc;
char c;

tick_counter++;
if(tick_die_wait_queue) {

Device Drivers

CHAPTER 25
399

25

D
EV

IC
E

D
R

IV
ER

S

continues

2972316072 CH25 7/26/99 2:19 PM Page 399

/* cleanup_module() is waiting for us */
/* Don’t reschedule interrupt and wake up cleanup */
using_jiffies = 0;
wake_up(&tick_die_wait_queue);

} else {
if((skipticks==0) || ((tick_counter % skipticks)==0)) {

/* Don’t process any move commands if */
/* we haven’t finished the last one */
if((xdest==xpos)
&& (ydest==ypos)
&& (zdest==zpos)) {

/* process command characters */
while(

(rc=ring_buffer_read(&write_buffer,&c,1))==1
){

parse_one_char(c);
if((xdest!=xpos)
|| (ydest!=ypos)
|| (zdest!=zpos)) {

/* parse_one_char() started a move; */
/* stop reading commands so current move*/
/* can complete first. */
break;

}
}
if(write_is_sleeping) {

wake_up_interruptible(&write_wait);
}

}
}

move_one_step();

/* put ourselves back in the queue for the next tick*/
if(using_jiffies) {

queue_task(&tick_queue_entry, &tq_timer);
}

}
}

static void timer_tick_handler(void *junk)
{

/* let bottom_half() do the work */

Interprocess Communication and Network Programming

PART III
400

Listing 25.15 CONTINUED

2972316072 CH25 7/26/99 2:19 PM Page 400

bottom_half();
}

void interrupt_handler(int irq, void *dev_id,
struct pt_regs *regs)

{
/* let bottom_half() do the work */
bottom_half();

}
#endif

Module Initialization and Termination
Listing 25.16 shows init_module() and cleanup_module(), which are the initialization
and termination functions for the module. These functions must use these names since
the insmod program invokes them by name.

The init_module() function first initializes the two ring buffers used to buffer reads and
writes and resets the flags that indicate that the read or write functions are sleeping. It
then registers the major device number with the system using register_chrdev(). This
major device number must not already be used and must match the number we use when
we make the device special files /dev/stepper and /dev/stepper_ioctl. The first para-
meter is the major device number. The second is an identifying string that will be listed
along with the major number in /proc/devices. The third parameter is the file opera-
tions structure we defined earlier; this is where we tell the kernel how to invoke our top
half functions.

We call check_region() to test if the I/O ports are available (not used by another driver)
and then register them using request_region(). These calls take a base address and a
count of the number of consecutive I/O addresses. The check_region() function returns
zero if the region is available. The region will later be released with release_region(),
which takes the same arguments.

Next we queue up one of our bottom half functions to receive interrupts or timer ticks,
depending on the chosen mode of operation. The request_irq() function was described
previously. If we are using timer ticks, we use queue_task() to place ourselves in the
appropriate queue to receive timer ticks. If we are using hardware interrupts from the
parallel port card, we tell the card to assert the hardware interrupt line so we can receive
interrupts from an external hardware clock source.

For testing purposes, I have the driver initiate a move of 400 counts (1 turn on the motors
I am using); this should be commented out in a production driver. Finally, we announce

Device Drivers

CHAPTER 25
401

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 401

to the world that we have successfully loaded and return to the insmod or ”kmod” pro-
gram that loaded us.

The cleanup_module() function is called to terminate and unload the kernel module. It
is initiated by the rmmod or kmod programs. This function basically reverses the actions of
init_module(). The kernel function unregister_chrdev() will unregister the major
device number we registered previously and free_irq() will free the interrupt we may
have registered.

There is, apparently, no way to remove ourselves from the timer tick queue, so we sleep
until the bottom half effectively removes us by receiving a timer tick and not re-register-
ing. Note that I should have used the sleep_on trick in the event of MOD_IN_USE or a fail-
ure of unregister_chrdev(). Since we cannot abort the unloading of the module, we
could wait forever. We could also have the bottom half wake us up every once in a while
to retry the failed operations. If appropriate, we power down the stepper motors (by turn-
ing all the transistors off) before we announce our termination and return.

Listing 25.16 INITIALIZATION AND TERMINATION

int init_module(void)
{

int rc;
ring_buffer_init(&read_buffer);
ring_buffer_init(&write_buffer);
read_is_sleeping=0;
write_is_sleeping=0;

if ((stepper_major = register_chrdev(major,”step”,
&stepper_fops)) <0) {
printk(“stepper: unable to get major device\n”);
return(-EIO);

}
/* register_chrdev() does not return the major device */
/* number, workaround will not be correct if major=0 */
stepper_major = major;
if(debug) printk(“stepper:init_module():stepper_major=%d\n”,

stepper_major);

if(check_region(base,4)) {
printk(“stepper: port in use”);
unregister_chrdev(stepper_major, “step”);
return;

}
request_region(base,4);

if(irq && (!interrupts_are_enabled)) {
rc=request_irq(irq,interrupt_handler,0,”stepper”,NULL);

Interprocess Communication and Network Programming

PART III
402

2972316072 CH25 7/26/99 2:19 PM Page 402

if(rc) {
printk(“stepper: stepper_start() - request_irq() “

“returned %d\n”,rc);
} else {

printk(“stepper: stepper_start() “
“- enabled interrupts\n”);

interrupts_are_enabled = 1;

/* now that we are ready to receive them */
/* enable interrupts on parallel card */
word = irq_enable_bit;
verbose_outb((word >> 8), base+2);

}
}
if(!irq) {

using_jiffies = 1;
queue_task(&tick_queue_entry, &tq_timer);

}

/* give ourselves some work to do */
xdest = ydest = zdest = 400;

if(debug) printk(“stepper: module loaded\n”);
return(0);

}

void cleanup_module(void)
{
abort_write=1;
if(write_is_sleeping) wake_up_interruptible(&write_wait);
abort_read=1;
if(read_is_sleeping) wake_up_interruptible(&read_wait);

#if 1
/* Delay 1s for read and write to exit */
current->state = TASK_INTERRUPTIBLE;
current->timeout = jiffies + 100;
schedule();

#endif

release_region(base,4);

if(MOD_IN_USE) {
printk(“stepper: device busy, remove delayed\n”);
return;

}
printk(“unregister_chrdev(%d,%s)\n”,stepper_major, “step”);
if(unregister_chrdev(stepper_major, “step”)) {

printk(“stepper: unregister_chrdev() failed.\n”);

Device Drivers

CHAPTER 25
403

25

D
EV

IC
E

D
R

IV
ER

S

continues

2972316072 CH25 7/26/99 2:19 PM Page 403

printk(“stepper: /proc/devices will cause core dumps\n”);
/* Note: if we get here, we have a problem */
/* There is still a pointer to the name of the device */
/* which is in the address space of the LKM */
/* which is about to go away and we cannot abort
/* the unloading of the module */

}

/* note: we need to release the interrupt here if */
/* necessary otherwise, interrupts may cause kernel */
/* page faults */
if(interrupts_are_enabled) {

/* Disable interrupts on card before we unregister */
word &= ~irq_enable_bit;
verbose_outb((word >> 8), base+2);

free_irq(irq,NULL);
}

if(using_jiffies) {
/* If we unload while we are still in the jiffie */
/* queue, bad things will happen. We have to wait */
/* for the next jiffie interrupt */
sleep_on(&tick_die_wait_queue);

}

if(power_down_on_exit) {
word=flipbits;
/* output low byte to data register */
verbose_outb((word & 0x00FF), base+0);
/* output high byte to control register */
verbose_outb((word >> 8), base+2);

}

if(debug) printk(“stepper: module unloaded\n”);

}
#endif

Main Function
The main() function, shown in listing 25.17, will not be used at all for a kernel mode
driver. It is used as the main entry point when compiled as a usermode driver.

Interprocess Communication and Network Programming

PART III
404

Listing 25.16 CONTINUED

2972316072 CH25 7/26/99 2:19 PM Page 404

Listing 25.17 THE main() FUNCTION

#ifndef __KERNEL__
main()
{

char c;

/* unbuffer output so we can see in real time */
setbuf(stdout,NULL);

printf(“this program must be run as root\n”);
iopl(3); /* Enable i/o (if root) */

printf(“Here are some example motion commands:\n”);
printf(“ X=100,Y=100,Z=50\n”);
printf(“ X=100,Y=100\n”);
printf(“ Y=100,Z=50\n”);
printf(“ X=+100,Y=-100\n”);
printf(“ ? (reports position)”);
printf(“End each command with a newline.\n”);
printf(“Begin typing motion commands\n”);
while(!feof(stdin)) {

c = getc(stdin);
parse_one_char(c);
move_all();

}

if(power_down_on_exit) {
word=flipbits;
/* output low byte to data register */
verbose_outb((word & 0x00FF), base+0);
/* output high byte to control register */
verbose_outb((word >> 8), base+2);

}

}
#endif

Compiling the Driver
Listing 25.18 shows the Makefile that is used to compile the driver using the make
program.

Device Drivers

CHAPTER 25
405

25

D
EV

IC
E

D
R

IV
ER

S

2972316072 CH25 7/26/99 2:19 PM Page 405

Listing 25.18 MAKEFILE

default: all

all: stepper.o stepuser

stepper.o: stepper.c ring.h stepper.h
gcc -O -DMODULE -D__KERNEL__ -o stepperout.o -c stepper.c
ld -r -o stepper.o stepperout.o ring.o

stepuser: stepper.c
gcc -g -O -o stepuser stepper.c

ring.o: ring.c ring.h
gcc -O -DMODULE -D__KERNEL__ -c ring.c

Using the Kernel Driver
Use of the drives will be illustrated by a simple sequence of shell commands in Listing
25.19. There is also a sample C program on the CD-ROM that will execute several
moves and then read back the position.

Listing 25.19 DRIVER USE

make the devices (once)
mknod /dev/stepper c 31 0
mknod /dev/stepper_ioctl c 31 1

#load the driver
sync; insmod ./stepper.o port=0x378

#give it something to do
cat “X=100,Y=100,Z=100” >/dev/stepper
cat “X=300,Y=300,Z=300” >/dev/stepper
cat “X=0,Y=0,Z=0” >/dev/stepper

#unload driver
sync; rmmod stepper.o

Various variables can be set to modify the operation of the driver. In usermode only, the
variable delay sets the number of microseconds to sleep between moves; if fastdelay is
set, a delay loop of the specified number of iterations will be used instead. In kernel
mode, skipticks can be used to slow movement down by skipping the specified number
of timer ticks between moves. The variable debug sets the amount of debugging informa-
tion printed. The variable verbose_io, if nonzero, will cause a debugging message to be
printed each time outb() is called. The variable verbose_move, if nonzero, will cause a

Interprocess Communication and Network Programming

PART III
406

2972316072 CH25 7/26/99 2:19 PM Page 406

debugging message to be printed each time the motor(s) are moved. If either verbose_io
or verbose_move is set for a kernel mode driver, use a value for skipticks to reduce the
rate at which printk() is called. The variable base sets the I/O port address of the paral-
lel interface to use; the values 0x3BC, 0x378, and 0x278 are the most common. If
power_down_on_exit is set to a nonzero value, the motors will be shut down when the
usermode program exits or the kernel module is removed. The variable do_io, if set to
zero, will disable the outb() calls, allowing experimentation (with verbose_io and/or
verbose_move set) without a free parallel port. Some of these variables may also be set
via ioctls.

Device Drivers

CHAPTER 25
407

25

D
EV

IC
E

D
R

IV
ER

S

NOTE

If the driver is issuing a large number of printk()s, you may need to type a
rmmod stepper command blindly because the kernel messages will cause the
shell prompt and input echo to scroll off the screen.

Note that the parallel port must not be in use by another device driver (such as lp0). You
may need to unload the printer module or boot the system with the reserve=0x378,4
option at the boot prompt. If you are trying to use interrupts and are having trouble,
check for conflicts with other devices (the interrupts on printer cards are usually not used
for printers) and check your bios to make sure it is not allocated to the PCI bus instead of
the ISA bus or motherboard.

Future Directions
There are some improvements that I may make to this driver in the future. Proper han-
dling of diagonal 3-dimensional moves is a prime candidate. The ability for more than
one process to control the driver simultaneously is a possibility. Autostart and ioctl()
driven start and stop may be implemented to allow use of interrupts only when needed,
synchronizing with other processes, and emergency stops. Adding support for the Linux
Real Time Extensions (which requires a custom kernel) would allow operation faster
than 100 pulses per second; using the extensions while maintaining the standard charac-
ter device interface may not be trivial, however. Adding a stepper_select() function
and modifying stepper_read() and stepper_write() to return with a smaller count
than was passed in instead of sleeping would allow the use of select() and non-
blocking I/O.

2972316072 CH25 7/26/99 2:19 PM Page 407

Other Sources of Information
There are a number of sources of information on device drivers on the Internet and one
comprehensive book on the subject.

Writing Linux Device Drivers:

http://www.redhat.com/~johnsonm/devices.html

Linux Kernel Module Programming Guide:

http://metalab.unc.edu/LDP/LDP/lkmpg/mpg.html

The Linux Kernel Hackers’ Guide:

http://khg.redhat.com/HyperNews/get/khg.html

Linux Parallel Port Home Page:

http://www.torque.net/linux-pp.html

The PC’s Parallel Port:

http://www.lvr.com/parport.htm

Linux Device Drivers:

Alessandro Rubini, Linux Device Drivers, O’Reilly and Associates, 1997, ISBN
1-56592-292-1, 448pp.

You may also find the kernel sources very useful. The include files and the source code
to the routines mentioned are useful references. There are a large number of existing
device drivers included with the kernel that can serve as examples.

Summary
Writing a device driver is one of the most complicated programming tasks in the Linux
environment. It requires interaction with the hardware, it is easy to crash your system,
and it is difficult to debug. There are no man pages for the various kernel functions you
will need to use; however, there is more documentation available online and in printed
form.

Getting low-level programming information from the manufacturer is often difficult; you
may find it necessary to reverse engineer the hardware or select hardware from a rep-
utable manufacturer instead. Many pieces of hardware also have serious design flaws or
idiosyncrasies that will complicate writing a driver. Successfully implementing a driver is
rewarding, however, and provides needed device support.

Interprocess Communication and Network Programming

PART III
408

2972316072 CH25 7/26/99 2:19 PM Page 408

Programming the
User Interface PART

IV
IN THIS PART

• Terminal Control the Hard Way 411

• Terminal Manipulation Using ncurses 433

• X Window Programming 463

• Using Athena and Motif Widgets 479

• GUI Programming Using GTK 519

• GUI Programming Using Qt 543

• GUI Programming Using Java 559

• OpenGL/Mesa Graphics Programming 595

3072316072 part4 7/26/99 2:30 PM Page 409

3072316072 part4 7/26/99 2:30 PM Page 410

IN THIS CHAPTER

• The Terminal Interface 412

• Controlling Terminals 413

• Using the Terminal Interface 418

• Changing Terminal Modes 420

• Using terminfo 422

26
C

H
A

PT
ER

Terminal Control
the Hard Way

by Kurt Wall

3172316072 CH26 7/26/99 1:38 PM Page 411

This chapter covers controlling terminals under Linux. It will show you the low-level
APIs for controlling terminals and for controlling screen output in Linux applications.
The notion of terminal control is a hoary holdover from computing’s earliest days, when
users interacted with the CPU from dumb terminals. Despite its antiquity, however, the
underlying ideas still define the way Linux (and UNIX) communicates with most input
and output devices.

The Terminal Interface
The terminal, or tty, interface derives from the days when users sat in front of a glorified
typewriter attached to a printer. The tty interface is based on a hardware model that
assumes a keyboard and printer combination is connected to a remote computer system
using a serial port. This model is a distant relative of the current client-server computing
architecture. Figure 26.1 illustrates the hardware model.

Programming the User Interface

PART IV
412

Application

Serial Hardware

Remote Terminal

Linux Kernel

Data Lines

FIGURE 26.1
The terminal
hardware model.

Admittedly daunting and complex, the model is sufficiently general that almost every sit-
uation in which a program needs to interact with some sort of input or output device,
such as a printer, the console, xterms, or network logins, can be described as a subset of
the general case. As a result, the model actually simplifies the programmer’s task
because it provides a consistent programming interface that can be applied in a wide
variety of situations.

Why is the terminal interface so complex? Likely there are many reasons, but the two
most important are human nature and what the terminal interface must accomplish.

3172316072 CH26 7/26/99 1:38 PM Page 412

Besides having to manage the interaction between a user and the system, programs and
the system, and devices and the system, the terminal interface has to accept input from
and send output to a nearly limitless variety of sources. Consider all of the different key-
board models, mice, joysticks, and other devices used to transmit user input. Add to that
set all of the different kinds of output devices, such as modems, printers, plotters, serial
devices, video cards, and monitors. The terminal interface has to accommodate all of
these devices. This plethora of hardware demands a certain amount of complexity.

Complexity also emerges from human nature. Because terminals are interactive, users
(people) want to control the interaction and tailor it to their habits, likes, and dislikes.
The interface grows in size and feature set, and thus in complexity, as a direct result of
this human tendency.

The following section shows you how to manipulate terminal behavior using the POSIX
termios interface. termios provides finely grained control over how Linux receives and
processes input. In the section “Using terminfo” later in the chapter, you learn how to
control the appearance of output on a console or xterm screen.

Controlling Terminals
POSIX.1 defines a standard interface for querying and manipulating terminals. This
interface is called termios and is defined in the system header file <termios.h>.
termios most closely resembles the System V UNIX termio model, but also incorporates
some terminal interface features from Berkeley-derived UNIX systems. From a program-
mer’s perspective, termios is a data structure and a set of functions that manipulate it.
The termios data structure, listed below, contains a complete description of a terminal’s
characteristics. The associated functions query and change these characteristics.

#include <termios.h>

struct termios {
tcflag_t c_iflag; /* input mode flags */
tcflag_t c_oflag; /* output mode flags */
tcflag_t c_cflag; /* control mode flags */
tcflag_t c_lflag; /* local mode flags */
cc_t c_line; /* line discipline */
cc_t c_cc[NCCS]; /* control characters */

};

The c_iflag member controls input processing options. It affects whether and how the
terminal driver processes input before sending it to a program. The c_oflag member
controls output processing and determines if and how the terminal driver processes pro-
gram output before sending it to the screen or other output device. Various control flags,
which determine the hardware characteristics of the terminal device, are set in the

Terminal Control the Hard Way

CHAPTER 26
413

26

T
ER

M
IN

A
L

C
O

N
TR

O
L

TH
E

H
A

R
D

W
A

Y

3172316072 CH26 7/26/99 1:38 PM Page 413

c_cflag member. The local mode flags, stored in c_lflag, manipulate terminal charac-
teristics, such as whether or not input characters are echoed on the screen. The c_cc
array contains values for special character sequences, such as ^\ (quit) and ^H (delete),
and how they behave. The c_line member indicates the control protocol, such as SLIP,
PPP, or X.25—we will not discuss this member because its usage is beyond this book’s
scope.

Terminals operate in one of two modes, canonical (or cooked) mode, in which the termi-
nal device driver processes special characters and feeds input to a program one line at a
time, and non-canonical (or raw) mode, in which most keyboard input is unprocessed
and unbuffered. The shell is an example of an application that uses canonical mode. The
screen editor vi, on the other hand, uses non-canonical mode; vi receives input as it is
typed and processes most special characters itself (^D, for example, moves to the end of a
file in vi, but signals EOF to the shell).

Table 26.1 lists commonly used flags for the for terminal control modes.

Table 26.1 POSIX termios FLAGS

Flag Member Description

IGNBRK c_iflag Ignore BREAK condition on input.

BRKINT c_iflag Generate SIGINT on BREAK if IGNBRK is set.

INLCR c_iflag Translate NL to CR on input.

IGNCR c_iflag Ignore CR on input.

ICRNL c_iflag Translate CR to NL on input if IGNCR isn’t set.

ONLCR c_oflag Map NL to CR-NL on output.

OCRNL c_oflag Map CR to NL on output.

ONLRET c_oflag Don’t output CR.

HUPCL c_cflag After last process closes device, close connection.

CLOCAL c_cflag Ignore modem control lines.

ISIG c_lflag Generate SIGINT, SIGQUIT, SIGSTP when an INTR, QUIT or SUSP
character, respectively, is received.

ICANON c_lflag Enable canonical mode.

ECHO c_lflag Echo input characters to output.

ECHONL c_lflag Echo NL characters in canonical mode, even if ECHO is not set.

The array of control characters, c_cc, contains at least eleven special control characters,
such as ^D EOF, ^C INTR, and ^U KILL. Of the eleven, nine can be changed. CR is always
\r and NL is always \n; neither can be changed.

Programming the User Interface

PART IV
414

3172316072 CH26 7/26/99 1:38 PM Page 414

Attribute Control Functions
The termios interface includes functions for controlling terminal characteristics. The
basic functions are tcgetattr() and tcsetattr(). tcgetattr() initializes a termios
data structure, setting values that represent a terminal’s characteristics and settings.
Querying and changing these settings means manipulating the data structure returned
by tcgetattr() using the functions discussed in the following sections. Once you are
done, use tcsetattr() to update the terminal with the new values. tcgetattr() and
tcsetattr() are prototyped and explained below.

int tcgetattr(int fd, struct termios *tp);

tcgetattr() queries the terminal parameters associated with the file descriptor fd and
stores them in the termios struct referenced by tp. Returns 0 if OK, -1 on error.

int tcsetattr(int fd, int action, struct termios *tp);

tcsetattr() sets the terminal parameters associated with the file descriptor fd using the
termios struct referenced by tp. The action parameter controls when the changes take
affect, using the following values:

• TCSANOW—Change the values immediately.

• TCSADRAIN—Change occurs after all output on fd has been sent to the terminal.
Use this function when changing output settings.

• TCSAFLUSH—Change occurs after all output on fd has been sent to the terminal but
any pending input will be discarded.

Speed Control Functions
The first four functions set the input and output speed of a terminal device. Because the
interface is old, it defines speed in terms of baud, although the correct terminology is bits
per second (bps). The functions come in pairs, two to get and set the output line speed
and two to get and set the input line speed. Their prototypes, declared in the
<termios.h> header, are listed below, along with short descriptions of their behavior.

int cfgetispeed(struct termios *tp);

cfgetispeed() returns the input line speed stored in the termios struct pointed to by tp.

int cfsetispeed(struct termios *tp, speed_t speed);

cfsetispeed() sets the input line speed stored in the termios struct pointed to by tp to
speed.

int cfgetospeed(struct termios *tp);

Terminal Control the Hard Way

CHAPTER 26
415

26

T
ER

M
IN

A
L

C
O

N
TR

O
L

TH
E

H
A

R
D

W
A

Y

3172316072 CH26 7/26/99 1:38 PM Page 415

cfgetospeed() eturns the output line speed stored in the termios struct pointed to by
tp.

int cfsetospeed(struct termios *tp, speed_t speed);

cfsetospeed() sets the output line speed stored in the termios struct point to by tp to
speed.

The speed parameter must be one of these constants:

B0 (Closes the connection) B1800

B50 B2400

B75 B4800

B110 B9600

B134 B19200

B150 B38400

B200 B57600

B300 B115200

B600 B230400

Line Control Functions
The line control functions query and set various properties concerned with how, when,
and if data flows to the terminal device. These functions enable you to exercise a fine
degree of control over the terminal device’s behavior. For example, to force all pending
output to complete before proceeding, use tcdrain(), prototyped as:

int tcdrain(int fd);

tcdrain() waits until all output has been written to the file descriptor fd before
returning.

To force output, input, or both to be flushed, use the tcflush() function. It is prototyped
as follows:

int tcflush(int fd, int queue);

tcflush() flushes input, output (or both) queued to the file descriptor fd. The queue
argument specifies the data to flush, as listed in the following:

• TCIFLUSH—Flush input data received but not read.

• TCOFLUSH—Flush output data written but not transmitted.

• TCIOFLUSH—Flush input data received but not read and output data written
but not sent.

Programming the User Interface

PART IV
416

3172316072 CH26 7/26/99 1:38 PM Page 416

Actual flow control, whether it is on or off, is controlled through the tcflow() function,
prototyped as:

int tcflow(int fd, int action);

tcflow() starts or stops transmission or reception of data on file descriptor fd, depend-
ing on the value of action:

• TCOON—Starts output

• TCOOFF—Stops output

• TCION—Starts input

• TCIOFF—Stops input

Process Control Functions
The process control functions the termios interface defines enable you to get informa-
tion about the processes (programs) running on a given terminal. The key to obtaining
this information is the process group. For example, to find out the process group identifi-
cation number on a given terminal, use tcgetpgrp(), which is prototyped as follows:

pid_t tcgetpgrp(int fd);

tcgetpgrp() returns the process group ID of the foreground process group pgrp_id of
the terminal open on file descriptor fd, or -1 on error.

If your program has sufficient access privileges (root equivalence), it can change the
process group identification number using tcsetpgrp(). It is prototyped as follows:

int_t tcsetpgrp(int fd, pid_t pgrp_id);

tcsetpgrp() sets the foreground process group id of the terminal open on file descriptor
fd to the process group ID pgrp_id.

Unless otherwise specified, all functions return 0 on success. On error, they return -1 and
set errno to indicate the error. Figure 26.2 depicts the relationship between the hardware
model illustrated in Figure 26.1 and the termios data structures.

The four flags, c_lflag, c_iflag, c_oflag, and c_cflag, mediate the input between the
terminal device driver and a program’s input and output functions. The read and write
functions between the kernel and the user program are the interface between user space
programs and the kernel. These functions could be simple fgets() and fputs(), the
read() and write() system calls, or use other I/O functionality, depending on the nature
of the program.

Terminal Control the Hard Way

CHAPTER 26
417

26

T
ER

M
IN

A
L

C
O

N
TR

O
L

TH
E

H
A

R
D

W
A

Y

3172316072 CH26 7/26/99 1:38 PM Page 417

Using the Terminal Interface
Of the functions that manipulate termios structures, tcgetattr() and tcsetattr() are
the most frequently used. As their names suggest, tcgetattr() queries a terminal’s state
and tcsetattr() changes it. Both accept a file descriptor fd that corresponds to the
process’s controlling terminal and a pointer tp to a termios struct. As noted above,
tcgetattr() populates the referenced termios struct and tcsetattr() updates the ter-
minal characteristics using the values stored in the struct.

Listing 26.1 illustrates using termios to turn off character echo when entering a
password.

Listing 26.1 noecho.c

1 /*
2 * Listing 26-1
3 * /
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <termios.h>
7
8 #define PASS_LEN 8
9
10 void err_quit(char *msg, struct termios flags);
11
12 int main()
13 {
14 struct termios old_flags, new_flags;

Programming the User Interface

PART IV
418

Application

Read/Write
Functions

Terminal Device
Driver

Serial Device

Remote Terminal

Data Lines

Terminal ControlLinux Kernel

FIGURE 26.2
How the hardware
model maps to the
termios structure.

3172316072 CH26 7/26/99 1:38 PM Page 418

15 char password[PASS_LEN + 1];
16 int retval;
17
18 /* Get the current terminal settings */
19 tcgetattr(fileno(stdin), &old_flags);
20 new_flags = old_flags;
21
22 /* Turn off local echo, but pass the newlines through */
23 new_flags.c_lflag &= ~ECHO;
24 new_flags.c_lflag |= ECHONL;
25
26 /* Did it work? */
27 retval = tcsetattr(fileno(stdin), TCSAFLUSH, &new_flags);
28 if(retval != 0)
29 err_quit(“Failed to set attributes”, old_flags);
30
31 /* Did the settings change? */
32 tcgetattr(fileno(stdin), &new_flags);
33 if(new_flags.c_lflag & ECHO)
34 err_quit(“Failed to turn off ECHO”, old_flags);
35 if(!new_flags.c_lflag & ECHONL)
36 err_quit(“Failed to turn on ECHONL”, old_flags);
37
38 fprintf(stdout, “Enter password: “);
39 fgets(password, PASS_LEN + 1, stdin);
40 fprintf(stdout, “You typed: %s”, password);
41
42 /* Restore the old termios settings */
43 tcsetattr(fileno(stdin), TCSANOW, &old_flags);
44
45 exit(EXIT_SUCCESS);
46 }
47
48 void err_quit(char *msg, struct termios flags)
49 {
50 fprintf(stderr, “%s\n”, msg);
51 tcsetattr(fileno(stdin), TCSANOW, &flags);
52 exit(EXIT_FAILURE);
53 }

After the variable definitions, line 19 retrieves the termios settings for stdin. Line 20
copies the terminal settings to the new_flags struct, which is the structure the program
manipulates. A well-behaved program should restore the original settings before exiting,
so, before it exits, the program restores the original termios settings (line 43).

Lines 23 and 24 illustrate the correct syntax for clearing and setting termios flags. Line
23 turns off echo on the local screen and line 24 allows the screen to echo any newlines
received in input.

Terminal Control the Hard Way

CHAPTER 26
419

26

T
ER

M
IN

A
L

C
O

N
TR

O
L

TH
E

H
A

R
D

W
A

Y

3172316072 CH26 7/26/99 1:38 PM Page 419

So far, all the program has done is change values in the struct; updating the terminal is
the next step. In order to post the changes, use tcsetattr(), as shown on line 27. The
TCSAFLUSH option discards any input the user may have typed, ensuring a consistent read.
Because not all terminals support all termios settings, however, the POSIX standard per-
mits termios silently to ignore unsupported terminal capabilities. As a result, robust pro-
grams should check to make sure that the tcsetattr() call succeeded (lines 28 and 29),
and then confirms that ECHO is turned off and ECHONL is turned on in lines 32–36. If the
update fails, add appropriate code to handle the error.

With the preliminaries out of the way, the program prompts for a password, retrieves it,
then prints out what the user typed. No characters echo to the screen on input, but the
call to fprintf() works as expected. As noted above, the last step before exiting is
restoring the terminal’s original termios state. The err_quit() function displays a diag-
nostic message and restores the original terminal attributes before exiting.

Changing Terminal Modes
The program in Listing 26.1 did manipulate some terminal attributes, but remained in
canonical mode. The program in Listing 26.2 puts the terminal in raw mode and per-
forms its own processing on special characters and signals.

Listing 26.2 RAW MODE

1 /*
2 * Listing 26-2
3 */
4 #include <termios.h>
5 #include <unistd.h>
6 #include <signal.h>
7 #include <stdlib.h>
8 #include <stdio.h>
9
10 void err_quit(char *msg);
11 void err_reset(char *msg, struct termios *flags);
12 static void sig_caught(int signum);
13
14 int main(void)
15 {
16 struct termios new_flags, old_flags;
17 int i, fd;
18 char c;
19
20 /* Set up a signal handler */
21 if(signal(SIGINT, sig_caught) == SIG_ERR)

Programming the User Interface

PART IV
420

3172316072 CH26 7/26/99 1:38 PM Page 420

22 err_quit(“Failed to set up SIGINT handler”);
23 if(signal(SIGQUIT, sig_caught) == SIG_ERR)
24 err_quit(“Failed to set up SIGQUIT handler”);
25 if(signal(SIGTERM, sig_caught) == SIG_ERR)
26 err_quit(“Failed to set up SIGTERM handler”);
27
28 fd = fileno(stdin);
29
30 /* Set up raw/non-canonical mode */
31 tcgetattr(fd, &old_flags);
32 new_flags = old_flags;
33 new_flags.c_lflag &= ~(ECHO | ICANON | ISIG);
34 new_flags.c_iflag &= ~(BRKINT | ICRNL);
35 new_flags.c_oflag &= ~OPOST;
36 new_flags.c_cc[VTIME] = 0;
37 new_flags.c_cc[VMIN] = 1;
38 if(tcsetattr(fd, TCSAFLUSH, &new_flags) < 0)
39 err_reset(“Failed to change attributes”, &old_flags);
40
41 /* Process keystrokes until DELETE key is pressed */
42 fprintf(stdout, “In RAW mode. Press DELETE key to exit\n”);
43 while((i = read(fd, &c, 1)) == 1) {
44 if((c &= 255) == 0177)
45 break;
46 printf(“%o\n”, c);
47 }
48
49 /* Restore original terminal attributes */
50 tcsetattr(fd, TCSANOW, &old_flags);
51
52 exit(0);
53 }
54
55 void sig_caught(int signum)
56 {
57 fprintf(stdout, “signal caught: %d\n”, signum);
58 }
59
60 void err_quit(char *msg)
61 {
62 fprintf(stderr, “%s\n”, msg);
63 exit(EXIT_FAILURE);
64 }
65
66 void err_reset(char *msg, struct termios *flags)
67 {
68 fprintf(stderr, “%s\n”, msg);
69 tcsetattr(fileno(stdin), TCSANOW, flags);
70 exit(EXIT_FAILURE);
71 }

Terminal Control the Hard Way

CHAPTER 26
421

26

T
ER

M
IN

A
L

C
O

N
TR

O
L

TH
E

H
A

R
D

W
A

Y

3172316072 CH26 7/26/99 1:38 PM Page 421

The two error handling functions declared and defined on lines 10–12 and 62–73, respec-
tively, are strictly for convenience. The program creates a signal-handling function to
demonstrate that it catches some signals (lines 13, 57–60). The program’s real meat
appears in lines 31–39. Line 33 turns off canonical mode, local echo, and ignores sig-
nals; line 34 turns of the CR to NL translation, and line 35 turns off all output processing.
After updating the terminal attributes, the loop on lines 43–46 reads input one character
at a time and outputs it to the screen in octal notation. If you press the Delete key, the
program exits after restoring the original terminal settings.

A sample run of the program looks like the following:

$./rawmode
In RAW mode. Press DELETE key to exit

154 Type l
151 Type i

156 Type n
165 Type u

170 Type x
3 Type Ctrl-C
32 Type Ctrl-Z
4 Type Ctrl-D
$

A newline does not perform a carriage return, so input appears on a new line, but at the
location of the cursor from the last line. Because the program turned off signals, signals
entered at the keyboard, such as ^C (interrupt), ^Z (suspend), and ^D (EOF) get ignored.

Using terminfo
Where termios gives you very low-level control over input processing, terminfo gives
you a similar level of control over output processing. terminfo provides a portable, low-
level interface to operations such as clearing a terminal screen, positioning the cursor, or
deleting lines or characters. Due to the wide variety of terminals in existence, UNIX’s
designers (eventually) learned to standardize descriptions of terminal capabilities in cen-
trally located database files. The word “terminfo” refers both to this database and to the
routines that access it.

Programming the User Interface

PART IV
422

NOTE

Strictly speaking, the termcap database, first used in BSD-derived systems, pre-
ceded terminfo (the name “termcap” is a contraction of the phrase “TERMinal
CAPability). As the termcap database grew in size, however, it became too slow
for interactive use, and was replaced with terminfo in System V-derived UNIX
beginning with Release 2.

3172316072 CH26 7/26/99 1:38 PM Page 422

terminfo Capabilities
For each possible terminal type, such as VT100 or xterm, terminfo maintains a list of
that terminal’s capabilities and features, called a capname, or CAPability NAME.
Capnames fall into one of the following categories:

• boolean

• numeric

• string

Boolean capnames simply indicate whether or not a terminal supports a specific feature,
such as cursor addressing or a fast screen-clearing function. Numeric capnames usually
define size-related capabilities; for example, how many columns and lines a terminal has.
String capnames define either the escape sequence necessary to access a certain feature
or the string that would be output if the user pressed a certain key, such as a function key.
Table 26.2 lists a small subset of the capabilities about which terminfo knows; for a
complete list, refer to the terminfo(5) man page.

Table 26.2 COMMON TERMINAL CAPABILITIES

capname Type Description

am boolean Terminal has automatic margins

bce boolean Terminal uses background color erase

km boolean Terminal has a META key

ul boolean Underline character overstrikes

cols numeric Number of columns on current terminal

lines numeric Number of lines/rows on current terminal

colors numeric Number of colors current terminal supports

clear string Clear the screen and home the cursor

cl string Clear to the end of the line

ed string Clear to the end of the screen

smcup string Enter cursor address mode

cup string Move cursor to (row, column)

rmcup string Exit cursor address mode

bel string Emit audible bell

flash string Emit visual bell (flash screen)

kf[0-63] string F[0-63] function key

Terminal Control the Hard Way

CHAPTER 26
423

26

T
ER

M
IN

A
L

C
O

N
TR

O
L

TH
E

H
A

R
D

W
A

Y

3172316072 CH26 7/26/99 1:38 PM Page 423

To use terminfo, include <curses.h> and <term.h>, in that order, in your source file.
You also have to link against the curses library, so add -lcurses to the compiler
invocation.

Using terminfo
In pseudo-code, the following is the usual sequence of instructions for using terminfo:

1. Initialize the terminfo data structures

2. Retrieve capname(s)

3. Modify capname(s)

4. Output the modified capname(s) to the terminal

5. Other code as necessary

6. Repeat steps 2–5

Initializing the terminfo data structures is simple, as shown in the following code:

#include <curses.h>
#include <term.h>

int setupterm(const char *term, int filedes, int *errret);

term specifies the terminal type. If it is null, setupterm() reads $TERM from the environ-
ment; otherwise, setupterm() uses the value to which term points. All output is sent to
the file or device opened on the file descriptor filedes. If errret is not null, it will
either be 1 to indicate success, 0 if the terminal referenced in term could not be found in
the terminfo database, or -1 if the terminfo database could not be found. setupterm()
returns OK to indicate success or ERR on failure. If errret is null, setupterm() emits a
diagnostic message and exits.

Each of the three classes of capabilities (boolean, numeric, and string) has a correspond-
ing function to retrieve a capability, as described in the following:

int tigetflag(const char *capname);

Returns TRUE if the terminal specified by term in setupterm() supports capname,
FALSE if it does not, or -1 if capname isn’t a boolean capability.

int tigetnum(const char *capname);

Returns the numeric value of capname, ERR if the terminal specified by term in
setupterm() doesn’t support capname, or -2 if capname isn’t a numeric capability.

char *tigetstr(const char *capname);

Returns a pointer to char containing the escape sequence for capname, (char *)
null if the terminal specified by term in setupterm() doesn’t support capname,
or (char *)-1 if capname isn’t a string capability.

Programming the User Interface

PART IV
424

3172316072 CH26 7/26/99 1:38 PM Page 424

Listing 26.3 uses these functions to query and print a few of the current terminal’s
capabilities.

Listing 26.3 getcaps.c

1 /*
2 * Listing 26-3
3 * getcaps.c
4 * Get and show terminal capabilities using terminfo data structures
5 * and functions
6 */
7 #include <stdlib.h>
8 #include <stdio.h>
9 #include <term.h>
10 #include <curses.h>
11
12 #define NUMCAPS 3
13
14 int main(void)
15 {
16 int i;
17 int retval = 0;
18 char *buf;
19 char *boolcaps[NUMCAPS] = { “am”, “bce”, “km” };
20 char *numcaps[NUMCAPS] = { “cols”, “lines”, “colors” };
21 char *strcaps[NUMCAPS] = { “cup”, “flash”, “hpa” };
22
23 if(setupterm(NULL, fileno(stdin), NULL) != OK) {
24 perror(“setupterm()”);
25 exit(EXIT_FAILURE);
26 }
27
28 for(i = 0; i < NUMCAPS; ++i) {
29 retval = tigetflag(boolcaps[i]);
30 if(retval == FALSE)
31 printf(“`%s’ unsupported\n”, boolcaps[i]);
32 else
33 printf(“`%s’ supported\n”, boolcaps[i]);
34 }
35 fputc(‘\n’, stdout);
36
37 for(i = 0; i < NUMCAPS; ++i) {
38 retval = tigetnum(numcaps[i]);
39 if(retval == ERR)
40 printf(“`%s’ unsupported\n”, numcaps[i]);
41 else
42 printf(“`%s’ is %d\n”, numcaps[i], retval);
43 }
44 fputc(‘\n’, stdout);
45

Terminal Control the Hard Way

CHAPTER 26
425

26

T
ER

M
IN

A
L

C
O

N
TR

O
L

TH
E

H
A

R
D

W
A

Y

continues

3172316072 CH26 7/26/99 1:38 PM Page 425

LISTING 26.3 CONTINUED

46 for(i = 0; i < NUMCAPS; ++i) {
47 buf = tigetstr(strcaps[i]);
48 if(buf == NULL)
49 printf(“`%s’ unsupported\n”, strcaps[i]);
50 else
51 printf(“`%s’ is \\E%s\n”, strcaps[i], &buf[1]);
52 /*printf(“`%s’ is %s\n”, strcaps[i], buf);*/
52 }
53
54 exit(0);
55 }

The program begins by initializing the terminfo data structures and setting up some
variables for internal use. Then, it queries and prints three of each of the three classes of
terminal capabilities. First, we test for support of the am (automatic margin), bce (back-
ground color erase), and km (META key) boolean capabilities (lines 28–34). Then, in
lines 37–43, we query the numeric capabilities cols (number of columns the terminal
has), lines (the number of rows), and colors (the number of colors the terminal can dis-
play). Lines 46–53 attempt to retrieve three string capabilities, cup (the escape sequence
to position the cursor), flash (the escape sequence to generate a visual bell),and hpa
(absolute horizontal cursor positioning).

The only tricky part is lines 51 and 52. If the terminal supports a given string capability,
tigetstr() returns a pointer to char that contains the escape sequence necessary to
invoke that feature. If you output that string to the terminal, using printf() or puts(),
in most cases you actually invoke that escape sequence. So, to avoid invoking, for exam-
ple, the visual bell, the program strips off the first character, E\ (ESC), and prints out the
rest of the string. For our purposes, however, this approach is not optimal because it
doesn’t display the complete escape sequence. As a result, on line 51 we print static text,
\\E, to escape the escape sequence.

To see how the program would behave if we did not take this precaution, comment out
line 51 and uncomment line 52 before compiling and running the program. If your termi-
nal supports a visual bell (most do), the screen will flash.

Programming the User Interface

PART IV
426

NOTE

The infocmp command can list all of a terminal type’s capabilities. To see
infocmp in action, issue the command infocmp -v $TERM. See infocmp(1)’s man
page for more information.

3172316072 CH26 7/26/99 1:38 PM Page 426

Working with terminfo Capabilities
Now that you know how to get terminal capabilities, the next step is to update them and
put them into effect. tparm() modifies a capname; putp() and tputs() output the
change to the screen.

The putp() function, prototyped below, assumes that output device is standard output
(stdout). As a result, it has a simple calling convention.

int putp(const char *str);

putp() outputs str to standard output. It is equivalent to tputs(str, 1, putchar).

tputs(), on the other hand, gives you a greater degree of control, and has a correspond-
ingly more complex interface. It is prototyped as:

int tputs(const char *str, int affcnt, int (*putc)(int));

tputs() outputs str to the term and filedes specified in setupterm(). str must be a
terminfo string variable or the return value from a tparm() or tigetstr() call. affcnt
is the number of lines affected if str is a line-related capability or 1 if not applicable.
putc is a pointer to any putchar-style output function that outputs characters one at a
time.

Naturally, before you can send a control string, you have to construct it. This is
tparm()’s job. It is declared as follows:

char *tparm(const char *str, long p1, long p2, ..., long p9);

tparm() constructs a properly formatted parameterized string capname, using str and
the parameters p1-p9. It returns a pointer to an updated copy of str containing the new
parameters p1-p9 or NULL on error.

What is a parameterized string? Recall that tigetstr() returns the escape sequence used
to invoke a terminal string capability. When you executed the program in Listing 26.3,
one of the lines printed to standard output should have resembled the following:

`cup’ is \E[%i%p1%d;%p2%dH

This is a parameterized string. This string is called a parameterized string because it
defines a generic capability; in this case, moving the cursor to a specific location on the
screen, which requires arguments, or parameters. In the case of the cup capability, it
needs a row number and a column number to know where to place the cursor. To move
the cursor on a standard (monochrome) xterm, xterm expects a command that, in semi-
comprehensible language, looks like Escape-[-<row>-;-<column>-H.

Terminal Control the Hard Way

CHAPTER 26
427

26

T
ER

M
IN

A
L

C
O

N
TR

O
L

TH
E

H
A

R
D

W
A

Y

3172316072 CH26 7/26/99 1:38 PM Page 427

In “terminfo-ese,” this translates to \E[%i%p1%d;%p2%dH. The programmer’s job is to sup-
ply the row and column numbers, which are indicated using %pN, where N is a value
between 1 and 9. So, to move to the position (10,15) on the screen, p1 = 10 and p2 = 15.
For clarity, Table 26.3 describes the terminfo characters and arguments.

Table 26.3 terminfo CHARACTERS AND ARGUMENTS

Character or Argument Description

\E Output Escape to the screen

[Output “[“ to the screen

%i Increment all %p values by 1

%p1 Push the value in %p1 onto an internal terminfo stack

%d Pop the value in %p1 off the stack and output it to the screen

; Output “;” to the screen

%p2 Push the value in %p2 onto (the same) internal terminfo stack

%d Pop the value in %p2 off the stack and output %p2 to the screen

H Output “H” to the screen

These may seem complicated and obscure, but consider the alternative: hard-coding hun-
dreds of additional lines of terminal-specific code into your program in order to take into
account all the possible terminals on which your program will run. Parameterized strings
set up a general format for achieving the same effect on all terminals; all the programmer
must do is substitute the correct values for the parameters. In my opinion, trading some
cryptic-looking strings for hundreds of lines of code is a great trade!

To make all of this more concrete, look at Listing 26.4. It rewrites the last example pro-
gram, Listing 26.3, using additional terminal capabilities to create a (hopefully) more
esthetically pleasing screen.

Listing 26.4 new_getcaps.c

1 /*
2 * Listing 26-4
3 * new_getcaps.c
4 * Get and show terminal capabilities using terminfo data structures
5 * and functions
6 */
7 #include <stdlib.h>
8 #include <stdio.h>
9 #include <term.h>
10 #include <curses.h>

Programming the User Interface

PART IV
428

3172316072 CH26 7/26/99 1:38 PM Page 428

11
12 #define NUMCAPS 3
13
14 void clrscr(void);
15 void mv_cursor(int, int);
16
17 int main(void)
18 {
19 char *boolcaps[NUMCAPS] = { “am”, “bce”, “km” };
20 char *numcaps[NUMCAPS] = { “cols”, “lines”, “colors” };
21 char *strcaps[NUMCAPS] = { “cup”, “flash”, “hpa” };
22 char *buf;
23 int retval, i;
24
25 if(setupterm(NULL, fileno(stdout), NULL) != OK) {
26 perror(“setupterm()”);
27 exit(EXIT_FAILURE);
28 }
29
30 clrscr();
31 for(i = 0; i < NUMCAPS; ++i) {
32 /* position the cursor */
33 mv_cursor(i, 10);
34 retval = tigetflag(boolcaps[i]);
35 if(retval == FALSE)
36 printf(“`%s’ unsupported\n”, boolcaps[i]);
37 else
38 printf(“`%s’ supported\n”, boolcaps[i]);
39 }
40 sleep(3);
41
42 clrscr();
43 for(i = 0; i < NUMCAPS; ++i) {
44 mv_cursor(i, 10);
45 retval = tigetnum(numcaps[i]);
46 if(retval == ERR)
47 printf(“`%s’ unsupported\n”, numcaps[i]);
48 else
49 printf(“`%s’ is %d\n”, numcaps[i], retval);
50 }
51 sleep(3);
52
53 clrscr();
54 for(i = 0; i < NUMCAPS; ++i) {
55 mv_cursor(i, 10);
56 buf = tigetstr(strcaps[i]);
57 if(buf == NULL)
58 printf(“`%s’ unsupported\n”, strcaps[i]);
59 else
60 printf(“`%s’ is \\E%s\n”, strcaps[i], &buf[1]);

Terminal Control the Hard Way

CHAPTER 26
429

26

T
ER

M
IN

A
L

C
O

N
TR

O
L

TH
E

H
A

R
D

W
A

Y

continues

3172316072 CH26 7/26/99 1:38 PM Page 429

LISTING 26.4 CONTINUED

61 }
62 sleep(3);
63
64 exit(0);
65 }
66
67 /*
68 * Clear the screen
69 */
70 void clrscr(void)
71 {
72 char *buf = tigetstr(“clear”);
73 putp(buf);
74 }
75
76 /*
77 * Move the cursor to the specified row row and column col
78 */
79 void mv_cursor(int row, int col)
80 {
81 char *cap = tigetstr(“cup”);
82 putp(tparm(cap, row, col));
83 }

Very little has changed between the two programs. First, I declare two utility functions,
clrscr() and mv_cursor(), to clear the screen and position the cursor at a specific loca-
tion, respectively. Their definitions, lines 70–74 and 79–83, respectively, utilize the
putp() function, since we want to update standard output. We save one line of code on
line 82 by passing tparm()’s return value directly to putp().

Besides the utility functions, I added a total of nine lines of code to the main program.
Before entering the blocks that retrieve and display the terminal capabilities, I want to
clear the screen (lines 30, 42, and 53). Inside of each block (lines 32, 44, and 55) the
new calls to mv_cursor() position the screen cursor on the i’th row in the tenth column.
Finally, after exiting each for loop, a sleep() statement allows you to view the output
and see the terminfo function calls do their work.

One final note before ending this chapter. I recognize that the programs used to illustrate
termios and terminfo features are neither optimized nor efficient. I eschewed fast, effi-
cient code for didactic clarity. For example, the three for loops in Listings 26.3 and 26.4
could be collapsed into a single for loop by using a function pointer. I preferred to make
the illustrations clear and unambiguous without troubling you to decipher C idioms.

Programming the User Interface

PART IV
430

3172316072 CH26 7/26/99 1:38 PM Page 430

Summary
This chapter took a detailed look at two very low-level interfaces for terminal manipula-
tion. It is a large subject, however, so the coverage was not exhaustive. For additional
resources, see the man pages for terminfo(5), termios(3), and term(5). The canonical
technical reference is the O’Reilly book, termcap & terminfo, by John Strang, Linda
Mui, and Tim O’Reilly. The next chapter looks at ncurses, a much easier way to use a set
of libraries for manipulating terminals.

Terminal Control the Hard Way

CHAPTER 26
431

26

T
ER

M
IN

A
L

C
O

N
TR

O
L

TH
E

H
A

R
D

W
A

Y

3172316072 CH26 7/26/99 1:38 PM Page 431

432

3172316072 CH26 7/26/99 1:38 PM Page 432

IN THIS CHAPTER

• A Short History of ncurses 434

• Compiling with ncurses 435

• Debugging ncurses Programs 435

• About Windows 436

• Initialization and Termination 439

• Input and Output 443

• Color Routines 455

• Window Management 458

• Miscellaneous Utility Functions 458

27
C

H
A

PT
ER

Screen
Manipulation with
ncurses

by Kurt Wall

3272316072 CH27 7/26/99 1:37 PM Page 433

This chapter introduces ncurses, the free implementation of the classic UNIX screen-
handling library, curses. ncurses provides a simple, high-level interface for screen control
and manipulation. Besides a rich set of functions for controlling the screen’s appearance,
ncurses also offers powerful routines for handling keyboard and mouse input, creating
and managing multiple windows, using forms, and panels.

A Short History of ncurses
ncurses, which stands for “new curses,” is a freely redistributable clone of the curses
libraries distributed with the System V Release 4.0 (SVR4) UNIX distributed by Bell
Labs. The term “curses” derives from the phrase “cursor optimization,” succinctly
describing how curses behaves. The SVR4 curses package, in turn, was a continued evo-
lution of the curses available with System II UNIX, which itself was based on the origi-
nal curses implementation shipped with early Berkeley Software Distribution (BSD)
UNIX releases.

So, how did curses originate? As you saw in the previous chapter, using termios or, even
worse, the tty interface, to manipulate the screen’s appearance is code-intensive. In addi-
tion, it is also terminal-specific, subject to the idiosyncrasies of the multitude of terminal
types and terminal emulators available. Enter the old text-based adventure game, rogue.
Ken Arnold, at Berkeley, collected rogue’s termcap-based screen-handling and cursor
movement routines into a library that was first distributed with BSD UNIX. AT&T’s
(also known as Bell Labs) System III UNIX included a much improved curses library
and the terminfo terminal description database, both written by Mark Horton. Horton’s
curses implementation included support for color-capable terminals and additional video
attributes.

The System V UNIX releases continued curses’ march along the feature trail, adding
support for forms, menus, and panels. Forms enable the programmer to create easy-to-
use data entry and display windows, simplifying what is usually a difficult and applica-
tion-specific coding task. Panels extend curses’ ability to deal with overlapping and
stacked windows. Menus provide, well, menus, again with a simpler, generalized inter-
face. Due to space limitations, unfortunately, we will not cover these elements of the
ncurses package.

ncurses’ immediate ancestor was Pavel Curtis’ pcurses package. Zeyd Ben-Halim devel-
oped ncurses using Curtis’ work as a base. Eric Raymond incorporated many enhance-
ments and continued ncurses’ development. Juergen Pfeifer added most of the support
for forms and menus to the ncurses package. Thomas Dickey currently maintains ncurs-
es, has done the lion’s share of ncurses’ configuration for building on multiple systems,

Programming the User Interface

PART IV
434

3272316072 CH27 7/26/99 1:37 PM Page 434

and performs most of the testing. A proverbial “cast of thousands” (far more than are
currently listed in the NEWS file in the source distribution, which is current back to ver-
sion 1.9.9e) has contributed fixes and patches over the years.

ncurses’ current version is numbered 4.2, although the 5.0 release is currently in beta. In
an interesting irony, ncurses is now the approved replacement for the 4.4BSD’s “classic”
curses, thus having come full circle back to the operating system on which curses origi-
nated.

Compiling with ncurses
To compile a program with ncurses, you need its function and variable definitions, so
include <curses.h> in your source code:

#include <curses.h>

Many Linux systems make /usr/include/curses.h a symbolic link to the
/usr/include/ncurses.h, so you could conceivably include <ncurses.h>. However, for
maximum portability, use <curses.h> because, believe it or not, ncurses is not available
on all UNIX and UNIX-like platforms. You will also need to link against the ncurses
libraries, so use the -lcurses option when linking, or add -lcurses to the LDFLAGS make

variable or the $LDFLAGS environment variable:

$ gcc curses_prog.c -o curses_prog –lcurses

Debugging ncurses Programs
By default, debug tracing is disabled in ncurses programs. To enable debugging, link
against ncurses’ debug library, ncurses_g, and either call trace(N) in your code or set
the environment variable $NCURSES_TRACE to N, where N is a positive, non-zero integer.
Doing so forces debugging output to a file named, appropriately, trace, in the current
directory. The larger N’s value, the more finely grained and voluminous the debugging
output. Useful values for N are documented in <ncurses.h>. For example, the standard
trace level, TRACE_ORDINARY, is 31.

Screen Manipulation with ncurses

CHAPTER 27
435

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

TIP

The ncurses package comes with a script, tracemunch, which compresses and
summarizes the debug information into a more readable, human-friendly
format.

3272316072 CH27 7/26/99 1:37 PM Page 435

About Windows
This section discusses ncurses’ idea of windows, screens, and terminals. Several terms
are used repeatedly (and, hopefully, consistently) throughout this chapter, so the follow-
ing list defines these terms up front to avoid as much confusion as possible.

• Screen—Screen refers to the physical terminal screen in character or console
mode. Under the X Window system, “screen” means a terminal emulator window.

• Window—Window is used to refer to an independent rectangular area displayed on
a screen. It may or may not be the same size as the screen.

• stdscr—This is an ncurses data structure, a (WINDOW *), that represents what you
currently see on the screen. It might be one window or a set of windows, but it fills
the entire screen. You can think of it as a palette on which you paint using ncurses
routines.

• curscr—Another pointer to a WINDOW data structure, curscr contains ncurses’ idea
of what the screen currently looks like. Like stdscr, its size is the width and
height of the screen. Differences between curscr and stdscr are the changes that
appear on the screen.

• Refresh—This word refers both to an ncurses function call and a logical process.
The refresh() function compares curscr, ncurses’ notion of what the screen cur-
rently looks like, to stdscr, updates any changes to curscr, and then displays
those changes to the screen. Refresh is also used to denote the process of updating
the screen.

• Cursor—This term, like refresh, has two similar meanings, but always refers to the
location where the next character will be displayed. On a screen (the physical
screen), cursor refers to the location of the physical cursor. On a window (an ncurs-
es window), it refers to the logical location where the next character will be dis-
played. Generally, in this chapter, the second meaning applies. ncurses uses a (y,x)
ordered pair to locate the cursor on a window.

ncurses’ Window Design
ncurses defines window layout sanely and predictably. Windows are arranged such that
the upper-left corner has the coordinates (0,0) and the lower-right corner has the coordi-
nates (LINES, COLUMNS), as Figure 27.1 illustrates.

Programming the User Interface

PART IV
436

3272316072 CH27 7/26/99 1:37 PM Page 436

You are perhaps familiar with the $LINES and $COLS environment variables. These vari-
ables have ncurses equivalents, LINES and COLS, that contain ncurses’ notion of the num-
ber of rows and columns, respectively, of the current window’s size. Rather than using
these global variables, however, use the function call getmaxyx() to get the size of the
window with which you are currently working.

One of ncurses’ chief advantages, in addition to complete freedom from terminal
dependent code, is the ability to create and manage multiple windows in addition to the
ncurses provided stdscr. These programmer-defined windows come in two varieties,
subwindows and independent windows.

Subwindows are created using the subwin() function call. They are called subwindows
because they create a window from an existing window. At the C language level, they are
pointers to pointers to some subset of an existing WINDOW data structure. The subset can
include the entire window or only part of it. Subwindows, which you could also call
child or derived windows, can be managed independently of their parent windows, but
changes made to the children will be reflected in the parent.

Create new or independent windows with the newwin() call. This function returns a
pointer to a new WINDOW structure that has no connection to other windows. Changes
made to an independent window do not show up on the screen unless explicitly
requested. The newwin() function adds powerful screen manipulation abilities to your
programming repertoire, but, as is often the case with added power, it also entails addi-
tional complexity. You are required to keep track of the window and explicitly to display
it on the screen, whereas subwindows update on the screen automatically.

Screen Manipulation with ncurses

CHAPTER 27
437

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

storm

(0, 0)

(80, 24)

An ncurses window

FIGURE 27.1
An ncurses
window.

3272316072 CH27 7/26/99 1:37 PM Page 437

ncurses’ Function Naming Conventions
While many of ncurses’ functions are defined to use stdscr by default, there will be
many situations in which you want to operate on a window other than stdscr. ncurses
uses a systematic and consistently applied naming convention for routines that can apply
to any window. In general, functions that can operate on an arbitrary window are pre-
fixed with the character “w” and take a (WINDOW *) variable as their first argument.
Thus, for example, the move(y,x) call, which moves the cursor to the coordinates speci-
fied by y and x on stdscr, can be replaced by wmove(win, y, x), which moves the cur-
sor to the specified location in the window win. That is,

move(y, x);

is equivalent to

wmove(stdscr, y, x);

Programming the User Interface

PART IV
438

NOTE

Actually, most of the functions that apply to stdscr are pseudo-functions. They
are #defined preprocessor macros that use stdscr as the default window in
calls to the window-specific functions. This is an implementation detail with
which you need not trouble yourself, but it may help you better understand the
ncurses library. A quick grep ‘#define’ /usr/include/ncurses.h will reveal the
extent to which ncurses uses macros and will also serve as good examples of
preprocessor usage.

Likewise, many ncurses input and output functions have forms that combine a move and
an I/O operation in a single call. These functions prepend mv to the function name and
the desired (y, x) coordinates to the argument list. So, for example, you could write

move(y, x);
addchstr(str);

to move the cursor to specific coordinates and add a string at that location on stdscr, or,
you could simply write

mvaddchstr(y, x, str);

which accomplishes the same thing with a single line of code.

3272316072 CH27 7/26/99 1:37 PM Page 438

As you might guess at this point, functions also exist that combine an I/O and a move
directed to a specific window. So code that looks like

wmove(some_win, y, x);
waddchstr(some_win, str);

can be replaced with one line that reads

mvwaddchstr(some_win, y, x, str);

This sort of shorthand permeates ncurses. The convention is simple and easy to pick up.

Initialization and Termination
Before you can use ncurses, you must properly initialize the ncurses subsystem, set up
various ncurses data structures, and query the supporting terminal’s display capabilities
and characteristics. Similarly, before exiting an ncurses-based application, you need to
return the memory resources ncurses allocates and reset the terminal to its original, pre-
ncurses state.

ncurses Initialization Structures
The initscr() and newterm() functions handle ncurses initialization requirements.
initscr() has two tasks, to create and initialize stdscr and curscr, and to find out the
terminal’s capabilities and characteristics by querying the terminfo or termcap database.
If it is unable to complete one of these tasks, or if some other error occurs, initscr()
displays useful diagnostic information and terminates the application. Call initscr()
before you use any other routines that manipulate stdscr or curscr. Failure to do so will
cause your application to abort with a segmentation fault. At the same time, however,
only call initscr() when you are certain you need it, such as after other routines that
check for program startup errors. Finally, functions that change a terminal’s status, such
as cbreak() or noecho(), should be called after initscr() returns. The first call to
refresh() after initscr() will clear the screen. If it succeeds, initscr() returns a
pointer to stdscr, which you can save for later use, if necessary, otherwise it returns
NULL and exits the program, printing a useful error message to the display.

If your program will send output to or receive input from more than one terminal, use the
newterm() function call instead of initscr(). For each terminal with which you expect
to interact, call newterm() once. newterm() returns a pointer to a C data structure of type
SCREEN (another ncurses-defined type), to use when referring to that terminal. Before you
can send output to or receive input from such a terminal, however, you must make it the
current terminal. The set_term() call accomplishes this. Pass as set_term()’s argument
the pointer to the SCREEN (returned by a previous newterm() call) that you want to make
the current terminal.

Screen Manipulation with ncurses

CHAPTER 27
439

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

3272316072 CH27 7/26/99 1:37 PM Page 439

ncurses Termination
The initialization functions allocate memory resources and reset the terminal state to an
ncurses-friendly mode. Accordingly, you need to free the allocated memory and reset the
terminal to its pre-ncurses mode. The termination functions endwin() and delscreen()
do this job. When you are through working with a SCREEN, call endwin() before making
another terminal the current terminal, then call delscreen() on that terminal to release
the SCREEN resources allocated to it, because endwin() does not release memory for
screens created by newterm(). If you have not called newterm(), however, and have only
used curscr and stdscr, all that is required is a single call to endwin() before you exit
your application. endwin() moves the cursor to the lower left-hand corner of the screen,
and resets the terminal to its non-visual, pre-ncurses state. The memory allocated to
curscr and stdscr is not released because your program can temporarily suspend ncurs-
es by calling endwin(), performing other processing, and then calling refresh().

The following provides a reference for each of the functions discussed so far:

WINDOW *initscr(void);

Initializes ncurses data structures after determining the current terminal type.
Returns a pointer to stdscr on success or NULL on failure.

int endwin(void);

Restores the previous tty in place before the call to initscr() or newterm().
Returns the integer OK on success or, on failure, ERR, and aborts the application.

SCREEN *newterm(const char *type, FILE *outfd, FILE *infd);

Analog of initscr() for programs that use multiple terminals. type is a string to
be used, if required, in place of the $TERM environment variable; if NULL, $TERM
will be used. outfd is a pointer to a file to be used for output to this terminal, and
infd is a pointer to a file to be used for input from this terminal. Returns a pointer
to the new terminal, which should be saved for future references to the terminal,
or NULL on failure.

SCREEN *set_term(SCREEN *new);

Sets the current terminal to the terminal specified by new, which must be a SCREEN
pointer returned from a previous call to newterm(). All subsequent input and out-
put and other ncurses routines operate on the terminal to which new refers. Returns
a pointer to the old terminal or NULL on failure.

void delscreen(SCREEN *sp);

Deallocates memory associated with sp. Must be called after endwin() for the
terminal associated with sp.

Programming the User Interface

PART IV
440

3272316072 CH27 7/26/99 1:37 PM Page 440

Illustrating ncurses Initialization and
Termination
Listings 27.1 and 27.2 illustrate the usage of the ncurses routines we have looked at so
far. The first program, initcurs, shows the standard ncurses initialization and termina-
tion idioms, using initscr() and endwin(), while the second one, newterm, demon-
strates the proper use of newterm() and delscreen().

Listing 27.1 initcurs.c

1 /*
2 * Listing 27.1
3 * initcurs.c - curses initialization and termination
4 */
5 #include <stdlib.h>
6 #include <curses.h>
7 #include <errno.h>
8
9 int main(void)
10 {
11 if((initscr()) == NULL) {
12 perror(“initscr”);
13 exit(EXIT_FAILURE);
14 }
15
16 printw(“This is an curses window\n”);
17 refresh();
18 sleep(3);
19
20 printw(“Going bye-bye now\n”);
21 refresh();
22 sleep(3);
23 endwin();
24
25 exit(0);
26 }

We include <curses.h> on line 6 for the necessary function declarations and variable
definitions. In the absence of any other startup code, we immediately initialize curses
with the call to initscr() on line 11 (ordinarily, you want to catch the WINDOW * it
returns). On lines 16 and 20 we use the printw() function (covered in more detail in the
next section) to display some output to the window, refreshing the display on lines 17
and 21 so the output will actually appear on the screen. After a three second pause (lines
18 and 22), we terminate the program, calling endwin() (line 23) to free the resources
initscr() allocated.

Screen Manipulation with ncurses

CHAPTER 27
441

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

3272316072 CH27 7/26/99 1:37 PM Page 441

Listing 27.2 newterm.c

1 /*
2 * Listing 27.2
3 * newterm.c -curses initialization and termination
4 */
5 #include <stdlib.h>
6 #include <curses.h>
7 #include <errno.h>
8
9 int main(void)
10 {
11 SCREEN *scr;
12
13 if((scr = newterm(NULL, stdout, stdin)) == NULL) {
14 perror(“newterm”);
15 exit(EXIT_FAILURE);
16 }
17
18 if(set_term(scr) == NULL) {
19 perror(“set_term”);
20 endwin();
21 delscreen(scr);
22 exit(EXIT_FAILURE);
23 }
24
25 printw(“This curses window created with newterm()\n”);
26 refresh();
27 sleep(3);
28
29 printw(“Going bye-bye now\n”);
30 refresh();
31 sleep(3);
32 endwin();
33 delscreen(scr);
34
35 exit(0);
36 }

This program strongly resembles the first one. We use the newterm() call to initialize the
curses subsystem (line 13), pretending that we will be interacting with a different termi-
nal. Since we want input and output going to the normal locations, we pass stdout and
stdin as the FILE pointers for output and input, respectively. Before we can use scr,
however, we have to make it the current terminal, thus the call to set_term() on line 18.
If this call fails, we have to make sure to call endwin() and delscreen() to free the
memory associated with scr, so we added code to accomplish this in the error checking
on lines 20 and 21. After sending some output to our “terminal” (lines 25 and 29), we
shut down the curses subsystem, using the required delscreen() call.

Programming the User Interface

PART IV
442

3272316072 CH27 7/26/99 1:37 PM Page 442

Input and Output
ncurses has many functions for sending output to and receiving input from screens and
windows. It is important to understand that C’s standard input and output routines do not
work with ncurses’ windows. Fortunately, ncurses’ I/O routines behave very similarly to
the standard I/O (<stdio.h>) routines, so the learning curve is tolerably shallow.

Output Routines
For the purposes of discussion, we divide ncurses’ output routines into character, string,
and miscellaneous categories. The following sections discuss each of these in detail.

Character Routines
ncurses’ core character output function is addch(), prototyped in <ncurses.h> as

int addch(chtype ch);

It displays the character ch in the current window (normally stdscr) at the cursor’s cur-
rent position, advancing the cursor to the next position. If this would place the cursor
beyond the right margin, the cursor automatically wraps to the beginning of the next line.
If scrolling has been enabled on the current window (with the scrollok() call) and the
cursor is at the bottom of the scrollable region, the region scrolls up one line. If ch is a
tab, newline, or backspace, the cursor moves appropriately. Other control characters dis-
play using ^X notation, where X is the character and the caret (^) indicates that it is a con-
trol character. If you need to send the literal control character, use the function
echochar(chtype ch). Almost all of the other output functions do their work with calls
to addch().

Screen Manipulation with ncurses

CHAPTER 27
443

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

NOTE

The ncurses documentation refers to characters typed as chtype as “pseudo-
characters.” ncurses declares pseudo-characters as unsigned long integers, using
the high bits of these characters to carry additional information such as video
attributes. This distinction between pseudo-characters and normal C chars
implies subtle differences in the behavior of functions that handle each type.
These differences are noted in this chapter when and where appropriate.

As mentioned previously, mvaddch() adds a character to a specified window after mov-
ing the cursor to the desired location; mvwaddch() combines a move and an output oper-
ation on a specific window. waddch() displays a character to a user-specified window.

3272316072 CH27 7/26/99 1:37 PM Page 443

The echochar() function, and its window-specific cousin, wechochar(), combine an
addch() call with a refresh() or wrefresh() call, which can result in substantial per-
formance enhancements when used with non-control characters.

A particularly useful feature of ncurses routines that use chtype characters and strings
(discussed next) is that the character or string to be output can be logically ORed with a
variety of video attributes before it is displayed. A partial list of these attributes includes

A_NORMAL Normal display mode

A_STANDOUT Use the terminal’s best highlighting mode

A_UNDERLINE Underlining

A_REVERSE Use reverse video

A_BLINK Blinking text

A_DIM Half-intensity display

A_BOLD Extra-intensity display

A_INVIS Character will not be visible

A_CHARTEXT Creates a bitmask to extract a character

Depending on the terminal emulator or hardware capabilities of the screen, not all attrib-
utes may be possible, however. See the curs_attr(3) manual page for more details.

Other than control characters and characters enhanced with video attributes, the character
output functions also display line graphics characters (characters from the high half of
the ASCII character set), such as box-drawing characters and various special symbols. A
complete list is available in the curs_addch(3) manual page, but a few of the common
ones are listed here:

ACS_ULCORNER upper-left corner

ACS_LLCORNER lower-left corner

ACS_URCORNER upper-right corner

ACS_LRCORNER lower-right corner

ACS_HLINE horizontal line

ACS_VLINE vertical line

The functions described so far effectively “append” characters to a window without dis-
turbing the placement of other characters already present. Another group of routines
inserts characters at arbitrary locations in existing window text. These functions include
insch(), winsch(), mvinsch(), and mvwinsch(). Following the naming convention dis-
cussed earlier in this chapter, each of these functions inserts a character before (in front
of) the character under the cursor, shifting the following characters to the right one

Programming the User Interface

PART IV
444

3272316072 CH27 7/26/99 1:37 PM Page 444

position; if the right-most character is on the right margin, it will be lost. Note, however,
that the cursor position does not change after an insert operation. Insertions are com-
pletely documented in the curs_insch(3) manual page. The prototypes of the functions
we have mentioned so far are in the following list:

int addch(chtype ch);
int waddch(WINDOW *win, chtype ch);
int mvaddch(int y, int x, chtype ch);
int mvwaddch(WINDOW *win, int y, int x, chtype ch);
int echochar(chtype ch);
int wechochar(WINDOW *win, chtype ch);
int insch(chtype ch);
int winsch(WINDOW *win, chtype ch);
int mvinsch(int y, int x, chtype ch);
int mvwinsch(WINDOW *win, int y, int x, chtype ch);

Unless noted otherwise, all functions that return an integer return OK on success or ERR
on failure (OK and ERR and a number of other constants are defined in <ncurses.h>).
The arguments win, y, x, and ch are, respectively, the window in which the character will
be displayed, the y and x coordinates at which to locate the cursor, and the character
(including optional attributes) to display. As a reminder, routines prefixed with a “w”
take a pointer, win, that specifies the target window; the “mv” prefix combines a move
operation to the (y, x) location with an output operation.

String Routines
ncurses’ string routines generally behave similarly to the character routines, except that
they deal with strings of pseudo-characters or with normal null-terminated strings. Again,
ncurses’ designers created a standard notation to help programmers distinguish between
the two types of functions. Function names containing chstr operate on strings of pseu-
do-characters, while function names containing only str use standard C-style (null-
terminated) strings. A partial list of the functions operating on pseudo-character strings
includes

int addchstr(const chtype *chstr);
int addchnstr(const chtype *chstr, int n);
int waddchstr(WINDOW *win, const chtype *chstr);
int waddchnstr(WINDOW *win, const chtype *chstr, int n);
int mvaddchstr(int y, int x, const chtype *chstr);
int mvaddchnstr(int y, int x, const chtype *chstr, int n);
int mvwaddchstr(WINDOW *win, int y, int x, const chtype *chstr);
int mvwaddchnstr(WINDOW *win, int y, int x, const chtype *chstr, int n);

All the listed functions copy chstr onto the desired window beginning at the cursor’s
location, but the cursor is not advanced (unlike the character output functions). If the
string is longer than will fit on the current line, it is truncated at the right margin. The

Screen Manipulation with ncurses

CHAPTER 27
445

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

3272316072 CH27 7/26/99 1:37 PM Page 445

four routines taking an int n argument, addchnstr(), waddchnstr(), mvaddchnstr(),
and mvwaddchnstr(), copy a limit of up to n characters, stopping at the right margin. If n
is -1, the entire string will be copied, but truncated at the right margin as necessary.

The next set of string output functions operates on null-terminated strings. Unlike the
previous set, these functions advance the cursor. In addition, the string output will wrap
at the right margin, rather than being truncated. Otherwise, they behave like their similar-
ly named chtype counterparts.

int addstr(const char *str);
int addnstr(const char *str, int n);
int waddstr(WINDOW *win, const char *str);
int waddnstr(WINDOW *win, const char *str, int n);
int mvaddstr(int y, int x, const char *str tr);
int mvaddnstr(int y, int x, const char *str, int n);
int mvwaddstr(WINDOWS *win, int y, int x, const char *str);
int mvwaddnstr(WINDOWS *win, int y, int x, const char *str, int n);

Remember, str in these routines is a standard, C-style, null-terminated character array.

The next and last group of output routines we look at are a hodgepodge: calls that draw
borders and lines, clear and set the background, control output options, move the cursor,
and send formatted output to an ncurses window.

Miscellaneous Output Routines
To set the background property of a window, use bkgd(), prototyped as

int bkgd(const chtype ch);

ch is an ORed combination of a character and one or more of the video attributes previ-
ously listed. To obtain the current background setting, call chtype getbkgd(WINDOW
*win); where win is the window in question. Complete descriptions of functions setting
and getting window backgrounds can be found in the curs_bkgd(3) manual page.

At least eleven ncurses functions draw boxes, borders, and lines in ncurses windows. The
box() call is the simplest, drawing a box around a specified window using one character
for vertical lines and another for horizontal lines. Its prototype is as follows:

int box(WINDOW *win, chtype verch, chtype horch);

verch sets the pseudo-character used to draw vertical lines and horch for horizontal
lines.

The box() function:

int border(WINDOW *win, chtype ls, chtype rs, chtype ts, chtype bs,
➥chtype tl, chtype tr, chtype bl, chtype br);

Programming the User Interface

PART IV
446

3272316072 CH27 7/26/99 1:37 PM Page 446

The arguments are

ls left side

rs right side

ts top side

bs bottom side

tl top-left corner

tr top-right corner

bl bottom-left corner

br bottom-right corner

Both the box() and the wborder() calls draw an outline on the window along its left,
right, top, and bottom margins.

Use the hline() function to draw a horizontal line of arbitrary length on the current win-
dow. vline(), similarly, draws a vertical line of arbitrary length.

int hline(chtype ch, int n);
int vline(chtype ch, int n);

Following ncurses’ function naming convention, you can also specify a window in which
to draw lines using

int whline(WINDOW *win, chtype ch, int n);
int wvline(WINDOW *win, chtype ch, int n);

or move the cursor to a particular location using

int mvhline(int y, int x, chtype ch, int n);
int mvvline(int y, int x, chtype ch, int n);

or even specify a window and request a move operation with

int mvwhline(WINDOW *win, int y, int x, chtype ch, int n);
int mvwvline(WINDOW *win, int y, int x, chtype ch, int n);

As usual, these routines return OK on success or ERR on failure. win indicates the target
window; n specifies the maximum line length, up to the maximum window size vertical-
ly or horizontally. The line, box, and border drawing functions do not change the cursor
position. Subsequent output operations can overwrite the borders, so you must make sure
either to include calls to maintain border integrity or to set up your output calls such that
they do not overwrite the borders. Functions that do not specifically set the cursor loca-
tion (line(), vline(), whline(), and wvline()) start drawing at the current cursor
position. The manual page documenting these routines is curs_border(3). The
curs_outopts(3) page also contains relevant information.

Screen Manipulation with ncurses

CHAPTER 27
447

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

3272316072 CH27 7/26/99 1:37 PM Page 447

The final set of miscellaneous functions to consider clears all or part of the screen. As
usual, they are available in both plain and window-specific varieties:

int erase(void);
int werase(WINDOW *win);
int clear(void);
int wclear(WINDOW *win);
int clrtobot(void);
int wclrtobot(WINDOW *win);
int clrtoeol(void);
int wclrtoeol(WINDOW *win);

erase() writes blanks to every position in a window; clrtobot() clears the screen from
the current cursor location to the bottom of the window, inclusive; clrtoeol(), finally,
erases the current line from the cursor to the right margin, inclusive. If you have used
bkgd() or wbkgd() to set background properties on windows that will be cleared or
erased, the property set (called a “rendition” in ncurses’ documentation) is applied to
each of the blanks created. The relevant manual page for these calls is curs_clear(3).

The following listings illustrate how many of the routines discussed in this section might
be used. The sample programs only sample ncurses’ interface because of the broad simi-
larity in calling conventions for these functions and the large number of routines. To
shorten the listings somewhat, we have moved the initialization and termination code
into a separate file, utilfcns.c, and #included the header file, utilfcns.h,
containing the interface (both files are on the CD-ROM that accompanies this book).
Listing, 27.3 illustrates ncurses’ character output functions.

Listing 27.3 curschar.c

1 /*
2 * Listing 27.3
3 * curschar.c - curses character output functions
4 */
5 #include <stdlib.h>
6 #include <curses.h>
7 #include <errno.h>
8 #include “utilfcns.h”
9
10 int main(void)
11 {
12 app_init();
13
14 addch(‘X’);
15 addch(‘Y’ | A_REVERSE);
16 mvaddch(2, 1, ‘Z’ | A_BOLD);
17 refresh();
18 sleep(3);

Programming the User Interface

PART IV
448

3272316072 CH27 7/26/99 1:37 PM Page 448

19
20 clear();
21 waddch(stdscr, ‘X’);
22 waddch(stdscr, ‘Y’ | A_REVERSE);
23 mvwaddch(stdscr, 2, 1, ‘Z’ | A_BOLD);
24 refresh();
25 sleep(3);
26
27 app_exit();
28 }

As you can see on lines 14 and 15, the addch() routine outputs the desired character and
advances the cursor. Lines 15 and 16 illustrate how to combine video attributes with the
character to display. We demonstrate a typical “mv”-prefixed function on line 16, too.
After refreshing the screen (line 17), a short pause allows you to view the results. Note
that until the refresh call, no changes will be visible on the screen. Lines 21–25 repeat
the process using the window-specific routines and stdscr as the target window.

Listing 27.4 briefly demonstrates using the string output functions.

Listing 27.4 cursstr.c

1 /*
2 * Listing 27.4
3 * cursstr.c - curses string output functions
4 */
5 #include <stdlib.h>
6 #include <curses.h>
7 #include <errno.h>
8 #include “utilfcns.h”
9
10 int main(void)
11 {
12 int xmax, ymax;
13 WINDOW *tmpwin;
14
15 app_init();
16 getmaxyx(stdscr, ymax, xmax);
17
18 addstr(“Using the *str() family\n”);
19 hline(ACS_HLINE, xmax);
20 mvaddstr(3, 0, “This string appears in full\n”);
21 mvaddnstr(5, 0, “This string is truncated\n”, 15);
22 refresh();
23 sleep(3);
24
25 if((tmpwin = newwin(0, 0, 0, 0)) == NULL)

Screen Manipulation with ncurses

CHAPTER 27
449

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

continues

3272316072 CH27 7/26/99 1:37 PM Page 449

LISTING 27.4 CONTINUED

26 err_quit(“newwin”);
27
28 mvwaddstr(tmpwin, 1, 1, “This message should appear in a new
➥window”);
29 wborder(tmpwin, 0, 0, 0, 0, 0, 0, 0, 0);
30 touchwin(tmpwin);
31 wrefresh(tmpwin);
32 sleep(3);
33
34 delwin(tmpwin);
35 app_exit();
36 }

The getmaxyx() call on line 16 retrieves the number of columns and lines for stdscr—
this routine’s syntax does not require that ymax and xmax be pointers. Because we call
mvaddnstr() with a value of n=15, the string we want to print will be truncated before
the letter “t” in “truncated.” We create the new window, tmpwin, on line 25 with the same
dimensions as the current screen. Then we scribble a message into the new window (line
28), draw a border around it (line 29), and call refresh() to display it on the screen.
Before exiting, we call delwin() on the window to free its resources (line 34).

Listing 27.5 illustrates using line graphics characters and also the box() and wborder()
calls. Pay particular attention to lines 17–24. Some ncurses output routines move the cur-
sor after output, others do not. Note also that the line drawing family of functions, such
as vline() and hline(), draw top to bottom and left to right, so be aware of cursor
placement when using them.

Listing 27.5 cursbox.c

1 /*
2 * Listing 27.5
3 * cursbox.c - curses box drawing functions
4 */
5 #include <stdlib.h>
6 #include <curses.h>
7 #include <errno.h>
8 #include “utilfcns.h”
9
10 int main(void)
11 {
12 int ymax, xmax;
13
14 app_init();

Programming the User Interface

PART IV
450

3272316072 CH27 7/26/99 1:37 PM Page 450

15 getmaxyx(stdscr, ymax, xmax);
16
17 mvaddch(0, 0, ACS_ULCORNER);
18 hline(ACS_HLINE, xmax - 2);
19 mvaddch(ymax - 1, 0, ACS_LLCORNER);
20 hline(ACS_HLINE, xmax - 2);
21 mvaddch(0, xmax - 1, ACS_URCORNER);
22 vline(ACS_VLINE, ymax - 2);
23 mvvline(1, xmax - 1, ACS_VLINE, ymax - 2);
24 mvaddch(ymax - 1, xmax - 1, ACS_LRCORNER);
25 mvprintw(ymax / 3 - 1, (xmax - 30) / 2, “border drawn the
➥hard way”);
26 refresh();
27 sleep(3);
28
29 clear();
30 box(stdscr, ACS_VLINE, ACS_HLINE);
31 mvprintw(ymax / 3 - 1, (xmax - 30) / 2, “border drawn the
➥easy way”);
32 refresh();
33 sleep(3);
34
35 clear();
36 wborder(stdscr, ACS_VLINE | A_BOLD, ACS_VLINE | A_BOLD,
37 ACS_HLINE | A_BOLD, ACS_HLINE | A_BOLD,
38 ACS_ULCORNER | A_BOLD, ACS_URCORNER | A_BOLD, \
39 ACS_LLCORNER | A_BOLD, ACS_LRCORNER | A_BOLD);
40 mvprintw(ymax / 3 - 1, (xmax - 25) / 2, “border drawn with
➥wborder”);
41 refresh();
42 sleep(3);
43
44 app_exit();
45 }

As you might expect, the mvvline() call on line 23 moves the cursor before drawing a
vertical line. After all the gyrations to draw a simple border, the box() routine is a breeze
(line 30). The wborder() function is more verbose than box() but allows finer control
over the characters used to draw the border. The program illustrated the default character
for each argument, but any character (and optional video attributes) will do, provided it is
supported by the underlying emulator or video hardware.

Output using ncurses requires a few extra steps compared to using C’s standard library
functions; hopefully we have shown that it is much easier than using termios or filling
up your code with lots of difficult-to-read newlines, backspaces, and tabs.

Screen Manipulation with ncurses

CHAPTER 27
451

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

3272316072 CH27 7/26/99 1:37 PM Page 451

Input Routines
ncurses input routines, like its output routines, fall into several groups. This chapter will
focus, however, on simple character and string input for two reasons. First and foremost,
the routines discussed in this section will meet 90 percent of your needs. Second, ncurses
input closely parallels ncurses output, so the material from the previous section should
serve as a solid foundation.

The core input functions can be narrowed down to three: getch(), getstr(), and
scanw(). getch()’s prototype is

int getch(void);

It fetches a single character from the keyboard, returning the character or ERR on failure.
It may or may not echo the fetched character back to stdscr, depending on whether
echoing is enabled or disabled (thus, wgetch() and variants also obtain single characters
from the keyboard and may or may not echo them to a program-specified window). For
characters to be echoed, first call echo(); to disable echoing, call noecho(). Be aware
that with echoing enabled, characters are displayed on a window using waddch() at the
current cursor location, which is then advanced one position.

The matter is further complicated by the current input mode, which determines the
amount of processing the kernel applies before the program receives the character. In an
ncurses program, you will generally want to process most of the keystrokes yourself.
Doing so requires either crmode or raw mode (ncurses begins in default mode, meaning
that the kernel buffers text normally, waiting for a newline before passing keystrokes to
ncurses—you will rarely want this). In raw mode, the kernel does not buffer or otherwise
process any input, while in crmode, the kernel process terminal control characters, such
as ^S, ^Q, ^C, or ^Y, and passes all others to ncurses unmolested. On some systems, the
literal “next character,” ^V, may need to be repeated. Depending on your application’s
needs, crmode should be sufficient. In one of our sample programs, we use crmode,
enabling and disabling echoing, to simulate shadowed password retrieval.

The getstr() function, declared as

intgetstr(char *str);

repeatedly calls getch() until it encounters a newline or carriage return (which will not
be part of the returned string). The characters input are stored in str. Because getstr()
performs no bounds checking, we strongly recommend using getnstr() instead, which
takes an additional argument specifying the maximum number of characters to store.
Regardless of whether you use getstr or getnstr(), the receiving buffer str must be
large enough to hold the string received plus a terminating null character, which must be
added programmatically.

Programming the User Interface

PART IV
452

3272316072 CH27 7/26/99 1:37 PM Page 452

scanw() obtains formatted input from the keyboard in the manner of scanf(3) and fami-
ly. In fact, ncurses passes the received characters as input to sscanf(3), so input that
does not map to available arguments in the format field goes to the bit bucket. As usual,
scanw() has variants for movement operations (the “mv” prefix) and that apply to specif-
ic windows (the “w” prefix). In addition, the scanw() family of functions includes a
member for dealing with variable length argument lists, vwscanw(). The relevant proto-
types are:

int scanw(char *fmt [, arg] ...);
int vwscanw(WINDOW *win, char *fmt, va_list varglist);

The manual pages curs_getch(3), curs_getstr(3), and curs_scanw(3) fully document
these routines and their various permutations. Their usage is illustrated in Listings 27.6
and 27.7.

Listing 27.6 cursinch.c

1 /*
2 * Listing 27.6
3 * cursinch.c - curses character input functions
4 */
5 #include <stdlib.h>
6 #include <curses.h>
7 #include <errno.h>
8 #include “utilfcns.h”
9
10 int main(void)
11 {
12 int c, i = 0;
13 int xmax, ymax;
14 char str[80];
15 WINDOW *pwin;
16
17 app_init();
18 crmode();
19
20 getmaxyx(stdscr, ymax, xmax);
21 if((pwin = subwin(stdscr, 3, 40, ymax / 3,
➥(xmax - 40) / 2)) == NULL)
22 err_quit(“subwin”);
23 box(pwin, ACS_VLINE, ACS_HLINE);
24 mvwaddstr(pwin, 1, 1, “Password: “);
25
26 noecho();
27 while((c = getch()) != ‘\n’ && i < 80) {
28 str[i++] = c;
29 waddch(pwin, ‘*’);
30 wrefresh(pwin);

Screen Manipulation with ncurses

CHAPTER 27
453

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

continues

3272316072 CH27 7/26/99 1:37 PM Page 453

LISTING 27.6 CONTINUED

31 }
32 echo();
33 str[i] = ‘\0’;
34 wrefresh(pwin);
35
36 mvwprintw(pwin, 1, 1, “You typed: %s\n”, str);
37 box(pwin, ACS_VLINE, ACS_HLINE);
38 wrefresh(pwin);
39 sleep(3);
40
41 delwin(pwin);
42 app_exit();
43 }

After we have successfully initialized the ncurses subsystem, we immediately switch to
crmode (line 18). Creating a bordered window clearly distinguishes the region in which
the user types the password (lines 21–24) from the rest of the screen. For security rea-
sons, we don’t want to echo the user’s password to the screen, so we disable echoing
(line 26) while we read the password. However, to provide visual feedback to the user,
we use waddch() to add a “*” to the password window for each character the user types
(lines 29 and 30). Upon encountering a newline, we exit the loop, re-enable echoing (line
32), terminate the string containing the password (line 33), and then show the user what
she typed (line 36). Note that wprintw() overwrites the box we drew around the pass-
word window, so before refreshing the screen, we redraw the window border (line 37).

Listing 27.7 cursgstr.c

1 /*
2 * Listing 27.7
3 * cursgstr.c - curses string input functions
4 */
5 #include <stdlib.h>
6 #include <curses.h>
7 #include <errno.h>
8 #include <string.h>
9 #include “utilfcns.h”
10
11 int main(int argc, char *argv[])
12 {
13 int c, i = 0;
14 char str[20];
15 char *pstr;
16
17 app_init();

Programming the User Interface

PART IV
454

3272316072 CH27 7/26/99 1:37 PM Page 454

18 crmode();
19
20 printw(“File to open: “);
21 refresh();
22 getstr(str);
23 printw(“You typed: %s\n”, str);
24 refresh();
25 sleep(3);
26
27 if((pstr = malloc(sizeof(char) * 20)) == NULL)
28 err_quit(“malloc”);
29
30 printw(“Enter your name: “);
31 refresh();
32 getnstr(pstr, 20);
33 printw(“You entered: %s\n”, pstr);
34 refresh();
35 sleep(3);
36
37 free(pstr);
38 app_exit();
39 }

We leave echoing enabled in this sample because the user likely wants to see what she is
typing. We use getstr() first (line 22). In a real program, we would attempt to open the
file whose name is typed. On line 32, we use getnstr() so we can illustrate ncurses’
behavior when you attempt to enter a string longer than indicated by the length limit n.
In this case, ncurses stops accepting and echoing input and issues a beep after you have
typed 20 characters.

Color Routines
We have already seen that ncurses supports various highlighting modes. Interestingly, it
also supports color in the same fashion; that is, you can logically OR the desired color
value onto the character arguments of an addch() call or any other output routine that
takes a pseudo-character (chtype) argument. The method is tedious, however, so ncurses
also has a set of routines to set display attributes on a per-window basis.

Before you use ncurses’ color capabilities, you have to make sure that the current termi-
nal supports color. The has_colors() call returns TRUE or FALSE depending on
whether or not the current terminal has color capabilities.

bool has_colors(void);

Screen Manipulation with ncurses

CHAPTER 27
455

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

3272316072 CH27 7/26/99 1:37 PM Page 455

ncurses’ default colors are:

COLOR_BLACK

COLOR_RED

COLOR_GREEN

COLOR_YELLOW

COLOR_BLUE

COLOR_MAGENTA

COLOR_CYAN

COLOR_WHITE

Once you have determined that the terminal supports color, call the start_color()
function

int start_color(void);

which initializes the default colors. Listing 27.8 illustrates basic color usage. It must be
run on a terminal emulator that supports color, such as a color xterm.

Listing 27.8 color.c

1 /*
2 * Listing 27.8
3 * color.c - curses color management
4 */
5 #include <stdlib.h>
6 #include <curses.h>
7 #include <errno.h>
8 #include “utilfcns.h”
9
10 int main(void)
11 {
12 int n;
13
14 app_init();
15
16 if(has_colors()) {
17 if(start_color() == ERR)
18 err_quit(“start_color”);
19
20 /* Set up some simple color assignments */
21 init_pair(COLOR_BLACK, COLOR_BLACK, COLOR_BLACK);
22 init_pair(COLOR_GREEN, COLOR_GREEN, COLOR_BLACK);
23 init_pair(COLOR_RED, COLOR_RED, COLOR_BLACK);
24 init_pair(COLOR_CYAN, COLOR_CYAN, COLOR_BLACK);
25 init_pair(COLOR_WHITE, COLOR_WHITE, COLOR_BLACK);
26 init_pair(COLOR_MAGENTA, COLOR_MAGENTA, COLOR_BLACK);

Programming the User Interface

PART IV
456

3272316072 CH27 7/26/99 1:37 PM Page 456

27 init_pair(COLOR_BLUE, COLOR_BLUE, COLOR_BLACK);
28 init_pair(COLOR_YELLOW, COLOR_YELLOW, COLOR_BLACK);
29
30 for(n = 1; n <= 8; n++) {
31 attron(COLOR_PAIR(n));
32 printw(“color pair %d in NORMAL mode\n”, n);
33 attron(COLOR_PAIR(n) | A_STANDOUT);
34 printw(“color pair %d in STANDOUT mode\n”, n);
35 attroff(A_STANDOUT);
36 refresh();
37 }
38 sleep(10);
39 }
40 else {
41 printw(“Terminal does not support color\n”);
42 refresh();
43 sleep(3);
44 }
45
46 app_exit();
47 }

The outer conditional (lines 16, 40–43) ensures that the terminal supports color before
continuing, exiting gracefully if it doesn’t. After initializing the color system (line 17),
we make some simple color assignments using the init_pair() call (lines 21–28),
which associates foreground and background colors with a COLOR_PAIR name:

int init_pair(short pair, short f, short b);

This associates pair with a foreground color f and a background color b, returning OK
on success or ERR on failure.

Once the color assignments have been made, we display some text using each pair name
in normal text and in standout mode (lines 30–36). Rather than setting the color attribut-
es for each character displayed, we use the attron() call (lines 31 and 33), which sets
the current display attributes for the current window, in this case, stdscr. We use
attroff() to turn off standout mode before moving to the next color pair (line 35);

int attron(int attrs);
int attroff(int attrs);

attrs can be one or more logically ORed combinations of colors and video attributes.

As usual, ncurses comes with an extensive set of functions for manipulating window dis-
play attributes. They are fully documented in the curs_attr(3) manual page. The
curs_color(3) manual pages discuss in considerable detail ncurses’ color manipulation
interface.

Screen Manipulation with ncurses

CHAPTER 27
457

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

3272316072 CH27 7/26/99 1:37 PM Page 457

Window Management
We have already mentioned a couple of ncurses’ window management functions. In this
section, we will discuss them in more detail. All of the window manipulation routines are
documented in the curs_window(3) manual page.

WINDOW *newwin(int nlines, in ncols, int begin_y, int begin_x);
int delwin(WINDOW *win);
WINDOW *subwin(WINDOW *orig, int nlines, int ncols, int begin_y,
➥int begin_x);
WINDOW *derwin(WINDOW *orig, int nlines, int ncols, int begin_y,
➥int begin_x);
WINDOW *dupwin(WINDOW *win);

newwin() creates and returns a pointer to a new window with ncols columns and nlines
lines. The new window’s upper-left corner is positioned at begin_y, begin_x. subwin()
and derwin() creates and returns a pointer to a window with ncols columns and nlines
rows, positioned in the center of the parent window orig. The child window’s upper-left
corner is positioned at begin_y, begin_x relative to the screen, not the parent window.
derwin() behaves like subwin() except that the child window will be positioned at
begin_y, begin_x relative to the parent window orig, not the screen. dupwin() creates
an exact duplicate of the parent window orig. We have already introduced delwin().
Functions that return an integer return OK on success or ERR on failure. Those that
return pointers return NULL on failure. Previous listings have illustrated the use of some
of these functions, so we eschew further demonstration of their usage.

Miscellaneous Utility Functions
ncurses’ utility routines give you a potpourri of ncurses’ functionality, including low-
level ncurse functions, obtaining environment information, and creating screen dumps.

Screen dumps are interesting. The putwin() and getwin() write and read all data associ-
ated with a window to or from a file.

int putwin(WINDOW *win, FILE *filep);
WINDOW *getwin(FILE *filep);

putwin() copies all of the data for win to the file opened on filep, while getwin()
returns a pointer to a WINDOW created from the contents of filep.

The scr_dump() and scr_restore() functions behave similarly, except that they operate
on ncurses screens rather than on windows. You cannot, however, mix calls; attempting
to read data with scr_restore() that was written with putwin() causes an error.

int scr_dump(const char *filename);

Programming the User Interface

PART IV
458

3272316072 CH27 7/26/99 1:37 PM Page 458

int scr_restore(const char *filename);

filename is the name of the file to write or read.

For additional routines to use when reading and writing screen dumps, see the
curs_scr_dump(3) and curs_util(3) manual pages.

ncurses’ terminfo and termcap routines, documented in curs_termattrs(3),
curs_termcap(3), and curs_terminfo(3), report environment information and give you
direct access to the termcap and terminfo databases. The following functions obtain
information from the terminfo and termcap databases.

int baudrate(void); Returns the terminal’s output speed in bits per
second

char erasechar(void); Returns the user’s current erase character

char killchar(void); Returns the user’s current kill character

char *termname(void); Returns the value of the environment variable
$TERM, truncated to 14 characters

char *longname(void); Returns a long description of the terminal’s
capabilities, up to 128 characters

Unless you will be programming function keys or have other reasons to access the termi-
nal databases directly, there is no need to access the termcap and terminfo databases
directly, so we will not discuss those functions here.

In addition to getmaxyx() call you have already seen, there are three other routines used
to obtain cursor and window coordinates: getyx(), getparyx(), and getbegyx().
getyx() returns the coordinates of the cursor; getbegyx() returns the beginning (upper-
left) coordinates of the window; getparyx(), finally, when called on a subwindow,
returns the build window’s beginning coordinates, relative to the parent window.

void getyx(WINDOW *win, int y, int x);
void getbegyx(WINDOW *win, int y, int x);
void getparyx(WINDOW *win, int y, int x);

As with getmaxyx(), these three calls are all macros, so y and x do not need to be passed
with &. Our final sample program, Listing 27.9, illustrates using some of these utility
functions.

Listing 27.9 cursutil.c

1 /*
2 * Listing 27.9
3 * cursutil.c - curses utility routines
4 */

Screen Manipulation with ncurses

CHAPTER 27
459

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

continues

3272316072 CH27 7/26/99 1:37 PM Page 459

LISTING 27.9 CONTINUED

5 #include <stdlib.h>
6 #include <curses.h>
7 #include <errno.h>
8 #include “utilfcns.h”
9
10 int main(void)
11 {
12 WINDOW *win;
13 FILE *fdump;
14 int xmax, ymax, n = 0;
15
16 app_init();
17
18 if(!has_colors()) {
19 printw(“Terminal does not support color\n”);
20 refresh();
21 sleep(3);
22 app_exit();
23 }
24 if(start_color() == ERR)
25 err_quit(“start_color”);
26
27 init_pair(COLOR_RED, COLOR_RED, COLOR_BLACK);
28 init_pair(COLOR_YELLOW, COLOR_YELLOW, COLOR_BLACK);
29 init_pair(COLOR_WHITE, COLOR_WHITE, COLOR_BLACK);
30
31 bkgd(‘#’ | COLOR_PAIR(COLOR_RED));
32 refresh();
33 sleep(3);
34
35 if((win = subwin(stdscr, 10, 10, 0, 0)) == NULL)
36 err_quit(“subwin”);
37 wbkgd(win, ‘@’ | COLOR_PAIR(COLOR_YELLOW));
38 wrefresh(win);
39 sleep(1);
40
41 getmaxyx(stdscr, ymax, xmax);
42 while(n < xmax - 10) {
43 mvwin(win, ((ymax - 10) / 2), n);
44 refresh();
45 sleep(1);
46 if(n == ((xmax - 10)/ 2)) {
47 /* Dump the subwindow to a file */
48 fdump = fopen(“dump.win”, “w”);
49 putwin(stdscr, fdump);
50 fclose(fdump);
51 }
52 n += 10;

Programming the User Interface

PART IV
460

3272316072 CH27 7/26/99 1:37 PM Page 460

53 }
54
55 fdump = fopen(“dump.win”, “r”);
56 win = getwin(fdump);
57 wrefresh(win);
58 sleep(3);
59
60 clear();
61 bkgd(‘ ‘ | COLOR_PAIR(COLOR_WHITE));
62 mvprintw(1, 1, “ERASE character: %s\n”, unctrl(erasechar()));
63 mvprintw(2, 1, “KILL character : %s\n”, uncntrl(killchar()));
64 mvprintw(3, 1, “BAUDRATE (bps) : %d\n”, baudrate());
65 mvprintw(4, 1, “TERMINAL type : %s\n”, termname());
66 refresh();
67 sleep(5);
68
69 delwin(win);
70 app_exit();
71 }

We packed a lot into this example. Lines 18–25 make sure the terminal can support
color, gracefully exiting if they cannot. The next three lines (27–29) set up some colors
we use later in the program. After setting the background with red “#”s on a black back-
ground (lines 31–33), we create a 10×10 subwindow and set its background to yellow
“@”s on a black background. Then we move the child window across its parent in incre-
ments of ten (lines 41–53), creating a window dump at n=20. To illustrate how simple it
is to redisplay a dumped window, we read in the dump on lines 55–58. Finally, once we
clear stdscr, we set the window to white on black and use some of the terminal infor-
mation routines to display a little bit of information about the current display environ-
ment (lines 60–67). The child window deleted, the application exits.

Summary
Hopefully, this chapter has demonstrated enough of ncurses’ abilities to make clear that it
is both an easier and more powerful interface for manipulating the display than termios.
ncurses is a ubiquitous library, used in popular programs such as the mutt mail client, the
Midnight Commander file manager, lynx, ncftp, and nvi.

Screen Manipulation with ncurses

CHAPTER 27
461

27

S
C

R
EEN

M
A

N
IPU

LA
TIO

N
W

ITH
N

C
U

R
SES

3272316072 CH27 7/26/99 1:37 PM Page 461

462

3272316072 CH27 7/26/99 1:37 PM Page 462

IN THIS CHAPTER

• X Concepts 464

• The Xlib API 466

• The X Toolkit API 475

28
C

H
A

PT
ER

X Window
Programming

by Mark Watson

3372316072 CH28 7/26/99 1:36 PM Page 463

The X Window software was written at MIT as part of the Athena project. X Windows
allows a program to use the display of a computer other than the computer the program
is running on if the owner of that computer permits it. In 1988, I was helping to build a
distributed system where the major components (during development) ran in Norway,
Washington D.C., and San Diego. Running programs on a computer in Norway using the
display of my Sun workstation in San Diego was “real” telecommuting!

In this chapter, you will learn how to use the primitive X library (Xlib) and the X toolkit
(Xt). In the next chapter, you will use the MIT Athena widget set and the Motif Widget
set, both of which use the X toolkit. All of the examples can be developed and run on
your Linux computer, but keep in mind that you can allow a friend from around the
world to run your application if she has an account on your computer and sets the per-
missions of the X server’s display on her computer to allow remote access from the host
computer running the application.

Programming the User Interface

PART IV
464

NOTE

X Windows is usually thought to be the windowing system for Unix, but X
servers are also available for OS/2, Windows, and the Macintosh.

X Concepts
X Windows separates the display and event handling from application programs. Instead,
an application program communicates with the X server via a socket interface. The X
server handles keyboard input, mouse input, and the display screen. For example, when
the user clicks the mouse, the X server detects where the mouse event occurred and
sends the mouse event to the appropriate application program. When a window on the
display is uncovered, the X server sends the appropriate application a window expose
event. Window expose events occur when part or all of a window becomes visible and
therefore needs to be redrawn. The application will usually respond by sending back
draw operations to the X server to redraw the window contents.

To understand the interaction between X Window application programs and the X server,
you need to understand how events are handled and know the draw operations that an
application program can request the X server to perform. Figure 28.1 shows the interac-
tion between actual user events, the X server event queue, and application program event
queues.

3372316072 CH28 7/26/99 1:36 PM Page 464

As shown in Figure 28.2, X Window applications can use any combination of the low-
level Xlib API, the X toolkit (or the X intrinsics), the Athena Widget set, and the Motif
Widget set (Chapter 29). In Chapters 30 and 31, you will also see two higher-level APIs:
the GTK and Qt GUI libraries.

X Window Programming

CHAPTER 28
465

28

X
 W

IN
D

O
W

P
R

O
G

R
A

M
M

IN
G

X server

X server event queue

Window close event
for Windows 712119

Exposure event for
Window ID 1182121

Right mouse button up
for Window ID 30102

Application with
Window

ID 1182121Application sends
draw operation
requests back to X
server via socket

Event sent to
application
via socket
interface

Keyboard events Window events
Mouse eventsFIGURE 28.1

Interaction
between events,
the X server, and
application pro-
grams.

X application program

X lib primitives

X server

X toolkit

Athena
Widgets

Motif
Widgets

Socket interface

FIGURE 28.2
The X Window
Programming
APIs.

3372316072 CH28 7/26/99 1:36 PM Page 465

The Xlib library provides the interface between application programs and the (possibly
remote) X server via a socket interface.

The Xlib API
For most X Window applications that you’ll develop, you’ll probably use one of the
high-level toolkits such as Motif, Athena, GTK, or Qt. However, in addition to providing
the software interface between higher-level toolkits and the X server, the Xlib API
provides useful graphics operations that you’re likely to need in graphics-oriented appli-
cations. The sample program bifurcation.c, located in the directory src/X/xlib,
provides a simple example of creating a window, handling events, and performing simple
graphics operations using the Xlib API.

Programming the User Interface

PART IV
466

TIP

Christophe Tronche maintains an excellent API reference for Xlib at his Web
site. I maintain a current link to his site at the URL
http://www.markwatson.com/books/linux_prog.html.

Before looking at the bifurcation.c example program, we will first list the Xlib func-
tions for managing displays and windows, list the common event handling functions, and
finally look at some commonly used graphics primitives. The most commonly used win-
dow and display management functions are covered in the following sections.

XopenDisplay
Xlib functions require a display pointer. We use XopenDisplay to connect a program to
an X server. The display name has the general form hostname:display-
number:screen-number. You might want to simply use localhost and default the dis-
play and screen numbers. The function signature is as follows:

Display * XOpenDisplay(char *display_name)

XcreateSimpleWindow and XcreateWindow
The function XcreateWindow is the general-purpose function for creating new windows
on an X display. The simpler XCreateSimpleWindow function creates a window using
default values inherited from the parent window.

3372316072 CH28 7/26/99 1:36 PM Page 466

The function signatures are as follows:

Window XcreateWindow(Display *display, Window parent,
int x, int y,
int width, int height,
unsigned int border_width,
unsigned int depth, int class,
Visual * visual,
unsigned long valuemask,
XSetWindowAttributes * attributes)

Window XCreateSimpleWindow(Display * display,
Window parent,
int x, int y,
unsigned int width,
unsigned int height,
unsigned int border_width,
unsigned long border,
unsigned long background)

The XSetWindowAttributes structure is defined as follows:

typedef struct {
Pixmap background_pixmap; // background
unsigned long background_pixel; // background pixel
Pixmap border_pixmap; // border of the window
unsigned long border_pixel; // border pixel value
int bit_gravity; // one of bit gravity values
int win_gravity; // one of the window gravity values
int backing_store; // NotUseful, WhenMapped, Always
unsigned long backing_planes; // planes preserved

// if possible
unsigned long backing_pixel; // value for restoring planes
Bool save_under; // should bits under be saved?
long event_mask; // set of saved events
long do_not_propagate_mask; // set of events that should

// not propagate
Bool override_redirect; // boolean value for

// override_redirect
Colormap colormap; // color map to be associated

// with window
Cursor cursor; // cursor to be displayed (or None)

} XSetWindowAttributes;

Mapping and Unmapping Windows
An X Window is made visible by mapping and invisible by unmapping. The function
signatures for the utility functions that control window visibility are as follows:

XMapWindow(Display *display, Window w)
XMapSubwindows(Display * display, Window w)
XUnmapWindow(Display * display, Window w)

X Window Programming

CHAPTER 28
467

28

X
 W

IN
D

O
W

P
R

O
G

R
A

M
M

IN
G

3372316072 CH28 7/26/99 1:36 PM Page 467

Mapping a window might not immediately make it visible because a window and all of
its parents need to be mapped to become visible. This behavior is convenient because
you can make an entire tree of nested (or child) windows invisible by unmapping the top-
most window. When you unmap a window, the X server automatically generates a win-
dows expose event for any windows that are uncovered.

Destroying Windows
In order to free system resources, X Windows should be destroyed when they are no
longer needed. The XDestroyWindow function destroys a single window, while
XDestroySubWindows destroys all child windows. The signatures for these functions are
as follows:

XDestroyWindow(Display * display, Window w)
XDestroySubwindows(Display * display, Window w)

Event Handling
Event handling with the Xlib API is not too difficult. A program must register for the
types of events that it is interested in by using XSelectInput, and check for events from
the X server by using XNextEvent.

XSelectInput
The function signature for XSelectInput is as follows:

XSelectInput(Display * display, Window w, long event_mask)

The display variable defines which X server the application is using for display. Events
are window-specific and are set by combining the following most commonly used con-
stants for the event mask:

0—No events wanted

KeyPressMask—Keyboard down events wanted

KeyReleaseMask—Keyboard up events wanted

ButtonPressMask—Pointer button down events wanted

ButtonReleaseMask—Pointer button up events wanted

EnterWindowMask—Pointer window entry events wanted

LeaveWindowMask—Pointer window leave events wanted

PointerMotionMask —Pointer motion events wanted

PointerMotionHintMask—Pointer motion hints wanted

Button1MotionMask—Pointer motion while button 1 down

Button2MotionMask—Pointer motion while button 2 down

Programming the User Interface

PART IV
468

3372316072 CH28 7/26/99 1:36 PM Page 468

Button3MotionMask—Pointer motion while button 3 down

ButtonMotionMask—Pointer motion while any button down

ExposureMask—Any exposure wanted

VisibilityChangeMask—Any change in visibility wanted

ResizeRedirectMask—Redirect resize of this window

FocusChangeMask—Any change in input focus wanted

For more Xlib documentation, check Christophe Tronche’s Web site or the X
Consortium’s Web site at www.x.org.

XNextEvent
An application program can request the next pending event with the function
XNextEvent. The function signature for this function is as follows:

XNextEvent(Display * display, XEvent * event_return_value)

The XEvent structure has a field type that indicates what event occurred. Here you would
check the value of event_return_value.type against the following commonly used
constant values:

ButtonPressMask—Any button pressed

Button1PressMask—Button 1 pressed

Button2PressMask—Button 2 pressed

Button3PressMask—Button 3 pressed

ButtonMotionMask—Motion with any button pressed

Button1MotionMask—Motion with button 1 pressed

Button2MotionMask—Motion with button 2 pressed

Button3MotionMask—Motion with button 3 pressed

KeyPress—Any key pressed on the keyboard

KeyRelease—Any key released on the keyboard

Expose—Window is exposed (most applications redrawn)

There are many other possible event types, but these are the most commonly used types.

Initializing Graphics Context and Fonts
An X window has a Graphics Context (GC) that specifies drawing parameters such as
foreground and background colors and the current font. An XFontInfo data structure is
defined using XLoadQueryFont, which has the following function signature:

XFontStruct *XLoadQueryFont(Display * display, char * name)

X Window Programming

CHAPTER 28
469

28

X
 W

IN
D

O
W

P
R

O
G

R
A

M
M

IN
G

3372316072 CH28 7/26/99 1:36 PM Page 469

Example font names are 8x10, 9x15, and fixed. A GC is created with XCreateGC that has
the following function signature:

GC XCreateGC(Display * display, Drawable d,
unsigned long valuemask,
XGCValues * values)

A Drawable is usually a Window object, but can also be a PixMap. After defining a GC, a
program might want to set the font, foreground color, and background color using the
following functions:

XSetFont(Display *display, GC gc, Font font)
XSetForeground(Display *display, GC gc, unsigned long a_color)
XSetBackground(Display *display, GC gc, unsigned long a_color)

A color value can be obtained by using XParseColor or using one of the following
macros:

BlackPixel(Display * display, Screen screen)
WhitePixel(Display * display, Screen screen)

Drawing in an X Window
Usually, drawing in an X Window is performed after a program receives an expose event.
The GC can be changed before any drawing command to change the foreground color
and other options. The following list of drawing functions shows a sample of the graph-
ics operations available to X Window programmers:

XDrawString(Display *display, Drawable d, GC gc,
int x, int y,
char * string, int string_length)

XDrawString draws a string in the GC’s current font and foreground color:

XDrawLine(Display *display, Drawable d, GC gc,
int x1, int y1, int x2, int y2)

XDrawLine is used to draw a line between two points, (x1,y2) and (x2,y2):

XDrawRectangle(Display *display, Drawable d, GC gc, int x,
int y, unsigned int width, unsigned int height)

XDrawRectangle draws a rectangle using the GC’s current foreground color:

XDrawArc(Display *display, Drawable d, GC gc, int x, int y,
unsigned int width, unsigned int height,
int angle1, int angle2)

Here, angle1 specifies the start of the arc relative to the three o’clock position from the
center, in units of degrees ×64. The argument angle2 specifies the angle of the arc rela-
tive to angle1, also measured in units of degrees ×64. The functions XDrawRectangle and

Programming the User Interface

PART IV
470

3372316072 CH28 7/26/99 1:36 PM Page 470

XDrawArc draw outlines of the requested shapes in the GC’s foreground color. The func-
tions XFillRectangle (same arguments as XDrawRectangle) and XFillArc (same argu-
ments as XDrawArc) perform the same operation, except that they fill the requested shape
with the foreground color.

A Sample Xlib Program
The source file bifurcation.c in the src/X/xlib directory demonstrates how to create
an X Window, trap the button press, expose and resize events, and perform simple graph-
ics operations. The bifurcation.c program plots chaotic population growth using a sim-
ple nonlinear equation by biologist Robert Mays. Figure 28.3 shows the bifurcation.c
program running.

X Window Programming

CHAPTER 28
471

28

X
 W

IN
D

O
W

P
R

O
G

R
A

M
M

IN
G

FIGURE 28.3
The
bifurcation.c

sample Xlib
program.

This simple program uses the function draw_bifurcation to draw the window contents.
The function prototype (or signature) is as follows:

void draw_bifurcation(Window window, GC gc, Display *display,
int screen, XColor text_color)

The function main defines the following data:

Display *display—For referring to X server’s display

int screen—Identifies which screen on the X server you’re using

Window win—Identifies the application’s window

XColor blue—You want to display text using the color blue

unsigned int width=500—Specifies the initial window width

3372316072 CH28 7/26/99 1:36 PM Page 471

unsigned int height=231—Specifies the initial window height

XFontStruct *font_info—For using a display font

GC gc—Identifies the windows GC

Colormap cmap—Used to query the X server for the color blue

XEvent x_event—Used to fetch X events

XGCValues values—Used for the GC attributes returned by the X server

The first thing that an X Window program needs to do is to make sure that it can open a
display on the desired X server:

if ((display=XOpenDisplay(NULL)) == NULL) {
perror(“Could not open X display”);
exit(1);

}

Here, you exit the program if no X display is available. Specifying NULL as the argument
to XOpenDisplay defaults to the the value of the DISPLAY environment variable. You also
want to use the default screen on the local X server and to create the window:

screen = DefaultScreen(display);
win = XCreateSimpleWindow(display, RootWindow(display, screen),

0, 0, width, height, 5,
BlackPixel(display, screen),
WhitePixel(display, screen));

Since you want blue text, you need to ask for it:

cmap=DefaultColormap(display,screen);
XParseColor(display,cmap,”blue”,&blue);
XAllocColor(display,cmap,&blue);

If you ask for a color that is not available, you are likely to get a random color but your
program will not crash. As an experiment, try this:

XParseColor(display,cmap,”ZZ_NO_SUCH_COLOR”,&blue);

Unlike color selection, an error in specifying a display font name can cause X programs
to crash in fine style. In the following code, you try two fonts that are almost always on
an X server:

if ((font_info = XLoadQueryFont(display,”9x15”)) == NULL) {
perror(“Use fixed font\n”);
font_info = XLoadQueryFont(display,”fixed”);

}

Programming the User Interface

PART IV
472

3372316072 CH28 7/26/99 1:36 PM Page 472

Here, if you cannot find 9x15 on the server, you try fixed. You are now ready to create a
GC for drawing operations inside the window:

gc = XCreateGC(display,win,(unsigned long)0,&values);
XSetFont(display, gc, font_info->fid);
XSetForeground(display, gc, BlackPixel(display,screen));

Here, you also set the font and foreground color for the GC.

Before mapping the window (making it visible), you need to set the properties for the
window manager to use and select which events you want to process:

XSetStandardProperties(display, win,
“Robert May’s population model”,
“Bifurcation”, None,
0, 0, NULL);

XSelectInput(display, win, ExposureMask | ButtonPressMask);

Here you are using defaults for everything but the window title and the label used by the
window manager when this application is iconified. The call to XSelectInput notifies
the X server that you want to receive exposure and any button press events. Finally, you
are ready to make the window visible and draw the window contents:

XMapWindow(display, win);
draw_bifurcation(win,gc,display,screen,blue);

The only remaining thing to do in function main is to handle events:

while (1) {
XNextEvent(display, &x_event);

switch (x_event.type) {
case Expose:
draw_bifurcation(win,gc,display,screen,blue);
break;

case ButtonPressMask:
XCloseDisplay(display);
exit(0);

default:
break;

}
}

This event loop is simple: you call XNextEvent (which blocks until an event is available)
to fill the XEvent x_event variable. The field X_event.type is the integer event type that
you compare to the constants Expose and ButtonPressMask. If you get an expose event
the window has to be redrawn, so you call draw_bifurcation again. If the user presses
any mouse button in the window, you close the connection to the X server with
XCloseDisplay and terminate the program.

X Window Programming

CHAPTER 28
473

28

X
 W

IN
D

O
W

P
R

O
G

R
A

M
M

IN
G

3372316072 CH28 7/26/99 1:36 PM Page 473

The function draw_bifurcation is fairly simple:

void draw_bifurcation(Window win, GC gc, Display *display,
int screen, XColor font_color) {
float lambda = 0.1;
float x = 0.1f;
float population = 0.0;
int x_axis, y_axis, iter;
XSetForeground(display, gc, font_color.pixel);
XDrawString(display, win, gc, 236,22,

“Extinction”, strlen(“Extinction”));
XDrawString(display, win, gc, 16, 41,

“Steady state”, strlen(“Steady state”));
XDrawString(display, win, gc, 334, 123,

“Period doubled”, strlen(“Period doubled”));
XSetForeground(display, gc, BlackPixel(display,screen));
for (y_axis=0; y_axis<198; y_axis++) {
lambda = 4.0f * (0.20f + (y_axis / 250.0f));
for (iter=0; iter<198; iter++) {
population = lambda * x * (1.0f - x);
x_axis = (int)(population * 500.02f);
if (x_axis > 0.0f && x_axis < 501.0f) {
XDrawLine(display,win,gc, x_axis, y_axis, x_axis, y_axis);

}
x = population;

}
}

}

For the purposes of this book, the algorithm for deciding where to plot the points in the
X Window is not interesting. The following functions are used to draw in the Window’s
GC:

XSetForeground—Used to switch the foreground color between black and blue

XDrawString—Used to draw three text strings in the window using the font set for
the GC

XDrawLine—Used to draw points in the window

You call XSetForeground to change the color for drawing text and plotting lines. Here,
you are drawing points by drawing line segments with a length of one pixel. You can run
the sample program bifurcation.c by changing the directory to src/X/xlib and typing
the following:

make
./bifurcation

Programming the User Interface

PART IV
474

3372316072 CH28 7/26/99 1:36 PM Page 474

The X Toolkit API
You have seen that the Xlib API is a low-level but very efficient library for writing X
Window applications. The X toolkit (or intrinsics) library provides higher-level program-
ming support for writing widgets. Widgets are object-oriented display objects, like data
entry fields, utilities for plotting data, and so on. They are usually written in the C lan-
guage, but they’re object-oriented in the sense that they support inheritance and maintain
private data with a public API for accessing internal widget data. In the next chapter, you
will use two popular widget sets: the Athena widgets and the Motif widgets.

Getting Started Using the X Toolkit
Before an application can use the X toolkit, the following function must be called
before any other toolkit functions (the type String is defined as char *, and a Cardinal
is an int):

Widget XtInitialize(String shell_name,
String application_class,
XrmOptionDescRec *options,
Cardinal num_options,
int * argc, char **argv)

The name and class arguments specify the name and the class of the top-level widget of
the application. Typically, you can make up a meaningful name for the application and
then create a class name by capitalizing the first letter of the application name. The
options argument can usually just be specified as NULL, indicating that there are no spe-
cial options. If you use NULL to specify options, pass 0 as the value of num_options. The
last two arguments are the arguments passed (which are modified by removing any X-
specific arguments) to the main function of an application.

The X toolkit uses resources specified as character strings. To make programs more read-
able, the X toolkit and Xlib include files that define constant names for resource strings:

#define XtNwidth “width”
#define XtNheight “height”
#define XtNlabel “label”

It is relatively easy to write X applications using widgets, but it is much more difficult to
write new widgets. In the next two chapters, we will see how to use Athena and Motif
widgets and how to write a new Athena widget.

X Window Programming

CHAPTER 28
475

28

X
 W

IN
D

O
W

P
R

O
G

R
A

M
M

IN
G

3372316072 CH28 7/26/99 1:36 PM Page 475

Setting Widget Arguments Using the X Toolkit
The X toolkit function XtSetValues can be used to set values for widget resources.
XtSetValues can be used for Athena and Motif widgets. Each type of widget (label, text
edit, and so on) has different options that can be set using XtSetValues. XtSetValues
starts with the resources core, or base widget classes, and follows a widget’s inheritance
chain to the widget, setting resources that match the indicated resource name. For exam-
ple, suppose that you are using an Athena label widget. Inspection of the file Label.h
(located in /usr/X11/include/Xaw3D on my Linux system) shows the following
resources for the label widget:

Name Class RepType Default Value
---- ----- ------- -------------
background Background Pixel XtDefaultBackground
bitmap Pixmap Pixmap None
border BorderColor Pixel XtDefaultForeground
borderWidth BorderWidth Dimension 1
cursor Cursor Cursor None
cursorName Cursor String NULL
destroyCallback Callback XtCallbackList NULL
encoding Encoding unsigned char XawTextEncoding8bit
font Font XFontStruct* XtDefaultFont
foreground Foreground Pixel XtDefaultForeground
height Height Dimension text height
insensitiveBorder Insensitive Pixmap Gray
internalHeight Height Dimension 2
internalWidth Width Dimension 4
justify Justify XtJustify XtJustifyCenter
label Label String NULL
leftBitmap LeftBitmap Pixmap None
mappedWhenManaged MappedWhenManaged Boolean True
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackground Background Pixel XtDefaultBackground
resize Resize Boolean True
sensitive Sensitive Boolean True
width Width Dimension text width
x Position Position 0
y Position Position 0

Here is an example of setting a few resources in a program:

Widget label;
Arg args[5];
String app_resources[] =
{ “*Label.Label: Testing Athena Label Widget”, NULL };

XtSetValues(args[0], XtNlabel, “The label of a widget”);
XtSetValues(args[1], XtNwidth, 100);
XtSetValues(args[2], XtNheight, 90);

Programming the User Interface

PART IV
476

3372316072 CH28 7/26/99 1:36 PM Page 476

top_level = XtAppInitialize(&application_context, “Test”, NULL, 0,
&argc, argv,
app_resources,
NULL, 0);

label = XtCreateManagedWidget(“label5”, labelWidgetClass,
top_level, args, 3);

You can also set resource values inside your .Xdefaults file. For example, assume that
the program name is test and that you want to set the x-y position of the widget:

Test*label5*x: 5
Test*label5*y: 15

It is also possible to get a widget’s resource values using the X toolkit function
XtGetValues.

Dimension width, height;
Arg args[2];
Widget label=XtCreateManagedWidget(“label”, labelWidgetClass,

top_level, NULL, 0);
XtSetArg(args[0], XtNwidth, &width);
XtSetArg(args[1], XtNheight, &height);
XtGetValues(label, args, 2);
printf(“Widget width=%d and height=%d\n”, width, height);

Here, you use the type Dimension for the variables width and height because the
resources width and height have the type Dimension. In a similar way, you would use
the type Pixel for fetching a widget’s background color.

Summary
In this chapter, you have learned the basics of X Window programming using Xlib and
the X toolkit. You can also find the source code for many example X Window programs
on the Internet. In the next two chapters, you will see higher level toolkits that make it
easier to write X Window programs. However, even when you use higher level toolkits
such as Athena, Motif, Qt, and GTK, it is important to understand Xlib programming.

X Window Programming

CHAPTER 28
477

28

X
 W

IN
D

O
W

P
R

O
G

R
A

M
M

IN
G

3372316072 CH28 7/26/99 1:36 PM Page 477

478

3372316072 CH28 7/26/99 1:36 PM Page 478

IN THIS CHAPTER

• Using Athena Widgets 480

• Using Motif Widgets 491

• Writing a Custom Athena Widget 498

• Using Both Athena and Motif in C++
Programs 507

• Using a C++ Class Library for Athena
Widgets 508

29
C

H
A

PT
ER

Using Athena and
Motif Widgets

by Mark Watson

3472316072 CH29 7/26/99 1:35 PM Page 479

We saw in Chapter 28 how much code is required to write simple programs using the
low-level Xlib API. We also reviewed the X toolkit, which is a utility library that is used
by Athena, Motif, and most other Top-Level Application widget libraries. In this chapter,
we will learn how to do the following:

• Use Athena Widgets

• Use Motif Widgets

• Write our Own Athena Widget

• Use Both Athena and Motif in C++ Programs

• Use a C++ Class Library to Wrap Athena’s Paned, Button, Label and Text Widgets

Using Athena Widgets
The Athena widget set was written for the MIT Athena project to provide a distributed
computing environment for the students and faculty at MIT. The Athena widgets origi-
nally had a “flat” look, but most Linux distributions have an optional package named
awt3d that overwrites the libraries for the Athena widgets, substituting the “flat” look
with a “3D” look. This chapter is really a tutorial for using Athena widgets. In each sec-
tion, we will develop one short program that shows how to use labels, command push-
buttons, menus, and text edit-fields.

The Athena Label Widget
The example program for this section, label.c, is located in the directory src/X/Athena
on the CD-ROM. This program requires two include files:

#include <X11/Intrinsic.h>
#include <X11/Xaw/Label.h>

The file Intrinsic.h contains the definitions for the X toolkit, and the file Label.h
defines the Athena Label class. Normally, X applications use resource definitions in the
.Xdefaults file in your home directory for program options that enable you to change
both the appearance and behavior of the program. Here, we use an array of character
strings to set the resources for the Label widget used in the example. The Label widget
has a property Label that is defined here:

String app_resources[] =
{ “*Label.Label: Testing Athena Label Widget”, NULL };

In the main function, we must define three variables: a Top Level widget, a Label wid-
get, and an application context:

XtAppContext application_context;
Widget top_level, label;

Programming the User Interface

PART IV
480

3472316072 CH29 7/26/99 1:35 PM Page 480

First, we create and save the value of a Top-Level widget for this application and define
the value for the variable application_context:

top_level = XtAppInitialize(&application_context, “test”, NULL, 0,
&argc, argv,
app_resources,
NULL, 0);

We now create a Child widget to the Top-Level widget. This is our test Label widget:

label = XtCreateManagedWidget(“label”, labelWidgetClass, top_level,
NULL, 0);

After we call XtRealizeWidget, the Top-Level widget and the Label widget are man-
aged.

XtRealizeWidget(top_level); // create windows and make visible

Finally, we pass the application context to XtAppMainLoop to handle all events for this
simple application:

XtAppMainLoop(application_context); // main event loop

As we saw in Chapter 28, the label.c example program also contains example code for
fetching the width and height resources of a Label widget:

Dimension width, height;
Arg args[2];
XtSetArg(args[0], XtNwidth, &width);
XtSetArg(args[1], XtNheight, &height);
XtGetValues(label, args, 2);
printf(“Widget width=%d and height=%d\n”, width, height);

Figure 29.1 shows an X window containing the label.c example program.

Using Athena and Motif Widgets

CHAPTER 29
481

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

FIGURE 29.1
Running the
label.c example
program in the
KDE desktop.

You can build and run this test program by changing the directory to src/X/Athena and
typing:

make
label

3472316072 CH29 7/26/99 1:35 PM Page 481

The Athena Command Button Widget
The sample program button.c that we will use in this section is very similar to the
label.c program from the last section. The source code differs in that it enables you to
set up the command button and manage its events.

In the button.c example, we need the following include file:

#include <X11/StringDefs.h>

in order to get the constant definition for XtNcallback that has a value of callback. The
following include file is required in order to define the Athena Command Button wid-
get:

#include <X11/Xaw/Command.h>

In the last example, label.c, we saw that the Athena Label widget looks for a property
Label at runtime in either the local .Xdefaults file or in the default application
resources set in the program. In button.c, we also need to set up a default Label proper-
ty for the widget class Command:

String app_resources[] = {
“*Command.Label: Click left mouse button”, NULL,

};

We also want the ability to process command-line arguments:

XrmOptionDescRec options[] = {
{“-label”, “*Command.label”, XrmoptionSepArg, NULL}

};

If this sample program is run without arguments, the default label property value “Click
left mouse button” is used. If we want the label to read “Click to test”, run the
sample program like this:

button -label “Click to test”

Although not necessary, programs should handle Button-Click events in Command
Button widgets (otherwise, why use them?). We need to define a Callback function to do
any calculations that we want after the button is clicked. Here is our sample Callback
function:

void do_button_clicked(Widget w,
XtPointer client_data,
XtPointer call_data) {

printf(“left button clicked\n”);
}

Programming the User Interface

PART IV
482

3472316072 CH29 7/26/99 1:35 PM Page 482

We will see later how to assign this callback function to the sample Command Button
widget. First, we will look at the function main, which has two arguments for processing
command-line arguments:

void main(int argc, char **argv) {

We need to define three variables in the main function: an application context and
two widgets (top level, command button):

XtAppContext application_context;
Widget top_level, command_button;

We call XtAppInitialize to fill in the fields of the application context and to define
the Top-Level widget:

top_level = XtAppInitialize(&application_context, “Xcommand”,
options, XtNumber(options),
&argc, argv, app_resources,
NULL, 0);

Unlike the last example (label.c), here we want to save the value of the test widget (the
Command Button widget in this case):

command_button = XtCreateManagedWidget(“command”, commandWidgetClass,
top_level, NULL, 0);

We defined a Callback function do_button_clicked. Now we will assign this Callback
function to the Command Button widget:

XtAddCallback(command_button, XtNcallback, do_button_clicked, NULL);

Finally, we want to make all the widgets visible and capable of handling events:

XtRealizeWidget(top_level);
XtAppMainLoop(application_context);

It is important to clearly understand how the events are handled. The Top-Level widget
contains the Command Button widget. When the Top-Level widget is realized (made vis-
ible), the X server knows to associate events for this sample program with the Top-Level
widget. When you click on the command button, the event loop code in XtAppMainLoop
is notified via a socket connection from the X server that an event has occurred. The
Top-Level widget passes the event down to the command button, and the Callback func-
tion is executed.

Assuming that you are running X Windows on your computer, you can see all of the
currently open socket connects by typing netstat -a in a terminal window. As an

Using Athena and Motif Widgets

CHAPTER 29
483

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 483

experiment, run netstat twice in a row in a terminal window, but start the sample
button.c program after the first time that you run netstat:

netstat -a > temp1
button &
netstat -a> temp2
diff temp1 temp2
rm temp1 temp2

This will show you the socket connection used to handle this application. The socket I/O
is performed between Xlib and the (possibly remote) X server. Figure 29.2 shows a X
window containing the button.c example program.

Programming the User Interface

PART IV
484

FIGURE 29.2
Running the
button.c example
program in the
KDE desktop.

You can build and run this test program by changing the directory to src/X/Athena and
typing:

make
button

The Athena List Widget
The example for this section, list.c, is similar to the two previous examples: label.c
and button.c. We will concentrate on handling List widgets and assume that you have
read the last two sections. The following include file defines the List widget:

#include <X11/Xaw/List.h>

We used a Callback function in button.c to handle Button-Click events. The Callback
function for a List widget is a little more complex because we want the ability to identi-
fy which list item was clicked with the mouse. The third argument for Callback func-
tions is widget-dependent data. For a List widget, the third argument is the address of a
XawListReturnStruct object that has two fields in which we are interested here:

Field Description

int list_index Index starting at zero of the clicked list item.

char * string The label of the list item.

3472316072 CH29 7/26/99 1:35 PM Page 484

The Callback function do_list_item_selected uses the third argument to print out the
index and label of the clicked list item:

void do_list_item_selected(Widget w, XtPointer unused, XtPointer data) {
XawListReturnStruct *list_item = (XawListReturnStruct*)data;
printf(“Selected item (%d) text is ‘%s’\n”,

list_item->list_index, list_item->string);
}

The function main defines variables for two widgets and an application context:

Widget top_level, list;
XtAppContext application_context;

We create a Top-Level widget and fill in the data for the application context:

top_level = XtAppInitialize(&application_context, “listexample”,
NULL, ZERO,
&argc, argv, NULL,
NULL, 0);

When we create a List widget, we supply an array of “char *” string values for the list
item labels:

String items[] = {
“1”, “2”, “3”, “4”, “5”, “six”, “seven”, “8”,
“9’th list entry”, “this is the tenth list entry”,
“11”, “12”,
NULL

};

For creating a List widget, we use XtVaCreateManagedWidget—an alternative form of
XtCreateManagedWidget—that accepts a variable number of options:

list= XtVaCreateManagedWidget(“list”, listWidgetClass, top_level,
XtNlist, items,
NULL, 0);

We need to associate the Callback function with the List widget in the same way that we
saw in the button.c example:

XtAddCallback(list, XtNcallback,
do_list_item_selected, (XtPointer)NULL);

As before, we make the widgets visible on the X server and able to handle events:

XtRealizeWidget(top_level);
XtAppMainLoop(application_context);

Figure 29.3 shows an X window containing the list.c example program.

Using Athena and Motif Widgets

CHAPTER 29
485

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 485

FIGURE 29.3
Running the
list.c example
program in the
KDE desktop.

Programming the User Interface

PART IV
486

You can build and run this test program by changing the directory to src/X/Athena and
typing:

make
list

The Athena Text Widget
The Athena Text widget has many options that can be set using resource values (either in
your .Xdefaults file or defaults defined in the program). The following three include
files are defined with Paned, AsciiText, and Command (button) widgets. Paned is a
Container widget that is used to hold other widgets. By default, Paned provides small
“grabs” that can be used to manually adjust the size of any contained widget.

#include <X11/Xaw/Paned.h>
#include <X11/Xaw/AsciiText.h>
#include <X11/Xaw/Command.h>

When we define a Text widget, we will want to provide callbacks to display the text in
the widget and to erase all of the text in the widget. In order to display the widget’s text,
we will use the X toolkit XtVaGetValues function that operates on a widget (specified as
the first argument). The second argument will be the constant XtNstring that is used to
specify that we want to retrieve the value of the string resource. The third argument is
an address of a string variable that will be set to point to a block of characters. The
storage for this block of characters is managed internally by the Text widget. The fourth
argument is NULL to indicate that no further resource values are to be fetched from the
Text widget.

The following code listing shows the implementation of the do_display_widget_text
callback function. This function is called when there are events in the text widget. For
demonstration purposes, we use XtVaGetValues to get the current text in the text widget
and then print this text.

void do_display_widget_text(Widget w,
XtPointer text_ptr,
XtPointer unused) {

Widget text = (Widget) text_ptr;
String str;
XtVaGetValues(text,

XtNstring, &str,
NULL);

printf(“Widget Text is:\n%s\n”, str);
}

3472316072 CH29 7/26/99 1:35 PM Page 486

We also want the ability to erase the text in a Text widget. To do this, we use the X
toolkit function XtVaSetValues to set the value of the string resource to the NULL
string:

void do_erase_text_widget(Widget w,
XtPointer text_ptr,
XtPointer unused) {

Widget text = (Widget) text_ptr;
XtVaSetValues(text,

XtNstring, “”,
NULL);

}

We are adding something new to this example program: a quit button. We could simply
call exit, but it is better to clean up any references to shared X resources by first calling
XtDestroyApplicationContext. In this example, we declare the application context
as a global variable so that the do_quit Callback function has access to application
context:

XtAppContext application_context;
void do_quit(Widget w, XtPointer unused1, XtPointer unused2) {
XtDestroyApplicationContext(application_context);
exit(0);

}

As in the previous examples, we define default application resources directly in the pro-
gram. Here, we are defining resources for the classes Text, erase, and display. Notice
that we do not define any default resources for the Quit command button, as we do for
the Erase and Display command buttons. The Quit button will default its label with its
name—in this case, it’s Quit.

The following code listing illustrates how to set up default application resources.

String app_resources[] = {
“*Text*editType: edit”,
“*Text*autoFill: on”,
“*Text*scrollVertical: whenNeeded”,
“*Text*scrollHorizontal: whenNeeded”,
“*erase*label: Erase the Text widget”,
“*display*label: Display the text from the Text widget”,
“*Text*preferredPaneSize: 300”,
NULL,

};

The Text widget resource property autoFill is used to control automatic line-wrapping.
The Text widget property editType is used to set the text as editable. The
preferredPaneSize property sets the desired height in pixels for a widget contained in a
Pane widget. The function main defines a Top-Level widget as well as widgets for the

Using Athena and Motif Widgets

CHAPTER 29
487

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 487

text area, the Erase command button, the Display command button, and the Quit com-
mand button:

Widget top_level, paned, text, erase, display, quit;

When we initialize the Text widget, we will use the following for the initial text:

char *initial_text= “Try typing\n\nsome text here!\n\n”;

We initialize the application context (here defined using a global variable so that we
can access it in the do_quit function), define the Top-Level widget in the same way as
the previous examples, and create a paned window widget:

top_level = XtAppInitialize(&application_context,
“textexample”, NULL, 0,
&argc, argv, app_resources,
NULL, 0);

paned = XtVaCreateManagedWidget(“paned”, panedWidgetClass, top_level,
NULL);

We use the variable number of arguments version of XtCreateManagedWidget for creat-
ing the Text widget so that we can specify both the widget type XawAsciiString and the
initial text by setting the type and string properties:

text = XtVaCreateManagedWidget(“text”, asciiTextWidgetClass, paned,
XtNtype, XawAsciiString,
XtNstring, initial_text,
NULL);

Here, we used paned as the Parent widget, not the Top-Level widget. Also, for creating a
Command widget labeled “erase”, we could have used the normal version of
XtCreateManagedWidget because we are not setting any properties. However, here is an
example of calling the version that supports a variable number of arguments (using the
paned as the parent):

erase = XtVaCreateManagedWidget(“erase”, commandWidgetClass, paned,
NULL);

In a similar way, we define the display and erase widgets, then set the Callback func-
tions for all three Command Button widgets. We use paned as the parent, not the Top-
Level widget:

display = XtVaCreateManagedWidget(“display”, commandWidgetClass, paned,
NULL);

quit = XtVaCreateManagedWidget(“quit”, commandWidgetClass, paned,
NULL);

Programming the User Interface

PART IV
488

3472316072 CH29 7/26/99 1:35 PM Page 488

XtAddCallback(erase, XtNcallback,
do_erase_text_widget, (XtPointer) text);

XtAddCallback(display, XtNcallback, do_display_widget_text,
(XtPointer) text);

XtAddCallback(quit, XtNcallback, do_quit, (XtPointer) text);

Finally, as in the previous examples, we make all of the widgets visible on the X server
and enter the main event loop:

XtRealizeWidget(top_level);
XtAppMainLoop(application_context);

Figure 29.4 shows an X window containing the text.c example program.

Using Athena and Motif Widgets

CHAPTER 29
489

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

FIGURE 29.4
Running the
text.c example
program in the
KDE desktop.

You can build and run this test program by changing the directory to src/X/Athena and
typing:

make
text

The Athena Simple Menu Widget
The example program for this section is menu.c, which is located in the src/X/Athena
directory. There are three Athena widgets used together to make simple menus:

Widget Description

MenuButton Implements a Menu Button widget that manages the sim-
ple menu popup shell.

SimpleMenu Popup shell and container for menu elements.

Sme Simple menu elements that are added to a simple menu.

3472316072 CH29 7/26/99 1:35 PM Page 489

The following include files define these widget types:

#include <X11/Xaw/MenuButton.h>
#include <X11/Xaw/SimpleMenu.h>
#include <X11/Xaw/Sme.h>
#include <X11/Xaw/SmeBSB.h>

Each menu element that is added to a simple menu can have its own unique Callback
function to execute the appropriate menu action. In the menu.c example, we use a single
Callback function do_menu_selection that uses the menu element name to determine
which menu element was selected by a user. The example program menu.c has one menu
element labeled “Exit program”. Because we want to clean up any X resources and data
used before exiting the program, we make the application context a global variable so
that it can be used in the Callback function:

XtAppContext application_context;

void do_menu_selection(Widget item_selected, XtPointer unused1,
XtPointer unused2) {

char * name = XtName(item_selected);
printf(“Menu item `%s’ has been selected.\n”, name);
if (strcmp(name, “Exit program”) == 0) {
XtDestroyApplicationContext(application_context);
exit(0);

}
}

The XtName macro returns the name field from a widget. This name can be used to deter-
mine which menu element a user selects while running the example program. Although
we usually use our .Xdefaults file to customize X application resources, the following
data in the menu.c example program is used to define default (or “fallback”) resources:

String fallback_resources[] = {
“*menuButton.label: This is a menubutton label”,
“*menu.label: Sample menu label”,
NULL,

};

This data is allocated as global in the example program; it could also have been defined
in the main function. We do define the menu item labels in the main function:

char * menu_item_names[] = {
“Menu item1”, “Menu item2”, “Menu item3”,
“Menu item4”, “Exit program”,

};

It is fine to allocate widget data in the main function. However, you must be careful: if
you use a separate “setup” function called from function main, make sure you declare
any widget setup data as static so its memory allocation does not get lost when the

Programming the User Interface

PART IV
490

3472316072 CH29 7/26/99 1:35 PM Page 490

program exits the function. (Remember, non-static data in a function is allocated on a
call stack; this storage “goes away” after exiting the function.) We have defined four
variables for storing the values of widgets created in the menu.c example program:

Widget top_level, menu_button, menu, menu_element;

The variable menu_element is reused for each menu element (for example, a Sme widget)
created and added to the simple menu. As we have seen in previous examples, we need
to create the application’s widgets:

top_level = XtVaAppInitialize(&application_context,
“textmenu”, NULL, 0,
&argc, argv, fallback_resources,
NULL);

menu_button = XtCreateManagedWidget(“menuButton”,
menuButtonWidgetClass,
top_level, NULL, 0);

menu = XtCreatePopupShell(“menu”, simpleMenuWidgetClass, menu_button,
NULL, 0);

We now loop over each menu element name, creating a new Sme widget and adding it to
the simple menu. We also assign our Callback function to each menu element:

for (i = 0; i < (int)XtNumber(menu_item_names) ; i++) {
menu_element = XtCreateManagedWidget(menu_item_names[i],

smeBSBObjectClass,
menu, NULL, 0);

XtAddCallback(menu_element, XtNcallback, do_menu_selection, NULL);

}

Here, the macro XtNumber provides the number of non-NULL strings defined in the array
menu_item_names. The Parent widget of each menu element is set to the variable menu
(our simple menu widget). You can run the menu.c example by changing to the
src/X/Athena directory and typing:

make
menu

Using Motif Widgets
I developed and tested the programs in this chapter using the freely available LessTif
Motif clone (see www.lesstif.org) and the commercial Metro Link Motif product (see
www.metrolink.com). I would like to thank Metro Link for providing me with a copy of
their commercial Motif for Linux product. We will use three example programs in this
section (they are in the src/X/Motif directory):

Using Athena and Motif Widgets

CHAPTER 29
491

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 491

Program Description

label.c Introduces Motif.

list.c Shows how to handle events.

text.c Combines a panel container with Text and Command Button
widgets.

Much of what we learned about using Athena widgets also will be useful for Motif pro-
grams. Probably the biggest difference in using Motif lies in using Motif Strings instead
of 8-bits-per-character C strings. Another difference lies in the naming and definition of
widget resources. Athena widget header files define new resource types for the widget
defined in the header file. The names for Motif widget resources are defined in the
include file XmStrDefs.h. The following are some example Motif resource names:

#define XmNalignment “alignment”
#define XmNallowOverlap “allowOverlap”
#define XmNallowResize “allowResize”
#define XmNclientData “clientData”
#define XmNclipWindow “clipWindow”
#define XmNcolumns “columns”
#define XmNcommand “command”
#define XmNdirListItemCount “dirListItemCount”
#define XmNdirListItems “dirListItems”
#define XmNeditable “editable”
#define XmNlabelString “labelString”
#define XmNoffsetX “offsetX”
#define XmNoffsetY “offsetY”
#define XmNwidth XtNwidth // define using X toolkit constant
#define XmNheight XtNheight // define using X toolkit constant

This is just a sample of the available resources for Motif widgets. This section of Motif
programming is quite short, so we will cover only a few of the Motif widgets here.

The Motif Label Widget
The example program for this section is found in the file label.c in the directory
src/X/Motif. This example program uses two include files, one for defining the core
definitions for all Motif widgets and one for defining the Motif Label widget:

#include <Xm/Xm.h>
#include <Xm/Label.h>

The function main defines two widgets, one for the Top-Level application widget and one
for the Label widget. Note that we use the same Data Type widget as the one used in the

Programming the User Interface

PART IV
492

3472316072 CH29 7/26/99 1:35 PM Page 492

Athena widget examples. The following code shows the definition of a Motif String, and
an argument variable for setting the label resource for the string:

Widget top_level, label;
XmString motif_string;
Arg arg[1];

Here, we define a Top-Level Application widget. This example differs from the Athena
widget examples because we do not define an application context. We could also
have coded the initialization of the Top-Level widget exactly as we did in all of the
Athena widget examples.

top_level = XtInitialize(argv[0], “test”, NULL, 0, &argc, argv);

We cannot simply use C strings for Motif String resources. Instead, we must construct a
motif string:

motif_string =
XmStringCreateSimple(“Yes! we are testing the Motif Label Widget!”);

Here, we set the labelString resource for the Label widget, and then construct the
Label widget:

XtSetArg(arg[0], XmNlabelString, motif_string);
label = XmCreateLabel(top_level, “label”, arg, 1);
XtManageChild(label);

As we did in the Athena widget examples, we need to make the Top-Level widget visible
and able to manage events:

XtRealizeWidget(top_level);
XtMainLoop();

Here, we use the XtMainLoop X toolkit function to handle events because we did not
define an application context when creating the Top-Level Application widget. The
Athena widget examples used the function XtAppMainLoop(XtAppContext applica-
tion_context) to handle X events. If you need the application context of an application,
you can use the following function, passing any widget in the application as the argu-
ment:

XtAppContext XtWidgetToApplicationContext(Widget w)

Figure 29.5 shows a screen shot of the label.c example program running under the
KDE desktop environment.

Using Athena and Motif Widgets

CHAPTER 29
493

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 493

FIGURE 29.5
The Motif Label
widget example.

Programming the User Interface

PART IV
494

You can build and run this test program by changing the directory to src/X/Motif and
typing:

make
label

The Motif List Widget
The example used in this section is in the file list.c in the directory src/X/Motif. This
example shows how to create a Motif List widget and how to handle callbacks. This
example uses two include files for the core Motif definitions and the definition of the
List widget:

#include <Xm/Xm.h>
#include <Xm/List.h>

We will need a Callback function for handling user selection events in the List widget:

void do_list_click(Widget widget, caddr_t data1, XtPointer data2) {
char *string;
XmListCallbackStruct *callback = (XmListCallbackStruct *)data2;
XmStringGetLtoR(callback->item, XmSTRING_OS_CHARSET, &string);
printf(“ You chose item %d : %s\n”, callback->item_position, string);
XtFree(string);

}

When this function, do_list_click, is called by the event handlers in XtMainLoop, the
third argument passed is a pointer to a XmListCallbackStruct object. In this example,
we coerce the third argument to the type XmListCallbackStruct * and use the item
field that has the type XmString. The Motif utility function XmStringGetLtoR is used to
convert a Motif String to a C string using the default character set. The function
XmStringGetLtoR allocates storage for the C style string, so we need to use XtFree to
release this storage when we no longer need to use the string.

The function main defines two widgets, an array of three Motif Strings, and an array of
four argument variables:

Widget top_level, list;
XmString motif_strings[3];
Arg arg[4];

We define a Top-Level Application widget with no extra arguments:

top_level = XtInitialize(argv[0], “test”, NULL, 0, &argc, argv);

3472316072 CH29 7/26/99 1:35 PM Page 494

Next, we define values for each element of an array of Motif Strings and use this array
when creating the Motif List widget:

motif_strings[0] = XmStringCreateSimple(“list item at index 0”);
motif_strings[1] = XmStringCreateSimple(“list item at index 1”);
motif_strings[2] = XmStringCreateSimple(“list item at index 2”);

XtSetArg(arg[0], XmNitemCount, 3);
XtSetArg(arg[1], XmNitems, motif_strings);
XtSetArg(arg[2], XmNvisibleItemCount, 3); // all list elements are
➥visible
XtSetArg(arg[3], XmNselectionPolicy, XmSINGLE_SELECT);

list = XmCreateList(top_level, “list”, arg, 4);

We have specified four arguments for creating the List widget:

• The number of list elements

• The data for the list elements

• The number of list elements that should be visible

• That only one list item can be selected at a time

If we allowed multiple list selections, then we would have to re-write the Callback func-
tion do_list_click to handle retrieving multiple selections. After creating the List wid-
get, we specify the Callback function, do_list_click, for the widget, make the List wid-
get and the Top-Level widget visible, and handle X events:

XtAddCallback(list, XmNsingleSelectionCallback,
(XtCallbackProc)do_list_click, NULL);

XtManageChild(list);
XtRealizeWidget(top_level);
XtMainLoop();

Figure 29.6 shows the list.c example program running under the KDE desktop envi-
ronment.

Using Athena and Motif Widgets

CHAPTER 29
495

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETSFIGURE 29.6
The Motif List
widget example.

You can build and run this test program by changing the directory to src/X/Motif and
typing:

make
list

Using Motif widgets is a little more complex than using Athena widgets, but there are, in
general, more options available for Motif widgets. In the last 10 years, I have used

3472316072 CH29 7/26/99 1:35 PM Page 495

Athena and Motif widgets equally, choosing which widget set to use based on the appli-
cation requirements and customer preferences.

The Motif Text Widget
The example program for this section is in the file text.c in the directory src/X/Motif.
This example introduces the use of a panel container to hold other widgets. This example
uses a Text widget and two Push Button widgets. We need only two include files for this
example: one for the core Motif definitions and one to define the Motif Text widget. We
use a Motif utility function to create Motif Push Button widgets and a Paned Window
widget, so we do not need a separate include file to support these widget types:

#include <Xm/Xm.h>
#include <Xm/Text.h>

This example uses two Callback functions—one for each Push Button widget. The first
Callback function is used to display the text of the Text widget:

void do_get_text(Widget widget, caddr_t client_data, caddr_t call_data) {
Widget text = (Widget)client_data;
char *string = XmTextGetString(text);
printf(“The Motif example Text widget contains:\n%s\n”, string);
XtFree(string);

}

This is the first Callback function example in which we use the second argument. When
we bind this Callback function to the “display text” Push Button widget, we specify that
the Text widget should be passed as client data to the Callback function. Looking ahead
in the example code:

Widget text = XmCreateText(pane, “text”, NULL, 0);
Widget display_button = XmCreatePushButton(pane, “Display”, NULL, 0);
XtAddCallback(display_button, XmNactivateCallback,

(XtCallbackProc)do_get_text, text);

Here, the value of the Text widget is specified as the client data for the Callback
function.

The second Callback function is simpler; it simply calls the system function exit to ter-
minate the program:

void do_quit(Widget widget, caddr_t client_data, caddr_t call_data) {
exit(0);

}

The function main defines five widgets to use:

Widget top_level, pane, text, display_button, quit_button;

Programming the User Interface

PART IV
496

3472316072 CH29 7/26/99 1:35 PM Page 496

The pane widget will be added to the Top-Level Application widget. All of the remaining
widgets will be added to pane, which lays out Text and Push Button widgets vertically:

top_level = XtInitialize(argv[0], “test”, NULL, 0, &argc, argv);
pane = XmCreatePanedWindow(top_level, “pane”, NULL, 0);

In this example, we set up values for five resources for the Text widget before creating
the Text widget:

XtSetArg(arg[0], XmNwidth, 400);
XtSetArg(arg[1], XmNheight, 400);
XtSetArg(arg[3], XmNwordWrap, TRUE);
XtSetArg(arg[4], XmNeditMode, XmMULTI_LINE_EDIT);
text = XmCreateText(pane, “text”, arg, 5);

We want to specify the size of the text-editing area. The Panel widget will automatically
adjust its size to the preferred sizes of the widgets that it contains. Setting the width of
the Text widget to 400 pixels effectively makes the Panel widget 400 pixels wide because
the preferred sizes of the two Push Button widgets will be less than 400 pixels wide
unless they are created with very long labels. We specify that the Text widget uses word
wrap so long lines are automatically wrapped to the next line of text.

Here, we define the two push buttons as Child widgets to the pane widget and specify
their Callback functions:

display_button = XmCreatePushButton(pane, “Display”, NULL, 0);
quit_button = XmCreatePushButton(pane, “Quit”, NULL, 0);

XtAddCallback(display_button, XmNactivateCallback,
(XtCallbackProc)do_get_text, text);

XtAddCallback(quit_button, XmNactivateCallback,
(XtCallbackProc)do_quit, NULL);

As we noted before, we pass the value of the Text widget as client data to the Callback
function for the “display text” Push Button widget. In this example, we individually
manage each widget before making the Top-Level widget visible. We then call
XtMainLoop to handle events:

XtManageChild(text);
XtManageChild(display_button);
XtManageChild(quit_button);
XtManageChild(pane);
XtRealizeWidget(top_level);
XtMainLoop();

Figure 29.7 shows a screen shot of the text.c example program running under the KDE
desktop environment.

Using Athena and Motif Widgets

CHAPTER 29
497

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 497

FIGURE 29.7
The Motif Text
widget example.

Programming the User Interface

PART IV
498

You can build and run this test program by changing the directory to src/X/Motif and
typing:

make
text

This example shows the standard structure for most Motif applications: we create a Pane
Window widget that contains all other widgets in the application. This pane widget will
handle resizing Child widgets when the user resizes the main application window. An
alternative is to place Child widgets directly in the Main Application widget and to spec-
ify x-y positions and size of each Child widget.

Writing a Custom Athena Widget
Many X Windows programmers never need to write custom widgets, but the ability to
define new widgets is a powerful technique for encapsulating both application data and
behavior. In this section, we will create an Athena widget named URLWidget, which dis-
plays text from a URL address. Writing new widgets seems like a huge task, but the job
can be made easier by finding the source code to a similar widget and modifying it. For
this example widget, we will start with the Template example widget from the X
Consortium. You will also want to check out their Web site at http://www.x.org.

The source code to the URLWidget and a test program, test.c, is located in the
src/X/URLWidget directory. The original template example, which you will likely want
to use as a starting point for writing your own Athena widgets, is located in the directory
src/X/URLWidget/templates. The URLWidget is a simple widget that fetches the text

3472316072 CH29 7/26/99 1:35 PM Page 498

from a file given a URL Web address, and stores this as a C string in the widget’s private
data. Whenever the widget has to redraw itself, this string is parsed to pull out the indi-
vidual lines, and then drawn in the widget’s drawable area. There are four files used to
implement this widget:

File Description

fetch_url.c Some socket code to connect to a Web server and to
request a file

URL.h The public header file that you include in your program
when you want to create a URLWidget.

URLP.h The private, implementation header file

URL.c The implementation of the URLWidget

I based the files URL.h, URLP.h, and URL.c on the files Template.h, TemplateP.h, and
Template.c that carry the copyright:

/* XConsortium: Template.c,v 1.2 88/10/25 17:40:25 swick Exp $ */
/* Copyright Massachusetts Institute of Technology 1987, 1988 */

The X Consortium, in general, allows free use of their software as long as all copyright
notices are left intact.

Using the fetch_url.c File
The utility for fetching a remote Web document implemented in the file fetch_url.c,
located in the directory src/X/URLWidget, was derived from web_client.c in the direc-
tory src/IPC/SOCKETS. This example program was discussed in Chapter 19. The function
signature for this utility function is:

char * fetch_url(char *url_name);

The following are example uses:

char * mark_home_page1 = fetch_url(“www.markwatson.com”);
char * mark_home_page2 = fetch_url(“http://www.markwatson.com”);
char * mark_home_page3 =

fetch_url(“http://www.markwatson.com/index.html”);

The following discussion of this utility is brief; you may also want to refer to Chapter
19. Web servers, by default, listen to port 80:

int port = 80;

Using Athena and Motif Widgets

CHAPTER 29
499

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 499

The following arrays are used for processing:

Array Description

char * buf = (char *)malloc(50000) Used for the returned data.

char message[256] Used to build a “GET” message to
the Web server.

char host_name[200] Used to construct the proper host
name from the URL.

char file_name[200] Used for the optional file name at
the end of the URL.

char *error_string Used to construct a proper error
message.

This utility function allocates the memory block returned to the caller, but it is the
responsibility of the caller to free this memory. The following code determines the cor-
rect host name and the optional file name at the end of the URL:

char *sp1, *sp2;
sp1 = strstr(url, “http://”);
if (sp1 == NULL) {
sprintf(host_name, “%s”, url);

} else {
sprintf(host_name, “%s”, &(url[7]));

}
printf(“1. host_name=%s\n”, host_name);
sp1 = strstr(host_name, “/”);
if (sp1 == NULL) {
// no file name, so use index.html:
sprintf(file_name, “index.html”);

} else {
sprintf(file_name, “%s”, (char *)(sp1 + 1));
*sp1 = ‘\0’;

}
printf(“2. host_name=%s, file_name=%s\n”, host_name, file_name);

A connection is now made to the remote Web server:

if ((nlp_host = gethostbyname(host_name)) == 0) {
error_string = (char *)malloc(128);
sprintf(error_string, “Error resolving local host\n”);
return error_string;

}
bzero(&pin, sizeof(pin));
pin.sin_family = AF_INET;
pin.sin_addr.s_addr = htonl(INADDR_ANY);
pin.sin_addr.s_addr = ((struct in_addr *)(nlp_host->h_addr))->s_addr;
pin.sin_port = htons(port);

Programming the User Interface

PART IV
500

3472316072 CH29 7/26/99 1:35 PM Page 500

if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
error_string = (char *)malloc(128);
sprintf(error_string, “Error opening socket\n”);
return error_string;

}
if (connect(sd, (void *)&pin, sizeof(pin)) == -1) {
error_string = (char *)malloc(128);
sprintf(error_string, “Error connecting to socket\n”);
return error_string;

}

Then we construct a proper “GET” message for the server and send it:

sprintf(message,”GET /%s HTTP/1.0\n\n”, file_name);
if (send(sd, message, strlen(message), 0) == -1) {
error_string = (char *)malloc(128);
sprintf(error_string, “Error in send\n”);
return error_string;

}

We now wait for a response; the Web server may return data in several separate packets:

count = sum = iter = 0;
while (iter++ < 5) {
count = recv(sd, &(buf[sum]), 50000 - count, 0);
if (count == -1) {
break;

}
sum += count;

}

Finally, we close the socket connection (if the Web server has not already done so) and
return the data from the URL:

close(sd);
return buf;

Using the URL.h File
The file URL.h is the public header file for the URLWidget widget. It is derived from the
Template.h file from the X Consortium. This file defines resource names for the widget:

#define XtNURLResource “urlResource”
#define XtCURLResource “URLResource”

For example, we will see later (in the test program test.c) how to set the URLResource
property of the URLWidget:

XtSetArg(args[2], XtNURLResource, “www.knowledgebooks.com”);

Using Athena and Motif Widgets

CHAPTER 29
501

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 501

The following struct definition is used for implementing the URLWidget widget:

typedef struct _URLRec* URLWidget;

The following declaration is used to define the widget class variable actually used to
construct a URLWidget widget:

extern WidgetClass urlWidgetClass;

For example, from the test.c program:

Widget url = XtCreateManagedWidget(“url”, urlWidgetClass,
top_level, args, 3);

Using the URLP.h File
The ULRP.h file serves as the private header file for the URLWidget widget. It is derived
from the TemplateP.h example file from the X Consortium. The private header file
requires the definitions from the public header file and the core widget definition header
file:

#include “URL.h”
#include <X11/CoreP.h>

We need to define a unique representation type that is not already in the X11
StringDefs.h file:

#define XtRURLResource “URLResource”

Every widget has core and class data. Here we must define the class part data structure
even though this widget does not require any class data:

typedef struct {
int empty;

} URLClassPart;

The following definition defines the class record, comprising the core (default) data and
the data for this class:

typedef struct _URLClassRec {
CoreClassPart core_class;
URLClassPart URL_class;

} URLClassRec;

The following external symbol definition will be defined in the URL.c file:

extern URLClassRec urlClassRec;

Programming the User Interface

PART IV
502

3472316072 CH29 7/26/99 1:35 PM Page 502

The following structure defines the resources specific to this widget type:

typedef struct {
/* resources */
char* name;
/* private state */
char *data;
GC gc;

} URLPart;

The URLPart struct private state data will be initialized in the Initialize function in
URL.c and used in the Redraw function. The resource data name will be set whenever the
XtNURLResource resource is set. The following structure contains the URLPart data:

typedef struct _URLRec {
CorePart core;
URLPart url;

} URLRec;

As we will see in the next section, the Initialize and ReDraw functions are passed a
URLWidget object and they refer to the URLPart data through this widget pointer:

static void Initialize(URLWidget request, URLWidget new) {
new->url.data = fetch_url(new->url.name);

}
static void ReDraw(URLWidget w, XEvent *event, Region region) {

XDrawString(XtDisplay(w), XtWindow(w), w->url.gc, 10, y,
“test”, strlen(“test”));

}

Using the URL.c File
The file URL.c contains the implementation of the URLWidget widget and is derived from
the example file Template.c from the X Consortium. This implementation requires sev-
eral header files, most notably the private header file for the URLWidget class:

#include <X11/IntrinsicP.h>
#include <X11/StringDefs.h>
#include “URLP.h”

As per the Template.c example, we need to define the resource definition so that pro-
grams can use the XtNURLResource type:

static XtResource resources[] = {
#define offset(field) XtOffset(URLWidget, url.field)
/* {name, class, type, size, offset, default_type, default_addr}, */
{ XtNURLResource, XtCURLResource, XtRURLResource, sizeof(char*),
offset(name), XtRString, “default” },

#undef offset
};

Using Athena and Motif Widgets

CHAPTER 29
503

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 503

This definition will allow the implementation of the URLWidget class to correctly modify
the XtNURLResource resource. The following definition was copied from the Template.c
example, with the fields changed for binding the functions Initialize and ReDraw that
are defined in this file:

URLClassRec urlClassRec = {
{ /* core fields */
/* superclass */ (WidgetClass) &widgetClassRec,
/* class_name */ “URL”,
/* widget_size */ sizeof(URLRec),
/* class_initialize */ NULL,
/* class_part_initialize */ NULL,
/* class_inited */ FALSE,
/* initialize */ Initialize, // CHANGED
/* initialize_hook */ NULL,
/* realize */ XtInheritRealize,
/* actions */ NULL, // actions,
/* num_actions */ 0, // XtNumber(actions),
/* resources */ resources,
/* num_resources */ XtNumber(resources),
/* xrm_class */ NULLQUARK,
/* compress_motion */ TRUE,
/* compress_exposure */ TRUE,
/* compress_enterleave */ TRUE,
/* visible_interest */ FALSE,
/* destroy */ NULL,
/* resize */ NULL,
/* expose */ ReDraw, // CHANGED
/* set_values */ NULL,
/* set_values_hook */ NULL,
/* set_values_almost */ XtInheritSetValuesAlmost,
/* get_values_hook */ NULL,
/* accept_focus */ NULL,
/* version */ XtVersion,
/* callback_private */ NULL,
/* tm_table */ NULL, // translations,
/* query_geometry */ XtInheritQueryGeometry,
/* display_accelerator */ XtInheritDisplayAccelerator,
/* extension */ NULL

},
{ /* url fields */
/* empty */ 0

}
};

Programming the User Interface

PART IV
504

3472316072 CH29 7/26/99 1:35 PM Page 504

The function Initialize is called after the core widget class Initialize function to
perform any setup that is specific to this new URLWidget class:

static void Initialize(URLWidget request, URLWidget new) {
XtGCMask valueMask;
XGCValues values;
printf(“name = %s\n”, new->url.name);
// Get the URL data here:
new->url.data = fetch_url(new->url.name);
valueMask = GCForeground | GCBackground;
values.foreground = BlackPixel(XtDisplay(new), 0);
values.background = WhitePixel(XtDisplay(new), 0);
new->url.gc = XtGetGC((Widget)new, valueMask, &values);

}

The function Initialize uses the fetch_url function to get data from a remote Web
server and sets up the graphics context (GC) for this widget. Note that this data is
accessed using the url field of the widget. The clean_text function is a simple function
used to strip control characters out of the text after a line of text is extracted from the
original data from the remote Web server:

static char buf[50000];
static char buf2[50000];
char * clean_text(char *dirty_text) {
int i, count = 0;
int len = strlen(dirty_text);
for (i=0; i<len; i++) {
if (dirty_text[i] > 30) buf2[count++] = dirty_text[i];

}
buf2[count] = 0;
return &(buf2[0]);

}

The ReDraw function is called after widget initialization; it’s called again whenever this
widget is exposed or resized. ReDraw simply takes each line of text that is separated by a
new line character, removes any control characters from this text, and uses XDrawString
to draw the line of text in the correct location in the widget. We also saw the use of
XDrawSTring in Chapter 28. This example does not use font metrics to determine the
height of a line of text; it assumes that a row 12 pixels high is sufficient to hold a line of
text.

static void ReDraw(URLWidget w, XEvent *event, Region region) {
//printf(“in ReDraw, text is:\n%s\n”, w->url.data);
char *sp1, *sp2, *sp3;
int len, y = 20;
sp1 = &(buf[0]);

Using Athena and Motif Widgets

CHAPTER 29
505

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 505

sprintf(sp1, “%s”, w->url.data);
len = strlen(sp1);
while (1) {
sp2 = strstr(sp1, “\n”);
if (sp2 != NULL) {
// keep going...
*sp2 = ‘\0’;
sp3 = clean_text(sp1);
XDrawString(XtDisplay(w), XtWindow(w), w->url.gc, 10, y,

sp3, strlen(sp3));
y += 12;
sp1 = sp2 + 1;

} else {
// time to stop...
sp3 = clean_text(sp1);
XDrawString(XtDisplay(w), XtWindow(w), w->url.gc, 10, y,

sp3, strlen(sp3));
break;

}
// check to avoid running past data:
if (sp1 >= &(buf[0]) + len) break;

}
}

The implementation of the URLWidget is actually very simple. Most of the work lies in
following the strict X toolkit protocol for writing widgets. In principle, the URLWidget
can be used in any X application, including applications using Motif widgets.

Testing the URLWidget
If you have not already done so, you should compile and run the test.c program by
changing the directory to src/X/URLWidget and typing:

make
./test

You must type ./test instead of test to avoid running the system utility “test” that
checks file types. This test program is simple. Using a widget should be much easier than
writing the code to implement it. We start by including both the standard X11 header
files and the public URLWidget header file:

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include “URL.h”

The function main defines two widgets (top_level and url)and creates the top_level
widget:

Widget top_level, url;
top_level = XtInitialize(argv[0], “urltest”, NULL, 0, &argc, argv);

Programming the User Interface

PART IV
506

3472316072 CH29 7/26/99 1:35 PM Page 506

We need to set the width, height, and URLResource resources for the url widget before
creating the url widget:

Arg args[3];
XtSetArg(args[0], XtNwidth, 520);
XtSetArg(args[1], XtNheight, 580);
XtSetArg(args[2], XtNURLResource, “www.knowledgebooks.com”);
url = XtCreateManagedWidget(“url”, urlWidgetClass, top_level, args, 3);

Finally, we realize the Top-Level widget and handle X events:

XtRealizeWidget(top_level);
XtMainLoop();

Figure 29.8 shows a the test.c program running.

Using Athena and Motif Widgets

CHAPTER 29
507

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

FIGURE 29.8
Testing URLWidget.

Using Both Athena and Motif in
C++ Programs
When I first started programming in C++ in the late 1980s, I also learned X Windows
programming at roughly the same time. The bad news back then was that the X toolkit
and the Athena widgets were not very “C++ friendly,” so I spent a great deal of time
combining Widgets with C++ programs. Well, the good news now is that the X11

3472316072 CH29 7/26/99 1:35 PM Page 507

libraries, header files, and so on work effortlessly with the C++ language. If you look in
the directory src/X/list_C++, you will see two source files:

athena.cpp—this is the src/X/Athena/list.c example renamed

motif.cpp—this is the src/X/Motif/list.c example renamed

Except for one compiler warning about printf, these examples compile with the C++
compiler and run fine. Try this yourself; change the directory to src/X/list_C++ and
type:

make
athena
motif

Because a C++ compiler provides better compile-time error checking than a C compiler,
I recommend using C++ instead of C even if you are not using the object-oriented fea-
tures of C++ (for example, no class definitions).

Using a C++ Class Library for
Athena Widgets
In this section, we will learn about a very simple C++ library that encapsulates the fol-
lowing Athena widgets:

Widget Description

Paned Wrapped in the C++ class

PanedWindow (which also generates a Top-Level Application widget).

Label Wrapped in the C++ class Label.

Command Button Wrapped in the C++ class Button.

AsciiText Wrapped in the C++ class Text.

As some motivation for this exercise, I will first show a simple test program that contains
absolutely no (obvious) X Windows code. The example program, test_it.cpp, is locat-
ed in the directory src/X/C++ and is listed below.

iostream.h defines standard C++ I/O. The include files PanedWindow.h, Label.h,
Button.h, and Text.h define our C++ classes that wrap the corresponding Athena
widgets:

#include <iostream.h>
#include “PaneWindow.hxx”

Programming the User Interface

PART IV
508

3472316072 CH29 7/26/99 1:35 PM Page 508

#include “Label.hxx”
#include “Button.hxx”
#include “Text.hxx”

We will create one each of these C++ objects. The button will have a Callback function
that prints the content of the text object. We make the Text object global so that the
button_cb Callback function can access it:

Text *text;

The button_cb Callback function uses the public getText method of the Text class to
print whatever text has been typed into the text object:

void button_cb() {
cout << “Text is:\n” << text->getText() << “\n”;

}

The function main is very simple. We construct one instance each of our wrapper classes,
use the PaneWindow class’s public addComponent method to add the Label, Button and
Text objects to the paned window object, and then call the PaneWindow class’s public run
method to handle events. Note that the constructor for the Button class takes a C func-
tion as the second argument; this function will be called whenever the button is clicked
with the mouse pointer.

void main() {
PaneWindow pw;
Label label(“this is a test”);
Button button(“Get text”, button_cb);
text = new Text(300, 120);
pw.addComponent(&label);
pw.addComponent(&button);
pw.addComponent(text);
pw.run();

}

Figure 29.9 shows the example program test_it.cpp running.

Using Athena and Motif Widgets

CHAPTER 29
509

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETSFIGURE 29.9
Testing the C++
class library for
wrapping Athena
widgets.

3472316072 CH29 7/26/99 1:35 PM Page 509

The PaneWindow class does most of the work in this class library. This class is responsi-
ble for the behavior of adding sub-components and handling X events. The classes
Label, Button, and Text are all derived from a base class Component that has one impor-
tant virtual method, setup. I designed the class library in this way so that the
PaneWindow class can simply keep an array of pointers to instances of classes derived
from class Component. The public run method of class PanedWindow creates all of the
contained widgets by calling the method setup for each component that has been added
to a paned window object. The method run then internally handles all X events.

The implementation of this class library is simple, and you should find it easy to add to
this library other widgets for your applications. The only complication involves handling
C language Callback functions. We will soon see how this is done in the implementation
of the Button class.

The Component Class
The Component class is the base class for the Label, Button, and Text classes. If you
want to wrap additional widgets in a C++ class and add them to this library, your new
classes should also be derived from the Component class. The header file for this class is
fairly simple. As is typical of header files, the entire contents of the Component.hxx file
is “wrapped” in a #ifndef statement:

#ifndef Component__hxx
#define Component__hxx

This #ifdef assures us that this file will not be included twice in any compiled code. We
also need the standard X toolkit include file for the definition of the type of Top-Level
Application widget:

#include <X11/Intrinsic.h>

The class definition is simple. The constructor for this class does almost nothing, and the
virtual method setup must always be overridden in derived classes because it is a “pure
virtual” function—the method is set to zero. The public getWidget method simply
returns the values of the private variable my_widget.

class Component {
public:
Component();
virtual void setup(Widget parent) = 0;
Widget getWidget() { return my_widget; }

protected:
Widget my_widget;

};

Programming the User Interface

PART IV
510

3472316072 CH29 7/26/99 1:35 PM Page 510

The implementation of the Component class in the file Component.cxx is also simple:

// Component.cpp
//

#include <X11/Intrinsic.h>
#include “Component.hxx”

Component::Component() {
my_widget = (Widget)NULL;

}

The class constructor for Component sets the private variable my_widget to a NULL
value, which is not strictly necessary.

The PanedWindow Class
It was important to see the definition of the Component class before the PaneWindow class
because a pane window object maintains an array of pointers to objects derived from the
Component class. The header file for this class is PaneWindow.h, where we need four
include file:

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xaw/Paned.h>
#include “Component.hxx”

The first three include files are required for X Windows definitions- and the fourth is the
header file for the Component class. The PaneWindow class has three public methods:

Method Description

PaneWindow Class constructor.

addComponent(Component * comp) Adds other components to the paned
window.

run() Creates all the contained components and
handles events.

The private data for the class PaneWindow contains X Windows-specific data that users of
this class library can ignore. There is also private data to store up to 10 pointers to
objects belonging to any class derived from the Component class.

class PaneWindow {
public:
PaneWindow();

Using Athena and Motif Widgets

CHAPTER 29
511

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 511

void addComponent(Component * comp);
void run();

private:
Widget top_level;
Widget pane;
Component * components[10];
int num_components;
XtAppContext application_context;

};

The implementation of the PaneWindow class, in the file PaneWindow.cxx, requires three
include files; the first two are X-related and the third is the class definition header file:

#include <X11/Intrinsic.h>
#include <X11/Xaw/Paned.h>
#include “PaneWindow.hxx”

The following X resources are defined for the components that might be added to a
paned window:

static String app_resources[] = {
“*Text*editType: edit”,
“*Text*autoFill: on”,
“*Text*scrollVertical: whenNeeded”,
“*Text*scrollHorizontal: whenNeeded”,
“*Text*preferredPaneSize: 300”,
NULL,

};

If you create new subclasses of Component to encapsulate other types of widgets, you
might want to add default resources for those widget types to the app_resources array.
The PaneWindow class constructor creates a Top-Level Application widget and an Athena
Paned widget:

PaneWindow::PaneWindow() {
int argc = 0;
char ** argv = NULL;
top_level = XtAppInitialize(&application_context, “top_level”, NULL, 0,

&argc, argv, app_resources,
NULL, 0);

num_components = 0;
pane = XtVaCreateManagedWidget(“paned”, panedWidgetClass,

top_level, NULL);

}

Programming the User Interface

PART IV
512

3472316072 CH29 7/26/99 1:35 PM Page 512

The method run creates components that have been added to the PaneWindow object and
then handles X events. The class variable num_components is a counter for the number of
components added to this object using the addComponent method:

void PaneWindow::run() {
// Start by adding all registered components:
for (int i=0; i<num_components; i++) {
components[i]->setup(pane);
XtManageChild(components[i]->getWidget());

}
XtRealizeWidget(top_level);
XtAppMainLoop(application_context);

}

The method addComponent is used to add components to a PaneWindow object:

void PaneWindow::addComponent(Component * comp) {
components[num_components++] = comp;

}

The Label Class
The Label class is derived from the class Component. The class header file Label.hxx
requires only one header file, which is the definition file for its base class:

#include “Component.hxx”

The class definition is simple. The constructor takes three arguments and the class has
private data so that the setup method can properly create the label when it is called from
the PaneWindow object’s run method:

class Label : public Component {
public:
Label(char * label = “test label”, int width=100, int height=20);
void setup(Widget parent);

private:
char * my_label;
int my_width;
int my_height;

};

The implementation for this class is also straight forward. The file Label.cxx requires
four include files, three of which are X Windows-specific and one defines the Label
class:

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xaw/Label.h>
#include “Label.hxx”

Using Athena and Motif Widgets

CHAPTER 29
513

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 513

The class constructor simply stores its three arguments for later use by the setup
method:

Label::Label(char *label, int width, int height) {
my_label = label;
my_width = width;
my_height = height;

}

The method setup is called by the method run of a PaneWindow object; setup is called
with the Athena Paned widget created in the constructor of the PaneWindow object. All
component widgets added will therefore have the Athena Paned widget as a common
parent:

void Label::setup(Widget parent) {
Arg args[2];
XtSetArg(args[0], XtNwidth, my_width);
XtSetArg(args[1], XtNheight, my_height);
my_widget = XtCreateManagedWidget(my_label, labelWidgetClass, parent,

args, 2);
}

The Button Class
The Button class is much more interesting than the Label class because it has to handle
Callback functions. The header file Button.hxx needs two include files: one for the
Athena Command widget and one for the definition of the Component C++ class:

#include <X11/Xaw/Command.h>
#include “Component.hxx”

The header file defines the type of the Callback function as a function pointer to a func-
tion with no arguments and that has no return value:

typedef void (*button_callback)(void);

The class definition is:

class Button : public Component {
public:
Button(char * label = “test label”, button_callback cb = 0,

int width=130, int height=30);
void setup(Widget parent);
button_callback my_cb;

private:
char * my_label;
int my_width;
int my_height;

};

Programming the User Interface

PART IV
514

3472316072 CH29 7/26/99 1:35 PM Page 514

The class implementation file Button.cxx requires four include files: three for X
Windows and one that defines the C++ Button class:

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xaw/Command.h>
#include “Button.hxx”

All instances of the Button class use one static C Callback function. This function is
passed a pointer to a Button object, so that the button object’s Callback function can be
called. This allows multiple instances of the Button class with different Callback func-
tions to function correctly in a single program:

static void callback(Widget w, caddr_t data1, caddr_t data2) {
Button * b = (Button *)data1;
if (b != 0) b->my_cb();

}

The class constructor stores the values of its four arguments in private data:

Button::Button(char *label, button_callback cb,
int width, int height) {

my_label = label;
my_width = width;
my_height = height;
my_cb = cb;

}

The setup method creates the button’s widget and sets up the Callback function that is
shared by all instances of this class:

void Button::setup(Widget parent) {
Arg args[2];
XtSetArg(args[0], XtNwidth, my_width);
XtSetArg(args[1], XtNheight, my_height);
my_widget = XtCreateManagedWidget(my_label, commandWidgetClass, parent,

args, 2);
XtAddCallback(getWidget(), XtNcallback, callback, (XtPointer) this);

}

The Text Class
The Text class wraps (or encapsulates) the Athena AsciiText Top-Level Application
widget. The class implementation file Text.hxx requires two include files: one for the
standard X Windows definitions and one for the C++ Component class definition:

#include <X11/Intrinsic.h>
#include “Component.hxx”

Using Athena and Motif Widgets

CHAPTER 29
515

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 515

The class definition defines four public methods:

Method Description

Text(int width, int height) Class constructor.

setup(Widget parent) Creates the Text widget.

char *getText() Gets the text from the Text widget.

eraseText() Erases all text in the Text widget.

The class defines private data to store the two arguments for the class constructor.

class Text : public Component {
public:
Text(int width=130, int height=30);
void setup(Widget parent);
char *getText();
void eraseText();

private:
int my_width;
int my_height;

};

The implementation, in file Text.cxx, is fairly simple. Four include files are required:
three for X Windows and one to define the C++ Text class:

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xaw/AsciiText.h>
#include “Text.hxx”

The class constructor stores its two arguments in private data for later use by the setup
method:

Text::Text(int width, int height) {
my_width = width;
my_height = height;

}

The setup method creates the Athena AsciiText Top-Level Application widget:

void Text::setup(Widget parent) {
Arg args[2];
XtSetArg(args[0], XtNwidth, my_width);
XtSetArg(args[1], XtNheight, my_height);
my_widget = XtVaCreateManagedWidget(“text”, asciiTextWidgetClass,

parent,XtNtype,XawAsciiString,
XtNstring, “ “,
args, 2, NULL);

}

Programming the User Interface

PART IV
516

3472316072 CH29 7/26/99 1:35 PM Page 516

The getText method returns the text that the user has typed into the Athena AsciiText
Top-Level Application widget. The X toolkit function XtVaGetValues is used to get the
address of the string data for the text that has been typed into the widget:

char * Text::getText() {
Widget w = getWidget();
String str;
XtVaGetValues(w,

XtNstring, &str,
NULL);

return str;
}

The eraseText method removes any text from the Athena AsciiText Top-Level
Application widget. The XtVaSetValues X toolkit function changes the values of one or
more resources for a widget. Here, we could have alternatively used the X toolkit func-
tion XtSetValues.

void Text::eraseText() {
Widget w = getWidget();
XtVaSetValues(w,

XtNstring, “”,
NULL);

}

The simple C++ class library that we developed in this section should provide you with
the techniques required to wrap other widget types in C++ class libraries.

Summary
We have seen how to use both Athena and Motif widgets in this chapter. Both widget
sets offer advantages. Athena Widgets are always available for free to X Window pro-
grammers, while Motif is a licensed software product. The LessTif libraries are a free
implementation of Motif. We also examined the techniques for using the C++ language
for writing both Athena and Motif based programs.

Using Athena and Motif Widgets

CHAPTER 29
517

29

U
SIN

G
A

TH
EN

A
A

N
D

M
O

TIF
W

ID
G

ETS

3472316072 CH29 7/26/99 1:35 PM Page 517

518

3472316072 CH29 7/26/99 1:35 PM Page 518

IN THIS CHAPTER

• Introduction to GTK 521

• A GTK Program for Displaying
XML Files 528

• A GUI Program using the Notebook
Widget 537

30
C

H
A

PT
ER

GUI Programming
Using GTK

by Mark Watson

3572316072 CH30 7/26/99 2:11 PM Page 519

The Gimp Tool Kit (GTK) is widely used for writing X Windows applications on Linux
and other versions of Unix. In order to help maintain both portability and software main-
tenance, GTK is built on top of two other libraries that you may want to use indepen-
dently of GTK:

Library Description

GLib Supplies C libraries for linked lists, hash tables, string utilities, and
so on.

GDK A library that is layered on Xlib. All GTK windowing and graphics
calls are made through GDK, not directly to XLib.

GTK has its own Web site (www.gtk.org) where you can download the latest version of
GTK and read a very good GTK tutorial by Ian Main and Tony Gale. In this chapter, we
will introduce GTK and write a short GTK application that displays the tree structure of
any XML document. XML, or the Extended Markup Language, is a new standard for
storing and transporting data, so this short example program should prove useful.
Although the material in this chapter is “self-sufficient,” read the GTK tutorial at
www.gtk.org.

The GTK is an easy-to-use, high-level toolkit for writing GUI applications. GTK was
written to support the GIMP graphics-editing program. GTK was originally written by
Peter Mattis, Spencer Kimball, and Josh MacDonald.

The GTK toolkit contains a rich set of data types and utility functions. A complete
description GTK is beyond the scope of this short introductory chapter. Still, reading this
chapter will get you started. For more information, consult the online tutorial and exam-
ple programs included in the examples directory in the standard GTK distribution.

All of the GTK library code and the example code contains the following copyright. In
the example programs in this chapter, I copied the style (for example, variable naming
conventions) and occasional lines of code, so I consider all of the examples in this chap-
ter to be derivative and therefore also subject to the following copyright notice:

/* GTK - The GIMP Toolkit
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh
MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Programming the User Interface

PART IV
520

3572316072 CH30 7/26/99 2:11 PM Page 520

* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/

Introduction to GTK
We used the Athena and Motif widgets in Chapter 29. GTK has its own type of widget;
the C data structure for this type is called GtkWidget. Windows and any display compo-
nents created using GTK can all be referenced using a variable of type GtkWidget.
Although GTK is written in C, GTK has a strong object-oriented flavor. A GtkWidget
object encapsulates data, maintains references to Callback functions, and so on.

The definition (in gtkwidget.h) of the GtkWidget data type is as follows:

struct _GtkWidget
{
GtkObject object; // core GTK object definition
guint16 private_flags; // private storage
guint8 state; // one of 5 allowed widget states
guint8 saved_state; // previous widget state
gchar *name; // widget’s name
GtkStyle *style; // style definition
GtkRequisition requisition; // requested widget size
GtkAllocation allocation; // actual widget size
GdkWindow *window; // top-level window
GtkWidget *parent; // parent widget

};

GTK widgets “inherit” from GtkWidget by defining a GtkWidget object as the first item
in their own structure definition. For example, A GtkLabel widget is defined using a
GtkMisc structure, adding data for the label text, width, type, and a flag to indicate if
word-wrap is allowed, as shown in the following:

struct _GtkLabel {
GtkMisc misc;
gchar *label;
GdkWChar *label_wc;
gchar *pattern;
GtkLabelWord *words;
guint max_width : 16;
guint jtype : 2;
gboolean wrap;

};

GUI Programming Using GTK

CHAPTER 30
521

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

3572316072 CH30 7/26/99 2:11 PM Page 521

The GtkMisc structure definition starts with a GtkWidget structure, adding alignment and
padding information, as shown in the following:

struct _GtkMisc {
GtkWidget widget;
gfloat xalign;
gfloat yalign;
guint16 xpad;
guint16 ypad;

};

The important thing to notice here is that although the structure of a GtkLabel
GtkWidget is built with the following nested structures, the GtkWidget structure data is at
the very beginning of the memory allocated for the GtkLabel widget:

GtkLabel
GtkMisc
GtkWidget
GtkObject

A pointer to any type of GtkWidget can be safely coerced to the type (GtkWidget *) and
the fields in the GtkWidget structure can be directly accessed. So, even though GTK is
implemented in the C programming language and does not support private data, it has an
object-oriented flavor.

Handling Events in GTK
In Chapter 29 you learned that, for Athena and Motif widget programming, the main
tasks for writing GUI applications involve creating widgets and writing code to handle
events in Callback functions. GTK also uses Callback functions to process events in pro-
grams, but in GTK they are referred to as “signal-handlers.” The techniques will appear
quite similar to the X Windows programming examples in Chapter 28 and Chapter 29.
The method signature for GTK Callback functions, or signal-handlers, is defined in the
file gtkwidget.h as the following:

typedef void (*GtkCallback) (GtkWidget *widget,
gpointer data);

We saw the definition of a GtkWidget in the last section. A gpointer is an abstract point-
er that can reference any type of data.

As we will see in the example in the next section, the GTK function gtk_main() handles
all events that are registered using the gtk_signal_connect function to bind events with
GTK widgets; the method signature (defined in file gtksignal.h) is as follows:

guint gtk_signal_connect(GtkObject *object,
const gchar *name,
GtkSignalFunc func,
gpointer func_data);

Programming the User Interface

PART IV
522

3572316072 CH30 7/26/99 2:11 PM Page 522

There are about 34 separate functions defined in gtksignal.h for registering and unreg-
istering signal-handlers; however, gtk_signal_connect will suffice for the examples in
this chapter. The function signature for gtk_signal_connect is as follows:

guint gtk_signal_connect(GtkObject *object,
const gchar *name,
GtkSignalFunc func,
gpointer func_data);

The first argument is a pointer to a GtkObject. In practice, however, you pass the address
of a GtkWidget object. A GtkWidget contains a GtkObject at the beginning of its struc-
ture definition, so it is always safe to coerce a GtkWidget pointer to point to a
GtkObject. The second argument to gtk_signal_connect is the name of the event type;
here are the most commonly used GTK event-type names:

GTK Event Types Description

clicked Used for button widgets.

destroy Used for window widgets.

value_changed Used for any type of GtkObject.

toggled Used for any type of GtkObject.

activate Used for any type of GtkObject.

button_press_event Used for any type of widget.

select_row Used for clist list widgets.

select_child Used for Tree widgets.

unselect_child Used for Tree widgets.

select Used for item widgets (that, for example, might be added
to a tree widget).

deselect Used for item widgets.

expose_event Occurs when a widget is first created of uncovered.

configure_event Occurs when a widget is first created or resized.

A Short Sample Program Using GTK
The simple.c file in the src/GTK directory contains a simple GTK application that
places a single GTK button widget in a window and connects a Callback function—a
signal-handler—to the button to call the local function do_click each time the button is
clicked. This file uses a single include file that is required for all GTK applications:

#include <gtk/gtk.h>

The Callback function do_click is of type GtkCallback and is set to be called whenever
the button widget is clicked. We will see in the definition of main function that the

GUI Programming Using GTK

CHAPTER 30
523

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

3572316072 CH30 7/26/99 2:11 PM Page 523

address of an integer-counter variable is passed as program data for this callback (or sig-
nal-handler) function. Whenever the GTK event-handling code in gtk_main calls this
function, it passes the address of this integer variable as the second argument. The first
thing that we do in function do_click is to coerce this abstract data pointer to the type
(int *). Now the do_click function can change the value of the counter variable that is
declared in the main function. In your GTK programs, you can specify any type of data
for the callback program data.

void do_click(GtkWidget *widget, gpointer data)
{
int * count = (int *) data;
*count += 1;
printf(“Button clicked %d times (5 to quit)\n”, *count);
if (*count > 4) gtk_main_quit();

}

The main function defined in the simple.c file is indeed simple. It uses the following
eight GTK utility functions:

Function Description

gtk_init Passes the program’s command-line arguments to
GTK initialization code. Any arguments
processed as GTK options are removed from the
argument list. A list of available command-line
arguments can be found in the GTK tutorial at
www.gtk.org.

gtk_window_new Creates a new window. This function is usually
used, as it is in this example, to create a Top
Level application window.

gtk_container_border_width This optional function sets the number of pixels
to pad around widgets added to a window.

gtk_button_new_with_label Creates a new button label with a specified label.

gtk_signal_connect We saw in the last section how this function
assigns a Callback function to a widget for a
specified type of event.

gtk_container_add This function is used to add widgets to a window
or any type of container widget.

gtk_widget_show This function makes a widget visible. Child wid-
gets are made visible before parent widgets.

gtk_main Finishes initialization and handles events.

Programming the User Interface

PART IV
524

3572316072 CH30 7/26/99 2:11 PM Page 524

Listing 30.1 shows the main function, with a discussion of the code appearing after the
listing.

Listing 30.1 main FUNCTION FROM simple.c

int main(int argc, char *argv[]){
// Declare variables to reference both a
// window widget and a button widget:
GtkWidget *window, *button;
// Use for demonstrating encapsulation of data (the address
// of this variable will be passed to the button’s callback
// function):
int count = 0;

// Pass command line arguments to the GTK initialization function:
gtk_init(&argc, &argv);

// Create a new top-level window:
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

// Change the default width around widgets from 0 to 5 pixels:
gtk_container_border_width(GTK_CONTAINER(window), 5);

button = gtk_button_new_with_label(“Click to increment counter”);

// Connect the ‘do_click’ C callback function to the button widget.
// We pass in the address of the variable ‘count’ so that the
// callback function can access the value of count without having
// to use global data:
gtk_signal_connect(GTK_OBJECT(button), “clicked”,

GTK_SIGNAL_FUNC(do_click), &count);

// Add the button widget to the window widget:
gtk_container_add(GTK_CONTAINER(window), button);

// Make any widgets added to the window visible before
// making the window itself visible:
gtk_widget_show(button);
gtk_widget_show(window);

// Handle events:
gtk_main();

}

The main function creates two GtkWidget object pointers: window and button. These
widget pointers are used to reference a top-level window and a button widget. In the call

GUI Programming Using GTK

CHAPTER 30
525

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

3572316072 CH30 7/26/99 2:11 PM Page 525

to gtk_signal_connect, we use macros to coerce arguments to the correct type, as
shown in the following:

gtk_signal_connect(GTK_OBJECT(button), “clicked”,
GTK_SIGNAL_FUNC(do_click), &count);

For example, in the file gtktypeutils.h, GTK_SIGNAL_FUNC is defined as the following:

#define GTK_SIGNAL_FUNC(f) ((GtkSignalFunc) f)

Miscellaneous GTK Widgets
We only use two example programs in this chapter, the simple.c example from the last
section, and the XMLviewer.c example developed in the section entitled “A GTK
Program for Displaying XML Files.” As a result, we will use only a few types of GTK
widgets in this chapter, such as the following:

• Window

• Scrolled Window

• Button

• Tree

• Tree Item

All the currently available GTK widgets are documented in the online tutorial at
www.gtk.org; we will list briefly in this section some of the commonly used GTK wid-
gets that are not covered fully in this chapter.

Adjustment widgets are controls that can have their value changed by the user, usually by
using the mouse pointer. Tooltips widgets are small text areas that appear above other
widgets when the mouse hovers over the widget. Dialog widgets are used for both modal
and modeless dialog boxes. Text widgets enable the user to enter and edit a line of text.
File Selection widgets enable a user to select any file.

The CList widget implements a two-dimensional grid. Menus can be easily created in
GTK applications using the menu factory utility functions. Text widgets allow the user to
edit multi-line text forms.

You’re encouraged to build the examples located in the sub-directories of the examples
directory of the GTK distribution. Figure 30.1 shows four of the sample programs:
notebook, dial, file selection, and button. You need only about 10 minutes to build
and run all of the sample programs included with GTK. This time is well spent because
you not only become familiar with the look and feel of the GTK widgets, you can also
look at the short source-code files for each sample program.

Programming the User Interface

PART IV
526

3572316072 CH30 7/26/99 2:11 PM Page 526

FIGURE 30.1
Four sample pro-
grams included
with the standard
GTK distribution.

GUI Programming Using GTK

CHAPTER 30
527

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

GTK Container Widgets
Although there are many types of container widgets in GTK (again, read the online tutor-
ial), we use only one in this chapter: the Scrolled Window widget. A Scrolled Window
widget is used inside a Window widget to provide a virtual display area that is potential-
ly larger than the size of the window. As we will see later in the XMLviewer.c sample
program, the default action of a Scrolled Window widget is to dynamically create scroll-
bars as needed (for example, the window might be resized to a smaller size). Other types
of container widgets include the following:

Container Widget Description

Notebook A set of labeled tabs allows the user to select one of many
viewing areas, or pages, in a single widget.

Paned Window Breaks a window’s area into two separate viewing panes.
The boundary between the panes can be adjusted by the
user.

Tool Bar Contains a row of buttons used for selecting program
options.

If you download and install the current version of GTK from www.gtk.org, you can find
sample programs that use all types of container widgets in the examples directory.

3572316072 CH30 7/26/99 2:11 PM Page 527

A GTK Program for Displaying
XML Files
We develop an interesting sample program in this section that reads an XML file from
standard input, parses it, and displays its tree structure using a GTK Tree widget. The
sample program uses James Clark’s XML parser, which is located in the src/GTK/expat
directory on the CD-ROM. You might find newer versions on James’ Web site
(http://www.jclark.com), where you can also find other useful tools for processing
XML and SGML documents).

The sample program XMLviewer.c is located in the src/GTK directory on the CD-ROM.

A Short Introduction to XML
If you maintain your own Web site, you are probably familiar with HTML (Hypertext
Markup Language)Web. HTML provides tags to indicate the structure of Web docu-
ments. An example HTML file might be as follows:

<HTML>
<TITLE>This is a title</TITLE>
<BODY>

This is some test text
for the page. Cool

</BODY>
</HTML>

HTML provides a fixed number of predefined tags, such as the following:

Tag Description

TITLE To indicate the title of the page.

BODY For text that appears on the page.

B To boldface the text.

From the example, we see that the tag type inside < > characters is the start of the tag
and </ > marks the end of a tag. A Web browser knows how to render legal HTML tags.
The eXtensible Markup Language (XML) looks similar to HTML, but with the following
important differences:

• You can make up new tag types.

• Every opening tag must have a matching closing tag. This is not a requirement
in HTML.

Programming the User Interface

PART IV
528

3572316072 CH30 7/26/99 2:11 PM Page 528

Listing 30.2 shows test.xml, a short example XML file contained in the src/GTK direc-
tory for this chapter.

Listing 30.2 THE test.xml EXAMPLE XML FILE

<?xml version=”1.0”?>
<book>
<title>A test title</title>
<author>
<last_name>Watson</last_name>
<first_name>Mark</first_name>

</author>
<scheme>
(define fff

(lambda (x) (+ x x)))
(define factorial

(lambda (n)
(if (= n 1)
1
(* n (factorial (- n 1))))))

</scheme>
</book>

Here, we use the tags book, title, author, last_name, first_name, and scheme in this
XML document. The first line is a header line to indicate to an XML parser that this file
is XML 1.0-compliant. The test.xml file is a “well-formed” XML file, but it is not
“valid.” A valid XML document is both well-formed and has a Document Type
Definition (DTD) either included in the file or referenced near the beginning of the file.
The discussion of DTDs is outside the scope of our coverage of XML, but you can go to
the following Web sites for more information:

http://www.w3.org/XML/

http://www.software.ibm.com/xml/

Expat, James Clark’s XML Parser
There are freely available XML parsers that are written in many languages (such as, C,
C++, Java, Python, and Perl). In this section, we will look at an XML parser written in C
by James Clark, whose Web site is http://www.jclark.com/xml/expat.html.

You can find this parser on the CD-ROM in the src/GTK/expat directory. We will use
this parser in the next section to write a GTK program to display both the tree structure
and content of XML documents.

GUI Programming Using GTK

CHAPTER 30
529

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

3572316072 CH30 7/26/99 2:11 PM Page 529

The elements.c file in the src/GTK/expat/sample directory shows how the basic parser
is used. Applications using the expat parser define Callback functions that are called
whenever the parser sees a any of the following three elements:

• A tag

• Data inside of a tag

• An ending tag

The parser performs a depth-first search through the tree structure of an XML file, call-
ing the appropriate callback function when each of these element types is encountered.
For example, the elements.c sample program generates the following output on the
test.xml file:

markw@colossus>cat test.xml | elements
tag name: book

tag name: title
tag data: A test title

tag name: author
tag data:

tag name: last_name
tag data: Watson

tag data:
tag name: first_name

tag data: Mark
tag name: scheme

tag data: (define fff
tag data: (lambda (x) (+ x x)))
tag data: (define factorial
tag data: (lambda (n)
tag data: (if (= n 1)
tag data: 1
tag data: (* n (factorial (- n 1))))))

markw@colossus:/home/markw/MyDocs/LinuxBook/src/GTK/expat/sample >

Implementing the GTK XML Display Program
Now that we have looked at a short sample XML file (text.xml in the src/GTK directo-
ry) and seen screenshots of the XMLviewer application in Figure 30.2, we will look at the
implementation of XMLviewer. The XMLviewer.c file is partially derived from James
Clark’s elements.c sample program located in the src/GTK/expat/sample directory on
the CD-ROM. The XMLviewer program requires three include files:

#include <stdio.h>
#include <gtk/gtk.h>
#include “xmlparse.h”

Programming the User Interface

PART IV
530

3572316072 CH30 7/26/99 2:11 PM Page 530

We require stdio.h because we read an XML input file from stdin, which is defined in
stdio.h. All GTK applications need to include gtk.h. The xmlparse.h header file is the
standard header file for using James Clark’s expat XML parser.

The XMLviewer application creates a GTK Tree widget and adds a GTK Tree Element
widget to the tree in the correct place for every XML element (or tag) in the XML file read
from standard input. The GTK Tree widget handles the required events for expanding and
collapsing sub-trees in the application. We do, however, define the item_signal_callback
function as an example for handling mouse-selection events in the tree display. The first
argument to item_signal_callback is a pointer to a GTK Tree Item widgetTree Item
widget and the second argument is the name of the signal. Since we place a GTK label
widget as the child of each Tree Item widgetTree Item widget that is added to the tree dis-
play, the variable label can be set to the address of the label widget for this tree item. The
GTK utility function gtk_label_get is used to get the characters of the label so that they
can be printed. The definition of item_signal_callback is as follows:

static void item_signal_callback(GtkWidget *item, gchar *signame) {
gchar *name;
GtkLabel *label;
label = GTK_LABEL(GTK_BIN(item)->child);
/* Get the text of the label */
gtk_label_get(label, &name);
printf(“signal name=%s, selected item name=%s\n”, signame, name);

}

Next, we define data required to keep track of processing XML elements. This includes a
pointer to the current GTK Tree widget and Tree Item widget.

GtkWidget *tree;
GtkWidget *item;

As the parse processes sub-trees in the XML document, we use the subtree[] array to
store widget pointers:

#define MAX_DEPTH 10
GtkWidget *subtree[MAX_DEPTH];

The following section of code in XMLviewer.c defines the three Callback functions for
the expat parser. We define the following Callback functions:

• handleElementData—This is called with the data contained between opening and
closing tags. For example, when processing the element “<author>Mark
Watson</author>”, the data between the tags is “Mark Watson”.

• startElement—Called with the name of a tag when the tag is first processed.

• endElement—Called with the name of the tag after handleElementData is called.

GUI Programming Using GTK

CHAPTER 30
531

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

3572316072 CH30 7/26/99 2:11 PM Page 531

The function handleElementData is called by the expat parser to process data inside of
tags. The function signature is as follows:

void handleElementData(void *userData, const char * data, int len)

For the purposes of this chapter on GTK, the mechanics of getting access to this data is not
so interesting, but the following code shows how to create new GTK Tree Item widgets:

int *depthPtr = userData;
GtkWidget *subitem;
cp = (char *)malloc(len + 1);
for (i=0; i<len; i++) cp[i] = data[i];
cp[len] = ‘\0’;
subitem = gtk_tree_item_new_with_label(cp);
gtk_tree_append(GTK_TREE(subtree[*depthPtr]), subitem);
gtk_signal_connect(GTK_OBJECT(subitem), “select”,

GTK_SIGNAL_FUNC(item_signal_callback),
“tag data select”);

gtk_signal_connect(GTK_OBJECT(subitem), “deselect”,
GTK_SIGNAL_FUNC(item_signal_callback),
“tag data deselect”);

gtk_widget_show (subitem);

Here, the expat parser passes the address of the character data for the tag; it is necessary
to make a copy of it and use this copy for creating a GTK item widget. The GTK utility
function gtk_tree_item_new_with_label creates a new labeled Tree Item widget. This
newly created GTK Tree Item widget must be added to the GTK Tree widget in the cor-
rect location; this bit of magic is done by the following:

gtk_tree_append(GTK_TREE(subtree[*depthPtr]), subitem);

The expat parser lets us know the depth in the tree that the item widget should be
placed. The array of GtkWidget pointers subtree is filled in the expat Callback function
startElement. The GTK Tree Item widget then has two Callback functions (or signal-
handlers) set for “select” and “deselect” events. Both signals are handled by the func-
tion item_signal_callback that we saw earlier in this section. The last action that the
handleDataElement function takes is to make the newly created GTK Tree Item widget
visible.

The startElement function is called by the expat parser to handle beginning XML tags
(for example, “<author>”). The function signature for startElement is as follows:

void startElement(void *userData, const char *name, const char **atts)

The tag depth is passed in the userData argument. We convert this abstract pointer to a
pointer to an integer to access the current XML tree tag depth:

int *depthPtr = userData;
*depthPtr += 1;

Programming the User Interface

PART IV
532

3572316072 CH30 7/26/99 2:11 PM Page 532

The startElement function performs two tasks based on the current depth of the parse
tree for the XML document. For the topmost tag in the document, we create a new GTK
Tree Item widget and store a pointer to this widget in the item global variable (we will
discuss this code fragment after the following listing):

if (*depthPtr == 1) {
item = gtk_tree_item_new_with_label((char *)name);
gtk_signal_connect(GTK_OBJECT(item), “select”,

GTK_SIGNAL_FUNC(item_signal_callback),
“top-level item select”);

gtk_signal_connect(GTK_OBJECT(item), “deselect”,
GTK_SIGNAL_FUNC(item_signal_callback),

“top-level item deselect”);
// a tree item can hold any number of items; add new item here:
gtk_tree_append(GTK_TREE(tree), item);
gtk_widget_show(item);
// Create this item’s subtree:
subtree[*depthPtr] = gtk_tree_new();
gtk_tree_set_view_mode(GTK_TREE(subtree[*depthPtr]),

GTK_TREE_VIEW_ITEM);
gtk_tree_item_set_subtree(GTK_TREE_ITEM(item), subtree[*depthPtr]);

}

In handling the topmost XML tag, we add the newly created tree item to the GTK tree
using the tree global variable to access the GTK Tree widget. As in the
handleElementData function, we set signal-handler callbacks for “select” and
“deselect” actions. A new GTK Tree widget is created and stored in the subtree array.
Note that the subtree array acts as a stack data structure in this program, with the parse
depth acting as the stack pointer. This new tree is set as the sub-tree of the newly created
GTK Tree Item widget.

If the current parse depth is greater than one (for example, we are not processing the top-
most tag in the document), then the processing is simpler than handling the topmost tag
in the XML document (we will discuss this code fragment after the following listing):

if (*depthPtr > 1) {
GtkWidget *subitem = gtk_tree_item_new_with_label((char *)name);
subtree[*depthPtr] = gtk_tree_new();
gtk_signal_connect(GTK_OBJECT(subitem), “select”,

GTK_SIGNAL_FUNC(item_signal_callback),
“tree item select”);

gtk_signal_connect(GTK_OBJECT(subitem), “deselect”,
GTK_SIGNAL_FUNC(item_signal_callback),
“tree item deselect”);

// Add this sub-tree it to its parent tree:
gtk_tree_append(GTK_TREE(subtree[*depthPtr - 1]), subitem);
gtk_widget_show(subitem);
gtk_tree_item_set_subtree(GTK_TREE_ITEM(subitem),

subtree[*depthPtr]);
}

GUI Programming Using GTK

CHAPTER 30
533

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

3572316072 CH30 7/26/99 2:11 PM Page 533

The endElement function is called from the expat parser when an ending tag (for exam-
ple, “</author>”) is processed. The function endElement simply decrements the parse-
depth counter, as shown in the following:

void endElement(void *userData, const char *name) {
int *depthPtr = userData;
*depthPtr -= 1; // decrement stack pointer

}

As an example of the parse depth in an XML document, consider the following XML
data, with the parse depth indicated on each line:

<book> 1
<title>Kito bit the cat</title> 2
<author> 2
<name> 3
<last_name>Smith</last_name> 4
<first_name>Joshua</first_name> 4

</name> 3
</author> 2

</book> 1

The main function does two things: setting up the XML parser and initializing the GTK
widgets. We have already seen the implementation of the XML parser Callback functions
for processing opening element tags, element text data, and closing element tags. These
Callback (or signal-handler) functions created the GTK tree element widgets, but the
main function has the responsibility for creating the topmost GTK Tree widget and the
top-level window. The following discussion uses code fragments from the implementa-
tion of the main function.

The main function creates a new XML parser object using James Clark’s expat library,
as shown in the following:

XML_Parser parser = XML_ParserCreate(NULL);

The XMLviewer application uses a top-level window with a scrolling view area. The fol-
lowing code fragment shows how to set up a scrolling area with scrollbars that are auto-
matically activated when required. We define two variables, window and scrolled_win,
as pointers to GtkWidgets and call the standard GTK gtk_init function that we saw in
the previous GTK example. The Scrolled Window widget is created with the
gtk_scrolled_window function, and this widget is added to the GtkWidget referenced by
the window variable. The gtk_scrolled_window_set_policy function can be used to set
up automatic handling of scroll bars (as we do here), or it can be used to always make
scrollbars visible. The gtk_widget_set_usize function sets the minimum size of the

Programming the User Interface

PART IV
534

3572316072 CH30 7/26/99 2:11 PM Page 534

Scrolled Window widget. The user will not be able to resize the top-level window to
make the scrolling window smaller than the size set by gtk_widget_set_usize.

GtkWidget *window, *scrolled_win;
gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
scrolled_win = gtk_scrolled_window_new(NULL, NULL);
gtk_scrolled_window_set_policy(GTK_SCROLLED_WINDOW(scrolled_win),

GTK_POLICY_AUTOMATIC,
GTK_POLICY_AUTOMATIC);

gtk_widget_set_usize(scrolled_win, 150, 200);
gtk_container_add(GTK_CONTAINER(window), scrolled_win);
gtk_widget_show(scrolled_win);

The GTK library contains a utility callback (or signal-handler) function named
gtk_main_quit, which can be used to cleanly close down any GTK application. The
following line of code sets the gtk_main_quit function as the signal-handler for win-
dow-delete events for the top-level window. Without the following line of code, the
application will not cleanly terminate if the user clicks on the window-close box.

gtk_signal_connect(GTK_OBJECT(window), “delete_event”,
GTK_SIGNAL_FUNC(gtk_main_quit), NULL);

In order to leave some space around widget components that are added to any GTK con-
tainer, you can use the gtk_container_border_width function to set the number of pix-
els between components. By using the following code, the main function sets up a border
five pixels wide around the Tree widget:

gtk_container_border_width(GTK_CONTAINER(window), 5);

The following code uses the gtk_tree_new function to create the GTK Tree widget, and
the newly created Tree widget is added to the scrolling window:

tree = gtk_tree_new();
gtk_scrolled_window_add_with_viewport

(GTK_SCROLLED_WINDOW(scrolled_win),
tree);

GTK Tree widgets can be set to either a single tree node selection mode or a multiple
selection mode. The following line of code sets the Tree widget to allow only the user to
select one tree node at a time:

gtk_tree_set_selection_mode(GTK_TREE(tree),
GTK_SELECTION_SINGLE);

To enable multiple selection, the GTK constant GTK_SELECTION_SINGLE that is defined in
the gtkenums.h file can be replaced by the GTK_SELECTION_MULTIPLE constant.

GUI Programming Using GTK

CHAPTER 30
535

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

3572316072 CH30 7/26/99 2:11 PM Page 535

The XML parser, which is referenced with the variable parser, must be configured for the
XMLviewer application. The following line of code sets the local variable depth as the
user data for the parser:

XML_SetUserData(parser, &depth);

The following two lines of code configure the XML parser to use the startElement,
endElement, and handleElementData Callback functions that we have implemented:

XML_SetElementHandler(parser, startElement, endElement);
XML_SetCharacterDataHandler(parser, handleElementData);

The XMLviewer program reads the contents of XML from stdin (for example, you run it
by typing “cat test.xml | XMLviewer”). The following code fragment reads XML
data and hands it off to the parser:

do {
size_t len = fread(buf, 1, sizeof(buf), stdin);
done = len < sizeof(buf);
if (!XML_Parse(parser, buf, len, done)) {
printf(“%s at line %d\n”,

XML_ErrorString(XML_GetErrorCode(parser)),
XML_GetCurrentLineNumber(parser));

return;
}

} while (!done);
XML_ParserFree(parser);

It is important to realize the flow of execution in this code fragment. As the XML_Parse
function processes XML data, it calls the startElement, endElement, and
handleElementData functions to process start- and ending-element tags and element
character data. These functions, in turn, are responsible for constructing new GTK Tree
Element widgets and inserting them in the correct position of the tree.

The following two lines of code simply make the top-level window visible and able to
handle events:

gtk_widget_show(window);
gtk_main();

Running the GTK XML Display Program
The XMLviewer application reads XML data from stdin. To compile and execute this
example program, change the directory to src/GTK and type the following:

make
cat test.xml | XMLviewer

Programming the User Interface

PART IV
536

3572316072 CH30 7/26/99 2:11 PM Page 536

Figure 30.2 shows two copies of the XMLviewer sample program running side-by-side.
On the left side of the figure, the tree is collapsed. The right side of Figure 30.2 shows
the XMLviewer application after the user has expanded the sub-tree branches.

GUI Programming Using GTK

CHAPTER 30
537

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

FIGURE 30.2
Two copies of the
XMLViewer pro-
gram running,
showing the
test.xml file.

A GUI Program Using the
Notebook Widget
The last sample program in this chapter shows how to use the GTK Notebook widget. A
Notebook widget is a container containing pages with labeled tabs. The example for this
section is in the notebook.c and draw_widget.c files in the src/GTK directory. The
draw_widget.c file was derived from the scribble-simple.c file in the examples direc-
tory in the GTK distribution. The scribble-simple example creates a drawable area and
handles mouse events for drawing. We will discuss the implementation of the scribble-
simple example (using the draw_widget.c file) after discussing the implementation of
the Notebook widget example (using the notebook.c file).

Implementation of the Notebook Widget
Sample Program
The notebook.c example is very simple because it is easy to create a GTK Notebook
widget and add pages with tabs. The basic technique is simple: create a Notebook widget
using the gtk_notebook_new utility function, then add pages to it by following these
steps for each page:

1. Create a GTK Frame widget. A Frame widget is a container so you can add any-
thing you want to it (other GTK widgets, custom widgets that you write, and so on.

2. Create a GTK Label widget for the tab. Note that you can use any GTK widget for
the tab (Label widget, Pixmap widget, Tree widget—strange, but you could do it—
and so on.

3. Use the GTK utility function gtk_notebook_append_page to add the frame (and
whatever you have added to the frame) and the tab label to the Notebook widget.

3572316072 CH30 7/26/99 2:11 PM Page 537

The following discussion uses code from the notebook.c file. We will skip code that we
have discussed in the two previous GTK sample programs (for example, the signal-han-
dler function for “delete_event” that occurs when a user clicks the Close button on the
window title bar).

As usual, we create a Top-Level Window widget that is referenced by the window vari-
able. The following code creates a new Notebook widget and adds it to the window:

notebook = gtk_notebook_new();
gtk_notebook_set_tab_pos(GTK_NOTEBOOK(notebook), GTK_POS_TOP);
gtk_container_add(GTK_CONTAINER(window), notebook);
gtk_widget_show(notebook);

Here, we used the constant GTK_POS_TOP (defined in the gtkenums.h file) to place the
notebook page tabs along the top of the widget. The following are other possible values
that can be used as the second argument to the gtk_notebook_set_tab_pos function:

GTK_POS_LEFT
GTK_POS_RIGHT
GTK_POS_TOP
GTK_POS_BOTTOM

The following code from the notebook.c file adds four pages to the Notebook widget (a
discussion follows this listing):

for (i=0; i < 4; i++) {
if (i == 0) {
sprintf(buf1, “Draw something here with the mouse”);
sprintf(buf2, “Draw Tab”);

} else {
sprintf(buf1, “Frame number %d”, i+1);
sprintf(buf2, “Tab %d”, i);

}
// Create a frame to hold anything (at all!)
// that we might want to add to this page
frame = gtk_frame_new(buf1);
gtk_container_border_width(GTK_CONTAINER(frame), 10);
gtk_widget_set_usize(frame, 240, 120);
gtk_widget_show(frame);
label = gtk_label_new(buf1);
if (i == 0) {
temp_widget = make_draw_widget(240, 120);
gtk_container_add(GTK_CONTAINER(frame), temp_widget);

} else {
gtk_container_add(GTK_CONTAINER(frame), label);
gtk_widget_show(label);

}
label = gtk_label_new(buf2);
gtk_notebook_append_page(GTK_NOTEBOOK(notebook), frame, label);

}

Programming the User Interface

PART IV
538

3572316072 CH30 7/26/99 2:11 PM Page 538

Here, the first page added to the Notebook widget is handled differently from the last
three because:

• We want to create a Drawing Area widget to add to the page frame;

• For the first page, we want a different label for the tab (to let users know they can
draw on the first page).

The character arrays buf1 and buf2 are used, respectively, for labeling the inside frame
of the last three pages (but not the first drawing page) and then the page’s tab. The
make_draw_widget function is defined in the draw_widget.c file and is discussed in the
next section. This function returns a pointer to GtkWidget that is simply added to the
Frame widget created for the first page of the Notebook widget.

After the four test pages are added to the Notebook widget, the following code sets the
first (drawing) page to be the default visible page, makes the Top-Level Window widget
visible, and handles events:

gtk_notebook_set_page(GTK_NOTEBOOK(notebook), 0);
gtk_widget_show(window);
gtk_main();

Implementing the Drawing Widget
The draw_widget.c file, which is derived from the scribble-simple.c GTK sample
program, creates a generic GTK widget with the event-handling behavior and data for
allowing the user to draw inside the widget. This generic widget is not a new type of
GTK widget. A Draw widget is created by calling the make_draw_widget function,
which has the following function signature:

GtkWidget * make_draw_widget(int width, int height)

The make_draw_widget function creates a GTK Drawing Area widget and connects sig-
nal-handling functions for left-mouse-down and mouse-motion events. In the following
discussion, we talk about the draw_widget.c file in the src/GTK directory, but this file is
directly derived from the scribble-simple.c GTK sample program, so these comments
also apply to scribble-simple.c. The signal-handler function configure_event is used
to create a pixmap for off-screen drawing. For “jitter-free” animation, it is usually best to
perform drawing operations in an off-screen buffer (or pixmap) and copy the pixmap to
the window in one operation. This technique is used in video games, word processors,
drawing tools, and so on. The following line of code creates a new pixmap:

pixmap = gdk_pixmap_new(widget->window,
widget->allocation.width,
widget->allocation.height,
-1);

GUI Programming Using GTK

CHAPTER 30
539

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

3572316072 CH30 7/26/99 2:11 PM Page 539

The address of the Drawing Area widget is passed to the configure_event function; this
pointer to a GtkWidget is used get the required width and height of the pixmap. Notice
that if the pixmap already exists, the first thing that configure_event does is to free the
memory for the previous pixmap before creating another. The configure_event Function
is also called for resize events. The signal-handler function expose_event is called
whenever all or part of the Drawing Area widget is exposed; this function simply
recopies the pixmap to the visible part of the widget.

The draw_brush function is passed an X-Y position in the Drawing Area widget. The
draw_brush function simply paints a small black rectangle in the pixmap and then copies
the pixmap to the Drawing Area widget, as shown in the following:

void draw_brush (GtkWidget *widget, gdouble x, gdouble y) {
GdkRectangle update_rect;

update_rect.x = x - 2; // 2 was 5 in original GTK example
update_rect.y = y - 2; // 2 was 5 in original GTK example
update_rect.width = 5; // 5 was 10 in original GTK example
update_rect.height = 5; // 5 was 10 in original GTK example
gdk_draw_rectangle (pixmap,

widget->style->black_gc,
TRUE,
update_rect.x, update_rect.y,
update_rect.width, update_rect.height);

gtk_widget_draw (widget, &update_rect);
}

The gtk_widget_draw function causes an Expose event in the specified (by the first
argument) widget. In this program, this Expose event causes the expose_event function
in the draw_widget.c (and scribble-simple.c) files to be called. The signal-handler
function button_press_event is called when any mouse button is pressed, but it only
draws in the Drawing Area widget when the button number equals one and the pixmap
has already been set in configure_event function:

gint button_press_event (GtkWidget *widget, GdkEventButton *event) {
if (event->button == 1 && pixmap != NULL)
draw_brush (widget, event->x, event->y);

return TRUE;
}

The signal-handler function motion_notify_event is similar to button_press_event,
but handles mouse motion events (listed in abbreviated form):

gint motion_notify_event (GtkWidget *widget, GdkEventMotion *event) {
if (event->state & GDK_BUTTON1_MASK && pixmap != NULL)
draw_brush (widget, event->x, event->y);

return TRUE;
}

Programming the User Interface

PART IV
540

3572316072 CH30 7/26/99 2:11 PM Page 540

The structures GdkEventButton and GdkEventMotion are defined in the gdktypes.h file.
They are shown here in abbreviated form:

struct _GdkEventMotion { // partial definition:
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 time;
gdouble x;
gdouble y;
gdouble pressure;
guint state;

};

struct _GdkEventButton { // partial definition:
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 time;
gdouble x;
gdouble y;
guint state;
guint button;

};

The make_draw_widget function is fairly simple, but it does offer an example of setting
signal-handlers (or callbacks) for expose, configure, mouse motion and mouse button
press events:

GtkWidget * make_draw_widget(int width, int height) {
GtkWidget *drawing_area;
drawing_area = gtk_drawing_area_new ();
gtk_drawing_area_size (GTK_DRAWING_AREA (drawing_area), width, height);
gtk_widget_show (drawing_area);
/* Signals used to handle backing pixmap */
gtk_signal_connect (GTK_OBJECT (drawing_area), “expose_event”,

(GtkSignalFunc) expose_event, NULL);
gtk_signal_connect (GTK_OBJECT(drawing_area),”configure_event”,

(GtkSignalFunc) configure_event, NULL);
/* Event signals */
gtk_signal_connect (GTK_OBJECT (drawing_area), “motion_notify_event”,

(GtkSignalFunc) motion_notify_event, NULL);
gtk_signal_connect (GTK_OBJECT (drawing_area), “button_press_event”,

(GtkSignalFunc) button_press_event, NULL);
gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK

| GDK_LEAVE_NOTIFY_MASK
| GDK_BUTTON_PRESS_MASK
| GDK_POINTER_MOTION_MASK
| GDK_POINTER_MOTION_HINT_MASK);

return drawing_area;
}

GUI Programming Using GTK

CHAPTER 30
541

30

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

G
TK

3572316072 CH30 7/26/99 2:11 PM Page 541

The gtk_drawing_area_size function sets the preferred size of the Drawing Area wid-
get. The gtk_widget_set_events function sets the drawing area to receive signals (or
events) from the GTK event-handling code in the GTK utility function gtk_main.

Running the GTK Notebook Widget Sample
Program
You can compile and run the Notebook widget sample program by changing the directo-
ry to src/GTK and typing the following:

make
notebook

Figure 30.3 shows two copies of the Notebook widget sample program running side-by-
side. On the left side of the figure, the first page that contains the Drawing Area widget
is selected; the Drawing Area widget has a sketch of the author’s initials. The right side
of Figure 30.3 shows the notebook example with the second page selected.

Programming the User Interface

PART IV
542

FIGURE 30.3
Two copies of the
Notebook widget
program running,
showing two dif-
ferent pages in the
notebook selected.

The GTK GUI programming library provides a rich set of widgets for building Linux
applications. This short chapter was not meant to cover all of GTK; rather, it introduced
you to the basics of GTK programming and provided interesting examples using the
XMLviewer.c and notebook.c programs. It’s recommended (again) that you visit the offi-
cial GTK Web site at www.gtk.org and read the GTK tutorial. You might also want to
install the latest version of GTK and be sure to check out the example programs.

GTK offers a high-level approach to X Windows-based GUI programming. It is a matter
of personal taste and style whether you ultimately decide to code in low-level Xlib, use
either the Athena or Motif widgets, use GTK, or use the C++ library Qt that is covered in
the next chapter.

3572316072 CH30 7/26/99 2:11 PM Page 542

IN THIS CHAPTER

• Event-Handling By Overriding QWidget
Class Methods 545

• Event-Handling Using Qt Slots and
Signals 550

31
C

H
A

PT
ER

GUI Programming
Using Qt

by Mark Watson

3672316072 CH31 7/26/99 2:08 PM Page 543

The Qt C++ class library for GUI programming was designed and written by Troll Tech.
You can check out their Web site at www.troll.no. Qt is a cross-platform library sup-
porting X Windows and Microsoft Windows. At the time of this writing (February 1999),
Qt was available for free use on the Linux platform for non-commercial applications.
There is a licensing fee for using Qt for commercial use on Linux, as well as any use on
Microsoft Windows. Before using Qt, you should check out Troll Tech’s Web site and
read the license agreement.

The Qt C++ class library is huge, and documenting it fully in this short chapter is not
possible. However, if you are a C++ programmer, you might find Qt meets your needs
for a very high-level GUI library. Hopefully, the two short examples in this chapter will
encourage you to further study the example programs that are provided with the standard
Qt distribution. Additionally, you should learn how to use the available Qt C++ classes
that provide many ready-to-use user-interface components. You will see at the end of this
chapter how easy it is to combine Qt widgets for application-specific purposes using new
C++ classes.

You saw in Chapter 30 how to use GTK to easily write X Windows applications in the C
language. You will see in this chapter that, for C++ programmers, it is probably even
simpler to write X Windows applications for Linux using Qt. If you prefer coding in C
rather than C++, then you might want to skip this chapter and use either Athena widgets,
Motif widgets, or GTK. Detailed documentation on Qt is available at www.troll.no/qt.
In this short chapter, you will see how to use the following techniques:

• Handle events by overriding event methods (for example, mousePressEvent)
defined in the base Qt widget class QWidget.

• Handle events by using Qt signals and slots. A C++ pre-processor moc is provid-
ed with the Qt distribution to automatically generate C++ code for using signals
and slots.

• Write new Qt widget classes by combining existing widget classes.

The examples in this chapter are partially derived from the Troll Tech Qt example pro-
grams and tutorial, so the following (representative) copyright applies to the example
programs for this chapter:

/**
** $Id: connect.cpp,v 2.5 1998/06/16 11:39:32 warwick Exp $
**
** Copyright (C) 1992-1998 Troll Tech AS. All rights reserved.
**
** This file is part of an example program for Qt. This example
** program may be used, distributed and modified without limitation.
**
***/

Programming the User Interface

PART IV
544

3672316072 CH31 7/26/99 2:08 PM Page 544

This chapter uses two short examples. The first program shows how to draw graphics in
a window and how to handle events by overriding QWidget event methods. The QWidget
class is a C++ base class for all other Qt widget classes. This example was derived from
the “connect” Qt example program that can be found in the Qt distribution in the exam-
ples directory. The second example uses the same Qt widget class (QLCDNumber) that is
used in the Qt online tutorial example. For the second example in this chapter, we derive
a new C++ widget class, StateLCDWidget, that adds two new “slot methods” for increas-
ing and decreasing the value of the number shown in the widget. Other widgets can send
signals to either of these slots to change the display value. We will see an example of
binding signals (events) from two Push Button widgets to the two slots in
StateLCDWidget class.

Event-Handling By Overriding
QWidget Class Methods
The example program for this section is located in the src/Qt/events directory on the
CD-ROM. This example program is very short—only about 50 lines of code—but shows
how to create a simple main application window that uses Qt widgets (file main.cxx) and
how to derive a new widget class, DrawWidget, from the Qt QWidget class (files
draw.hxx and draw.cxx). Before writing the example program for this section, we will
look at the most frequently used public interfaces for the C++ QWidget class. Later in
this chapter we will look at the alternative event-handling scheme in Qt that uses signals
and slots. Both event-handling schemes can be used together in the same program.

Overview of the QWidget Class
The QWidget class is the C++ base class for all other Qt widgets and provides the com-
mon API for controlling widgets and setting widget parameters. The QWidget class
defines several event-handling methods that can be overridden in derived classes (from
the qwidget.h file in the Qt distribution), as shown in the following:

virtual void mousePressEvent(QMouseEvent *);
virtual void mouseReleaseEvent(QMouseEvent *);
virtual void mouseDoubleClickEvent(QMouseEvent *);
virtual void mouseMoveEvent(QMouseEvent *);
virtual void keyPressEvent(QKeyEvent *);
virtual void keyReleaseEvent(QKeyEvent *);
virtual void focusInEvent(QFocusEvent *);
virtual void focusOutEvent(QFocusEvent *);
virtual void enterEvent(QEvent *);
virtual void leaveEvent(QEvent *);
virtual void paintEvent(QPaintEvent *);

GUI Programming Using Qt

CHAPTER 31
545

31

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

Q
T

3672316072 CH31 7/26/99 2:08 PM Page 545

virtual void moveEvent(QMoveEvent *);
virtual void resizeEvent(QResizeEvent *);
virtual void closeEvent(QCloseEvent *);

The purpose of these methods is obvious from the method names, but the event argument
types require a short explanation. The QMouseEvent class has the following (partial) pub-
lic interface:

class QMouseEvent : public QEvent { // mouse event
public:

int x(); // x position in widget
int y(); // y position in widget
int globalX(); // x relative to X server
int globalY(); // y relative to X server
int button(); // button index (starts at zero)
int state(); // state flags for mouse
// constructors, and protected/private interface is not shown

};

The example in this section explicitly uses only mouse events. We will capture the
mouse’s x-y position for mouse press and mouse movement events. We will not directly
use the QKeyEvent, QEvent, QFocusEvent, QPaintEvent, QMoveEvent, QResizeEvent, or
QCloseEvent classes in this chapter, but you can view their header files in the src/
kernel subdirectory in the Qt distribution in the qevent.h file. It is beyond the scope of
this short introductory chapter to cover all event types used by Qt, but you can quickly
find the class headers in qevent.h for use as a reference.

The QSize class has the following (partial) public interface:

class QSize {
public:

QSize() { wd = ht = -1; }
QSize(int w, int h);
int width() const;
int height() const;
void setWidth(int w);
void setHeight(int h);
// Most of the class definition not shown.
// See the file src/kernel/qsize.h in the Qt distribution

};

The class interface for QSize is defined in the Qt distribution’s src/kernel directory in
the qsize.h file. The QWidget class defines several utility methods that can be used to
control the state of the widget or query its state (from the qwidget.h file in the Qt distri-
bution), as shown here:

int x();
int y();

Programming the User Interface

PART IV
546

3672316072 CH31 7/26/99 2:08 PM Page 546

QSize size();
int width();
int height();
QSize minimumSize();
QSize maximumSize();
void setMinimumSize(const QSize &);
void setMinimumSize(int minw, int minh);
void setMaximumSize(const QSize &);
void setMaximumSize(int maxw, int maxh);
void setMinimumWidth(int minw);
void setMinimumHeight(int minh);
void setMaximumWidth(int maxw);
void setMaximumHeight(int maxh);

These public methods can be used to:

• Get the x-y position of a Qt widget inside a container.

• Get the width and height.

• Get the minimum and maximum preferred size for a widget. (The minimum and
maximum size and shape can also be specified.)

Implementing the DrawWidget Class
We will implement the example program in two steps. In this section, we will write the
DrawWidget C++ class. In the next section, we will write a short main program that uses
the DrawWidget. The draw.hxx file in the src/Qt/events directory on the CD-ROM
contains the C++ class interface for DrawWidget. This file was derived from the con-
nect.h file in the examples directory of the Qt distribution. The class definition requires
the definitions of the QWidget, QPainter, and QApplication classes:

#include <qwidget.h>
#include <qpainter.h>
#include <qapplication.h>

The QPainter class encapsulates drawing properties, such as pen and brush styles, back-
ground color, foreground color, and clip regions. The QPainter class also provides primi-
tive drawing operations, such as drawing points, lines, and shapes. Class QPainter also
provides high-level drawing operations, such as Bezier curves, text, and images. You can
find the C++ class interface for QPainter in the Qt distribution’s src/kernel directory in
the qpainter.h file.

The QApplication class encapsulates the data and provides the behavior for X Windows
top-level applications. This class keeps track of all Top Level widgets that have been
added to an application. All X Windows events are handled by the QApplication class’s
exec method.

GUI Programming Using Qt

CHAPTER 31
547

31

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

Q
T

3672316072 CH31 7/26/99 2:08 PM Page 547

Our example DrawWidget class is publicly derived from QWidget and overrides the three
protected methods paintEvent, mousePressEvent, and mouseMoveEvent:

class DrawWidget : public QWidget {
public:
DrawWidget(QWidget *parent=0, const char *name=0);
~DrawWidget();

protected:
void paintEvent(QPaintEvent *);
void mousePressEvent(QMouseEvent *);
void mouseMoveEvent(QMouseEvent *);

private:
QPoint *points; // point array
QColor *color; // color value
int count; // count = number of points

};

The array points will be used to store the x-y coordinates of mouse events in the widget.
The class variable color will be used to define a custom drawing color. The variable
count will be used to count collected points.

The file draw.cxx contains the implementation of the DrawWidget class. The include file
draw.hxx contains the following class header:

#include “draw.hxx”

We will use an array of 3000 points to record mouse positions inside the widget. The
array is initialized in the class constructor and a count of the stored points is set to zero,
as shown in the following:

const int MAXPOINTS = 3000; // maximum number of points
DrawWidget::DrawWidget(QWidget *parent, const char *name)
: QWidget(parent, name) {
setBackgroundColor(white); // white background
count = 0;
points = new QPoint[MAXPOINTS];
color = new QColor(250, 10, 30); // Red, Green, Blue

}

The class destructor simply frees the array of points:

DrawWidget::~DrawWidget() {
delete[] points; // free storage for the collected points

}

The method paintEvent defined in the example class DrawWidget overrides the defini-
tion in the base class QWidget. A new instance of the class QPainter is used to define the
graphics environment and to provide the drawRect method for drawing a small rectangle
centered on the mouse position in the draw widget. The array points is filled inside the
mouse press and mouse motion event methods.

Programming the User Interface

PART IV
548

3672316072 CH31 7/26/99 2:08 PM Page 548

void DrawWidget::paintEvent(QPaintEvent *) {
QPainter paint(this);
paint.drawText(10, 20, “Click the mouse buttons,
➂or press button and drag”);
paint.setPen(*color);
for (int i=0; i<count; i++) { // connect all points
paint.drawRect(points[i].x()-3, points[i].y()-3, 6, 6);

}
}

The method mousePressEvent defined in the class DrawWidget overrides the definition in
the base class QWidget. This method has two functions: to record the current mouse posi-
tion in the array points and to immediately draw a small red (defined by the variable
color) rectangle centered at the mouse position.

void DrawWidget::mousePressEvent(QMouseEvent * e) {
if (count < MAXPOINTS) {
QPainter paint(this);
points[count] = e->pos(); // add point
paint.setPen(*color);
paint.drawRect(points[count].x()-3, points[count].y()-3, 6, 6);
count++;

}
}

The method mouseMoveEvent defined in the class DrawWidget overrides the definition in
the base class QWidget. Like the mouse press method, this method has two functions: to
record the current mouse position in the array points and to immediately draw a small
rectangle centered at the mouse position.

void DrawWidget::mouseMoveEvent(QMouseEvent *e) {
if (count < MAXPOINTS) {
QPainter paint(this);
points[count] = e->pos(); // add point
paint.setPen(*color);
paint.drawRect(points[count].x()-3, points[count].y()-3, 6, 6);
count++;

}
}

Testing the DrawWidget
The example draw widget was simple to implement. The main program to create an
application widget, add a draw widget, and handle X Windows events is even simpler.
The test file containing the main test function is main.cxx and is located in the
src/Qt/events directory. The only include file that is required is the draw.hxx header
file because draw.hxx includes the required Qt header files:

#include “draw.hxx”

GUI Programming Using Qt

CHAPTER 31
549

31

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

Q
T

3672316072 CH31 7/26/99 2:08 PM Page 549

The function main defines an instance of the class QApplication and an instance of the
example DrawWidget class. The QApplication method setMainWidget specifies that the
draw widget is the top level widget in the application. The show method is inherited from
the class QWidget and makes the draw widget visible. The QApplication method exec
handles X Windows events:

int main(int argc, char **argv) {
QApplication app(argc, argv);
DrawWidget draw;
app.setMainWidget(&draw);
draw.show();
return app.exec();

}

This short example program illustrates that the Qt class library really does encapsulate
much of the complexity of X Windows programming. If required, you can mix low-level
Xlib programming with the use of the Qt class library, but this should seldom be
required because the Qt library supports drawing primitives.

Figure 31.1 shows the draw program with some scribbling.

Programming the User Interface

PART IV
550

FIGURE 31.1
The main.cxx
program uses the
DrawWidget.

Event-Handling Using Qt Slots
and Signals
Using Qt slots and signals is a very high-level interface for coordinating events and
actions in different Qt widgets. Using slots and signals is a little complex because a C++
preprocessing program (the Qt utility moc) is used to automatically generate additional
code for this high-level event-handling. The example for this section is located in the
src/Qt/signals_slots directory. The Makefile in this directory is all set up to use the
moc utility to generate additional source code and then compile and link everything. This
Makefile, unlike most other Makefiles on the CD-ROM, may not run correctly if your
system configuration is different than the test machines used for this book. However, this

3672316072 CH31 7/26/99 2:08 PM Page 550

Makefile was copied and edited from the Makefile examples in the programming
tutorial that is included in the standard Qt distribution. These tutorial Makefiles are built
automatically when the Qt distribution is compiled and installed. If the example
Makefile breaks on your system because of a different location of an X library or header
file, compare the first 20 lines of the example Makefile with any of the tutorial
Makefiles in your Qt distribution.

When you install Qt, either from your Linux distribution or by downloading the latest Qt
distribution from www.troll.no, the environment QTDIR gets set to point to the installed
libraries, binary tools, and so on. On my system, QTDIR is set to the value
/usr/local/qt. Qt provides a few simple extensions to the C++ language and uses a
preprocessor moc (Meta Object Compiler) that is located in the $QTDIR/bin directory.
Note that the $QTDIR/bin directory should be in your search PATH. To use the material in
this chapter, I assume that you have followed the installation instructions included with
the Qt distribution. We will find out how moc works later in this chapter, but in the next
section we will show a simple example of its use.

Deriving the StateLCDWidget Class
The Qt C++ class library contains a wide range of useful widgets. Probably the best way
to see all of the different Qt widgets work is to change directory to the examples directo-
ry that is included with the Qt distribution, and then build all the example programs and
run them. This exercise took me about 20 minutes when I first started using Qt and pro-
vided a great introduction to the capabilities of the Qt class library.

We will use the Qt widget class QLCDNumber in this section. The QLCDNumber widget
shows a number in a large font inside the widget. The QLCDNumber class has a method for
setting the number to be displayed, but for our example program we want to define two
slots for increasing and decreasing the displayed number. As we will see later, it is easy
to connect signals generated by a user clicking on Qt Push Button widgets to these slots.

To demonstrate event-handling using slots and signals, we will create a new class,
StateLCDWidget, that contains two slots defined as methods in the class header file:

void increaseValue();
void decreaseValue();

You will see in the next section how to use a Qt widget’s slots; in this section, we will
implement the StateLCDWidget class and these two slots. The following listing shows
the complete header file for the StateLCDWidget class, which is located in the
state_lcd.hxx file in the src/Qt/signals_slots directory (discussion follows the code
listing):

#include <qwidget.h>
#include <qlcdnumber.h>

GUI Programming Using Qt

CHAPTER 31
551

31

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

Q
T

3672316072 CH31 7/26/99 2:08 PM Page 551

class StateLCDWidget : public QWidget {
Q_OBJECT

public:
StateLCDWidget(QWidget *parent=0, const char *name=0);

public slots:
void increaseValue();
void decreaseValue();

protected:
void resizeEvent(QResizeEvent *);

private:
QLCDNumber *lcd;
int value;

};

The include files qwidget.h and qlcdnumber.h contain the class definitions for the C++
classes QWidget and QLCDNumber in the Qt class library. For real applications, the class
StateLCDWidget would normally be derived from the class QLCDNumber, but for a simple
example to show how to define slots, it is slightly easier to derive the StateLCDWidget
class from the simpler QWidget class and use a containment relationship. Class
StateLCDWidget contains an instance of the QLCDNumber class.

In the state_lcd.hxx file, we see some illegal-looking code:

Q_OBJECT

public slots:
void increaseValue();
void decreaseValue();

The Q_OBJECT symbol causes the moc utility to generate so-called “meta object protocol”
information that allows examination of an object at runtime to determine some class
properties. Support for the meta object protocol is built into some object-oriented pro-
gramming systems like Common LISP/CLOS. The architects of Qt built on the idea of
runtime introspection of objects in order to support the binding of code to slots of a spe-
cific object—rather than all instances of a class.

Programming the User Interface

PART IV
552

NOTE

The token slots is not a reserved word in C++.

When the C++ compiler compiles this code, the token slots are defined to be nothing in
the Qt include file qwidget.h. When we build programs using this widget, we must add
commands in the Makefile to run the Qt utility program moc that creates a new C++

3672316072 CH31 7/26/99 2:08 PM Page 552

source file with extra code for this class. We will take another look at moc after we look
at the implementation of the StateLCDWidget class that is in the state_lcd.cxx file. We
need two include files to define the StateLCDWidget and QLCDNumber widgets:

#include “state_lcd.hxx”
#include <qlcdnumber.h>

The class constructor is simple; it calls the super class QWidget constructor and creates
an instance of the QLCDNumber class, specifying a maximum of four displayed digits in
the instance of QLCDNumber:

StateLCDWidget::StateLCDWidget(QWidget *parent, const char *name)
: QWidget(parent, name) {
lcd = new QLCDNumber(4, this, “lcd”);

}

The resizeEvent method is required to handle resize events and works by calling the
QLCDNumber class method resize:

void StateLCDWidget::resizeEvent(QResizeEvent *) {
lcd->resize(width(), height() - 21);

}

Here, the methods width and height are used to calculate the size of the instance of
QLCDNumber. The methods width and height refer to the StateLCDWidget; these meth-
ods are inherited from the QWidget class. The rest of the class implementation is the
definition of the two methods increaseValue and decreaseValue that increment and
decrement the private variable value:

void StateLCDWidget::increaseValue() {
value++;
lcd->display(value);

}
void StateLCDWidget::decreaseValue() {
value—;
lcd->display(value);

}

Now we will discuss the creation of class slots and the Qt moc utility. We will cover the
use of moc for both the StateLCDWidget class defined in this section and the
UpDownWidget class developed in the next section. The following rules in the Makefile
file specify how the make program should handle source files that use signals and slots:

moc_state_lcd.cxx: state_lcd.hxx
$(MOC) state_lcd.hxx -o moc_state_lcd.cxx

moc_up_down.cxx: up_down.hxx
$(MOC) up_down.hxx -o moc_up_down.cxx

GUI Programming Using Qt

CHAPTER 31
553

31

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

Q
T

3672316072 CH31 7/26/99 2:08 PM Page 553

Assume the $(MOC) refers to the absolute path to the moc utility in the Qt distribution’s
bin directory. If the header file is changed, a new source file (here, moc_state_lcd.cxx
and/or moc_up_down.cxx) is automatically generated by moc. The following rules in the
Makefile file compile these generated source files:

moc_state_lcd.o: moc_state_lcd.cxx state_lcd.hxx
moc_up_down.o: moc_up_down.cxx up_down.hxx

Makefile contains rules for building .o files from C or C++ source files. The generated
moc files contain code required for a widget to both declare slots and to bind signals to
the slots contained in other widgets.

Using Signals and Slots
We developed the StateLCDWidget class in the last section as an example of a simple
class that defines slots that other Qt widgets can use. In this section, we will develop
another simple widget class—UpDownWidget—that contains one instance of the widget
classes StateLCDWidget and two instances of the Qt QPushButton widget class. One
push button will have its clicked signal bound to the decreaseValue slot of the instance
of class StateLCDWidget and the other push button will have its clicked signal bound to
the increaseValue slot of the instance of StateLCDWidget.

The class header file up_down.hxx requires three include files to define the QWidget,
QPushButton, and StateLCDWidget classes:

#include <qwidget.h>
#include <qpushbutton.h>
#include “state_lcd.hxx”

The class definition for UpDownWidget uses two tokens that are “defined away” for the
C++ compiler, but that have special meaning for the moc utility: Q_OBJECT and signals.
As we saw in the last section, the Q_OBJECT symbol causes the moc utility to generate so-
called “meta object protocol information” to support binding code to slots of a specific
object, rather than all instances of a class.

The moc utility uses the symbol signals in a class definition to determine which methods
can be called for specific instances of the class through slot connections. The important
thing to understand here is that just because an object has defined slots, an application
program might not bind these slots to signals from another widget object. This binding
occurs on an object-to-object basis and not to all instances of a class. The class definition
for UpDownWidget shows that three other widget objects are contained in this class: two
push-button objects and a StateLCDWidget object:

class UpDownWidget : public QWidget {
Q_OBJECT

Programming the User Interface

PART IV
554

3672316072 CH31 7/26/99 2:08 PM Page 554

public:
UpDownWidget(QWidget *parent=0, const char *name=0);

protected:
void resizeEvent(QResizeEvent *);

private:
QPushButton *up;
QPushButton *down;
StateLCDWidget *lcd;

};

The class definition in the up_down.cxx file contains the definition of the class construc-
tor and the resizeEvent method. The constructor definition shows how to bind signals
of one widget to the slot of another:

UpDownWidget::UpDownWidget(QWidget *parent, const char *name)
: QWidget(parent, name)

{
lcd = new StateLCDWidget(parent, name);
lcd->move(0, 0);
up = new QPushButton(“Up”, this);
down = new QPushButton(“Down”, this);
connect(up, SIGNAL(clicked()), lcd, SLOT(increaseValue()));
connect(down, SIGNAL(clicked()), lcd, SLOT(decreaseValue()));

}

The connect method is inherited from the QObject which is the base class for QWidget.
The method signature, defined in the qobject.h file in Qt distribution’s src/kernel
directory, is as follows:

bool connect(const QObject *sender, const char *signal,
const char *member);

The SIGNAL macro is defined in the qobjectdefs.h file as the following:

#define SIGNAL(a) “2”#a

If you add the following line of code to the end of the class constructor:

printf(“SIGNAL(clicked()) = |%s|\n”, SIGNAL(clicked()));

you will see the following output from the SIGNAL macro when the constructor executes:

SIGNAL(clicked()) = |2clicked()|

The code generated by moc will recognize this character string (generated by the SIGNAL
macro) and bind the correct signal at runtime. The SLOT macro is defined in the qob-
jectdefs.h file as follows:

#define SLOT(a) “1”#a

GUI Programming Using Qt

CHAPTER 31
555

31

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

Q
T

3672316072 CH31 7/26/99 2:08 PM Page 555

If you add the following line of code to the end of the class constructor:

printf(“SLOT(increaseValue()) = |%s|\n”, SLOT(increaseValue()));

you will see the following output from the SIGNAL macro:

SLOT(increaseValue()) = |1increaseValue()|

The code generated by moc will recognize this character string (generated by the SLOT
macro) and bind the correct member function at runtime. The resizeEvent method sim-
ply re-sizes the StateLCDWidget widget and repositions the two Push Button widgets:

void UpDownWidget::resizeEvent(QResizeEvent *) {
lcd->resize(width(), height() - 59);
up->setGeometry(0, lcd->height() + 5, width(), 22);
down->setGeometry(0, lcd->height() +31, width(), 22);

}

Here, the width and height of UpDownWidget are used to calculate the position and size of
the three widgets contained in UpDownWidget.

Running the Signal/Slot Example Program
We now have developed the StateLCDWidget and UpDownWidget widgets. The main.cxx
file contains a simple example program to test these widgets:

#include <qapplication.h>
#include “up_down.hxx”

int main(int argc, char **argv) {
QApplication a(argc, argv);
QWidget top;
top.setGeometry(0, 0, 222, 222);
UpDownWidget w(&top);
w.setGeometry(0, 0, 220, 220);
a.setMainWidget(&top);
top.show();
return a.exec();

}

This example is a little different than the main.cxx file for testing the Drawing Area wid-
get because a separate Top-Level widget is added to the Application widget. Then
UpDownWidget is added to this Top-Level widget. The setGeometry method is defined in
the qwidget.h file with the method signature:

virtual void setGeometry(int x, int y, int width, int height);

Programming the User Interface

PART IV
556

3672316072 CH31 7/26/99 2:08 PM Page 556

Only the Top-Level widget must be set visible using the show method. Any widgets con-
tained in the Top-Level widget will also be made visible. Figure 31.2 shows the example
program in main.cxx running. Clicking on the Up pushbutton increases the value of the
numeric display by one; clicking the Down pushbutton decreases it by one.

GUI Programming Using Qt

CHAPTER 31
557

31

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

Q
TFIGURE 31.2

The clicked sig-
nals of the two
Push Button wid-
gets are connected
to slots in the
StateLCDWidget

widget.

Summary
The Qt C++ class library for GUI programming provides a rich set of widgets for build-
ing Linux applications using the C++ language. The design and implementation of Qt is
very well done and Qt will probably become the GUI library of choice for Linux C++
programmers developing free software applications for Linux. C programmers will prob-
ably prefer the GTK library covered in Chapter 30. For a reasonable license fee (see
www.troll.no) Qt can be used for commercial Linux applications and Windows applica-
tions.

Even if your Linux distribution contains the Qt runtime and development libraries (you
might have to install these as separate setup options), you will probably want to visit
www.troll.no for the online tutorial, Postscript documentation files, and the latest Qt
distribution.

3672316072 CH31 7/26/99 2:08 PM Page 557

558

3672316072 CH31 7/26/99 2:08 PM Page 558

IN THIS CHAPTER

• A Brief Introduction to Java 560

• Writing a Chat Engine Using
Sockets 575

• Introduction to AWT 580

• Writing a Chat Program Using
AWT 583

• Introduction to JFC 586

• Writing a Chat Program
Using JFC 590

• Using Native Java Compilers 594

32
C

H
A

PT
ER

GUI Programming
Using Java

by Mark Watson

3772316072 CH32 7/26/99 2:05 PM Page 559

The purpose of this chapter is to introduce Linux programmers to the Java language and
to writing GUI applications using two Java APIs: the Abstract Widget Toolkit (AWT) and
the Java Foundation Classes (JFC). There are good tutorials for Java programming and
GUI programming at Sun’s Java Web site: http://java.sun.com. This chapter starts
with a short introduction to Java programming, including short code snippets for reading
and writing files, handling multiple threads, and simple socket-based IPC. We will then
see an example “chat” program written with the AWT API and then the same program
re-written using the JFC API. I used the Linux port of the Java Development Kit (JDK)
version 1.1.7 to write this chapter, with JFC version 1.1. The JFC is also referred to as
Swing. The examples in this chapter were also tested with the JDK 1.2 (pre-release).

We will cover a lot of material in this chapter by ignoring some deserving topics; we will
typically cover only one option of many for many Java programming tasks. For example,
there are three common methods for handling events in Java GUI programs. I use only
my favorite method (anonymous inner event classes) in the examples in this chapter,
completely ignoring (in the text) the other two methods. If the reader runs the example
programs in this chapter and reads both the source listings and the text describing the
sample code, then she will at least know how to get started with a new Java program of
her own. I don’t really attempt to teach object-oriented programming in this chapter.

Java is a great programming language, and I hope that it will be widely used by Linux
programmers. I work for an artificial-intelligence software company and we do all our
programming in Java. I will post any corrections or additions to the material in this chap-
ter on my Web site. I also have several Open Source Java programs that are freely avail-
able at my Web site.

A Brief Introduction to Java
Java was originally developed by Sun Microsystems for programming consumer elec-
tronic devices. Java became wildly popular as a client-side programming platform when
both Netscape and Microsoft offered runtime support for Java applets in their Web
browsers. In this chapter, we will not use Java applets; all sample programs run as stand-
alone Java programs. The real strength of the Java programming language, however, is
when it is used to write multi-threaded server applications. One of the huge advantages
of Java over C and C++ is automatic memory management. In C, when you allocate
memory with, for example, malloc, you must explicitly free the memory when you are
done with it. In Java, memory that is no longer accessible by any variables in your pro-
gram is eventually freed by the Java runtime garbage collector. Another advantage of

Programming the User Interface

PART IV
560

3772316072 CH32 7/26/99 2:05 PM Page 560

Java is the lack of a pointer variable. Although pointers are certainly useful, they are a
large source of program bugs. C++ programmers who use exception-handling will be
pleased to see that Java has a similar facility for catching virtually any type of runtime
error.

Java is an Object-Oriented Language
Java is a strongly typed object-oriented language. Java programs are built by defining
classes of objects. New class definitions create new structured data types with “behavior”
that is implemented by writing class methods. Methods are similar to functions except
that they are associated with either classes or instances of classes. Java is strongly typed
in the sense that it is illegal (in the sense that the compiler will generate an error) to call
a method with the wrong number or wrong type of arguments. The compiler will also
generate an error if, for example, you try to set an integer variable equal to a real variable
without explicitly casting the real value to an integer (and vice versa).

It is important to clearly understand the relationship between Java classes and instances
of Java classes. In order to show how classes are written and instances of how classes are
created, we will look at a simple example program. The source code to this example pro-
gram is located in the src/Java directory in the Car.java file. Listing 32.1 shows the
contents of the Car.java. I assume that the reader knows how to program in the C pro-
gramming language. If you also know how to program in C++, learning Java will be very
easy for you. In Java, anything following the characters // on a line is considered a com-
ment. C style comments (for example, /* this is a comment */) are also supported.

Listing 32.1 THE Car.java FILE

// File: Car.java

import java.io.*;

public class Car implements Serializable {
private String name;
private float price;
static private int countCarInstances = 0;

public Car(String name, float price) {
// Keep a count of the number of instances of class Car:
countCarInstances++;
this.name = name;
this.price = price;
System.out.println(“Creating Car(“ + name + “, “ +

price + “)”);

GUI Programming Using Java

CHAPTER 32
561

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

continues

3772316072 CH32 7/26/99 2:05 PM Page 561

Listing 32.1 CONTINUED

System.out.println(“Number of instances of class Car: “ +
countCarInstances);

}

public String getName() { return name; }
public float getPrice() { return price; }

// A static main test method

static public void main(String [] args) {
// This program does not use any arguments, but if any
// command line arguments are supplied, at least
// print them out:
if (args.length > 0) {
for (int i=0; i<args.length; i++) {
System.out.println(“args[“ + i + “]=” + args[i]);

}
}

// Create a few instances of class car:

Car mustang = new Car(“Mustang”, 15000.0f);
Car ford = new Car(“Thunderbird”, 22000.0f);

String name = ford.getName();
float price = mustang.getPrice();

System.out.println(“name: “ + name + “, price: “ + price);
}

}

In Listing 32.1, we start defining a new public class named Car by using the class key-
word:

public class Car implements Serializable {

Java does not support multiple inheritance, but it does support the implementation of
multiple interfaces. Car implements the Serializable interface, which is used for saving
objects to files. Later in this chapter, we will write a ChatListener interface and use it in
two programs.

In Java, class names, method names, and variable names can be public, protected, or pri-
vate. Public names are visible anywhere in a program. Private names are visible only
inside the class definition. Protected names are visible only inside the class definition or
inside any class that is derived from a class using protected declarations. In Listing 32.1,

Programming the User Interface

PART IV
562

3772316072 CH32 7/26/99 2:05 PM Page 562

we see that Car defines three private class variables: name, price, and
countCarInstances. Whenever a new instance Car is created, this new instance will
have its own name and price variables. However, since we used the static keyword in
defining the countCarInstances class variable, all instances of Car share the same vari-
able. Listing 32.1 shows that a main method is also declared static. It is possible, and
often a good programming technique, to declare both variables and methods as static in a
class definition. The following statement, from Listing 32.1, starts the definition of a
class constructor for creating instances of the Car class:

public Car(String name, float price) {

This method requires two arguments, a String variable name and a float variable price.
Java is an object-oriented language, but it is not a “pure” object-oriented language
because, in addition to classes and objects, the Java language also uses primitive data
types such as float, int, long, and so on. The body of the class constructor does several
things: it copies the arguments to the local call variables with the same names (using the
this keyword lets the compiler know that an expression like this.price refers to the
class variable name, and not the argument price constructor). The class constructor also
increments the countCarInstances static variable so that we know how many instances
of Car are created in any program. Since the class variables name and price are declared
private, we need to provide methods for getting their values so we can reference these
values:

public String getName() { return name; }
public float getPrice() { return price; }

Finally, it is common practice to write test code for a new class in a static method
called main. Any class with a public static method named main that returns void and has
an array of String values as an argument can also be run as a standalone program.

The notation in the method signature for the static public method main:

String [] args

implies that the argument is an array of String variables. In main, we see how many ele-
ments are in this array with the expression:

args.length

Here, the variable length is a public class variable for the standard Java class Array. If
the args array has at least two elements, then we can, for example, access the second
element in the array with the expression:

args[1]

GUI Programming Using Java

CHAPTER 32
563

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

3772316072 CH32 7/26/99 2:05 PM Page 563

The test method main does not use the command-line arguments in the args array, but
they are printed as an example of accessing command-line arguments in a standalone
Java program. Any Java class that you want to run as a standalone program must contain
a static public main method that has one argument: an array of strings for
command-line arguments. The main test method creates two instances of Car using
the new operator:

Car mustang = new Car(“Mustang”, 155000.0f);
Car ford = new Car(“Ford Thunderbird”, 22000.0f);

Private data is accessed using the getName and getPrice methods. The Car class imple-
ments the Java interface Serializable; this means that instances of this class can, as we
will see in a later section, be easily written to a file.

Most Linux distributions come with Java. If you have not installed the Java option from
your Linux setup program, this is a good time to do it. If you do not have Java version
1.2 or later installed, you will need to download the JFC/Swing package from
http://java.sun.com. The Web site http://www.blackdown.org is a good source of
Java tools for Linux.

You can compile Java programs using the javac program. Standalone Java applications
are executed using the java program. The following shows how to compile (using javac)
and run (using java) the example program:

/home/markw/linuxbook/src/Java: javac Car.java
/home/markw/linuxbook/src/Java: java Car this is a test
args[0]=this
args[1]=is
args[2]=a
args[3]=test
Creating Car(Mustang, 15000.0)
Number of instances of class Car: 1
Creating Car(Ford Thunderbird, 22000.0)
Number of instances of class Car: 2
name: Ford Thunderbird, price: 15000.0

The javac program compiles files with the extension .java into compiled files with the
extension .class. The program java is the JVM (Java Virtual Machine) used to run
compiled Java programs.

Using Packages in Java
Java supports packages to separate public class names into separate name spaces.
Optionally, any Java source file can begin with a package statement. When referring to
any class in a package, the package name precedes the class name, separated by a period.

Programming the User Interface

PART IV
564

3772316072 CH32 7/26/99 2:05 PM Page 564

Here is a simple example of two separate Java source files, each using a different
package (p1 and p2).

// File: Hello1.java
package p1;
public class Hello1 {

public Hello1() {
System.out.println(“Hello1”);

}
}

// File: Hello2.java
package p2;
public class Hello2 {

public Hello2() {
new p1.Hello1();

}
}

When—in the file Hello2.java (in package p2)—we want to refer to class Hello1 in
package p1, we preface the class name with the package name:

new P1.Hello1();

Importing other packages is a shorter alternative to specifying a package name before
class names in other packages. The second example file Hello2.java could also have
been written using an import statement to import all public class names from the
p1package:

// File: Hello2.java
package p2;
import p1.*; // import all public class names from package p1
public class Hello2 {

public Hello2() {
new Hello1(); // now we don’t need the package name

}
}

The Java standard class libraries are organized into packages. The following are some of
the more commonly used packages:

Package Definition

java.io Contains file I/O.

java.net Contains network utilities.

java.awt Contains the AWT user interface toolkit.

GUI Programming Using Java

CHAPTER 32
565

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

3772316072 CH32 7/26/99 2:05 PM Page 565

The java.lang package is a “default” package and is always implicitly included in Java
programs, so the following import statement is not required:

import java.lang.*;

Writing and Reading Files with Java
In this section, we will see simple examples of reading and writing files and saving Java
objects to a file using object serialization. Listing 32.2 shows a simple example of writ-
ing a text file, and then reading it. Besides file I/O, the example in Listing 32.2 shows the
use of Java exceptions. Any code that can cause a runtime error can be placed inside a
try and catch code block. The catch statement takes an exception type as an argument.
The Java library defines a hierarchy of exception types. For the examples in this chapter,
we will always catch the base exception class Exception—catching all runtime errors,
including I/O errors, illegal data references, and so on. The statement import java.io.*
enables us to use any classes in the java.io package without needing to prepend the
package name to any class in this package.

Listing 32.2 THE FileIO.java FILE

// File: FileIO.java
//
// Example of writing to a text file, then reading the file
//

import java.io.*;

public class FileIO {

static public void main(String [] args) {
// Always wrap file IO in a try/catch statement:
try {

// Write a file:

BufferedWriter bw =
new BufferedWriter(new FileWriter(“temp.txt”));

bw.write(“This is a test\n”);
bw.write(“This is a second line of text\n”);
bw.write(“Here is the number three: “ + 3 + “\n”);
bw.close();

// Read the file that we just wrote:

Programming the User Interface

PART IV
566

3772316072 CH32 7/26/99 2:05 PM Page 566

BufferedReader br =
new BufferedReader(new FileReader(“temp.txt”));

while (true) {
String s = br.readLine();
if (s == null || s.length() < 1) break;
System.out.println(“line from file: “ + s);

}
br.close();

} catch (Exception e) {
System.out.println(“Error: “ + e);

}
}

}

The FileIO class defined in Listing 32.2 contains only a static public main method,
so this example is not “object-oriented.” The following statement, from Listing 32.2,
actually creates instances of two classes (FileWriter and BufferedWriter):

BufferedWriter bw =
new BufferedWriter(new FileWriter(“temp.txt”));

We have already seen the new operator in Listing 32.1; the new operator is used here to
create new instances of a specified class. Here, we are creating an instance of the
FileWriter class for the temp.txt file and this object is passed to the constructor for the
BufferedWriter class. Use the following syntax to compile and run the code:

/home/markw/linuxbook/src/Java: javac FileIO.java
/home/markw/linuxbook/src/Java: java FileIO

It is also easy to write the contents of Java objects to a file, and later restore the objects.
This is called object serialization. In Listing 32.1, the Car class implements the Java
Serializable interface. An interface is a definition of a set of methods that must be
defined by a class implementing the interface. The Serializable interface defines two
method signatures:

private void writeObject(java.io.ObjectOutputStream out)
throws IOException

private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException;

Although it is possible to write your own default write and read object methods, the
examples in Listings 32.3 and 32.4 use the default (inherited) behavior for object serial-
ization.

Listing 32.3 shows how to write instances Car (refer to Listing 32.1) to a file. In addition
to using object serialization, we add a “goody” to this example: by using an instance of
class GZIPOutputStream to wrap the instance of class FileOutputStream, the output file

GUI Programming Using Java

CHAPTER 32
567

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

3772316072 CH32 7/26/99 2:05 PM Page 567

will be compressed to save disk space. Here, we use the GNU ZIP file format. Regular
ZIP formats are also supported. The libraries for handling compression are in the
package:

import java.util.zip.*;

Notice that in Listing 32.3, as usual, we must wrap any file IO inside a try and catch
code block.

Listing 32.3 THE WriteFile.java FILE

// File: WriteFile.java
//
// Example of saving Java objects to a compressed data file
//

import java.io.*;
import java.util.zip.*;

public class WriteFile {

static public void main(String [] args) {
// Create a few objects to save:
Car mustang = new Car(“Mustang”, 15000.0f);
Car ford = new Car(“Thunderbird”, 22000.0f);
// Open a compressed output stream:
String file_name = “car.data”;
// Always wrap file IO in a try/catch statement:
try {

FileOutputStream f = new FileOutputStream(file_name);
GZIPOutputStream gf = new GZIPOutputStream(f);
ObjectOutputStream oos = new ObjectOutputStream(gf);
oos.writeObject(mustang);
oos.writeObject(ford);
oos.flush();
oos.close();

} catch (Exception e) {
System.out.println(“Error: “ + e);

}
}

}

Listing 32.4 shows how to read instances Car (see Listing 32.1) from a file created with
the program in Listing 32.3.

Programming the User Interface

PART IV
568

3772316072 CH32 7/26/99 2:05 PM Page 568

Listing 32.4 THE ReadFile.java FILE

// File: ReadFile.java
//
// Example of saving Java objects to a compressed data file
//

import java.io.*;
import java.util.zip.*;

public class ReadFile {

static public void main(String [] args) {
String file_name = “car.data”;
Car c1 = null, c2 = null;
// Always wrap file IO in a try/catch statement:
try {

FileInputStream f = new FileInputStream(file_name);
GZIPInputStream gf = new GZIPInputStream(f);
ObjectInputStream ois = new ObjectInputStream(gf);
c1 = (Car)ois.readObject();
c2 = (Car)ois.readObject();
ois.close();

} catch (Exception e) {
System.out.println(“Error: “ + e);

}
System.out.println(“Cars reads from file: “ + c1.getName() +

“ and “ + c2.getName());
}

}

Object serialization is useful in itself for saving objects to disk files, and it is the basis
for the Java Remote Method Interface (RMI) technology for doing interprocess commu-
nication between Java programs. RMI is beyond the scope of this short chapter, but we
will see examples of using sockets later in this chapter.

Using Multiple Threads with Java
The Java language makes it particularly easy to do both multi-threaded programming and
socket programming. We will see in the next section that using threads is a basic tech-
nique for writing robust socket programs in Java. In this section, we will look at a short
example program that creates a new thread class MyThread and creates 10 instances of it.

Listing 32.5 contains two Java classes: MyThread and ExampleThreads. When a class,
such as MyThread, is derived from the Thread class, it is expected to have a run public
method. This method is called when the thread is started by calling the start method.

GUI Programming Using Java

CHAPTER 32
569

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

3772316072 CH32 7/26/99 2:05 PM Page 569

Listing 32.5 THE ExampleThreads.java FILE

// File: ExampleThreads.java
//
// Example of using Java threads
//

import java.io.*;
import java.util.zip.*;

class MyThread extends Thread {
public MyThread(String name) {
super(name);
this.name = name;
}
public MyThread() {
this(“no_name_thread”);
}
private String name;

public void run() {
for (int i=0; i<5; i++) {

System.out.println(name + “ “ + i);
try {
Thread.sleep(1000); // sleep 1 second
} catch (Exception e) {
System.out.println(“Thread sleep exception: “ + e);
}

}
}

}

public class ExampleThreads {

static public void main(String [] args) {

// make an array of MyThread objects:
MyThread threads[] = new MyThread[10];
for (int i=0; i<10; i++) {

threads[i] = new MyThread(“my_thread_” + i);
}
// now start all the threads:
for (int i=0; i<10; i++) {

threads[i].start(); // calls the ‘run’ method
}
}

}

Programming the User Interface

PART IV
570

3772316072 CH32 7/26/99 2:05 PM Page 570

The MyThread class was not declared public. Java requires that a file contains only one
public class, and the filename must be the name of this public class with the file exten-
sion “.java”.

Here we see how threads work: you derive a class from Thread and write a run public
method that performs the work in the thread. Calling the start method (inherited from
the Thread class) starts the thread’s run method and immediately returns. In the first loop
in ExampleThreads.main, we create 10 threads; in the second loop, we effectively start
all 10 threads running simultaneously.

Socket Programming with Java
We saw in the last section how simple it is to use threads in Java programs. Writing pro-
grams that use sockets for interprocess communication is also simple if we use separate
threads to manage socket connections. Listing 32.6 shows the ExampleSockets class that
uses multiple threads to process socket I/O.

Listing 32.6 THE ExampleSockets CLASS

import java.net.*;
import java.io.*;

public class ExampleSockets {

// Default host name and port number:
final static public String host = “127.0.0.1”; // local host
final static public int port = 8000;

protected String my_name = “no_name”;

// inner class to handle socket output:
class do_output extends Thread {
private int num_sends;
PrintStream out;
public do_output(int num_sends) {

this.num_sends = num_sends;
start();

}
public do_output() {

this(10);
}
public void run() {

try {
Socket s = new Socket(host, port);

GUI Programming Using Java

CHAPTER 32
571

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

continues

3772316072 CH32 7/26/99 2:05 PM Page 571

Listing 32.6 CONTINUED

DataInputStream in =
new DataInputStream(s.getInputStream());

out = new PrintStream(s.getOutputStream());
} catch (Exception e) {
System.out.println(“Exception 1: “ + e);
}
for (int i=0; i<10; i++) {
out.println(my_name + “ sends “ + i);
try { Thread.sleep(500); } catch (Exception e) { }
}
try { Thread.sleep(2000); } catch (Exception e) { }
System.out.println(“All done.”);
System.exit(0);

}
}

// inner class to handle socket input:
class do_input extends Thread {

public do_input() {
super();
start();

}
public void run() {

ServerSocket serverSocket;
try {
serverSocket = new ServerSocket(port, 2000);
} catch (IOException e) {
System.out.println(“Error in socket input: “ + e);
return;
}

try {
while (true) {

Socket socket = serverSocket.accept();
new MyServerConnection(socket);

}
} catch (IOException e) {
System.out.println(“Error in socket connection: “ + e);
} finally {
try {

serverSocket.close();
} catch (IOException e) {

System.out.println(“I/O exception: “ + e);
}
}

}
// an inner (inner) class to handle
// incoming socket connections

Programming the User Interface

PART IV
572

3772316072 CH32 7/26/99 2:05 PM Page 572

public class MyServerConnection extends Thread {
protected transient Socket client_socket;
protected transient DataInputStream input_strm;
protected transient PrintStream output_strm;

public MyServerConnection(Socket client_socket) {
this.client_socket = client_socket;
try {

input_strm =
new DataInputStream(client_socket.getInputStream());

output_strm =
new PrintStream(client_socket.getOutputStream());
}
catch (IOException io_exception) {

try { client_socket.close();
} catch (IOException io_ex2) { };
System.err.println(“Exception 2: getting” +

“socket streams “ +
io_exception);

return;
}
// Start the thread (i.e., call method ‘run’):
this.start();
//System.out.println(“MyServerConnection is set up.”);
}

public void run() {
String input_buf;
try {

while (true) {
input_buf = input_strm.readLine();
System.out.println(“received on socket: “

+ input_buf);
}

}
catch (Exception exception) { }
finally {

try {
client_socket.close();
}
catch (Exception exception) { };

}
}

}
}

public ExampleSockets() {
do_input ins = new do_input();
do_output outs = new do_output();
//ins.start();

GUI Programming Using Java

CHAPTER 32
573

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

continues

3772316072 CH32 7/26/99 2:05 PM Page 573

Listing 32.6 CONTINUED

//try { Thread.sleep(2000); } catch (Exception e) { }
//outs.start();
}

public static void main(String [] args) {
ExampleSockets ex = new ExampleSockets();
if (args.length > 0) ex.my_name = args[0];

}
}

The ExampleSockets.java file contains two inner classes. Instances of an inner class can
be created only by the class that contains the inner class definition. Using inner classes
has several advantages:

• Inner classes hide the inner class from the rest of your program. Inner classes can
only be used by the class that contains them.

• Inner classes have access to any data or methods that are declared public or pro-
tected in the outer class.

• Inner classes can be nested (one of the inner classes in this example also contains
an inner class of its own).

The class nesting in this example is:

ExampleSockets
do_output (derived from Thread)
do_input (derived from Thread)
MyServerConnection (derived from Thread)

The inner class do_output has a public run method (this is a thread class) that creates a
new socket connection and writes text to this socket. The do_input inner class has its
own inner class: MyServerConnection. The do_input inner class is a little more compli-
cated because handling incoming socket connects is a more complex task than opening a
socket and writing to it. The method run in the class do_input opens a server socket on
a specified port number and enters an “infinite loop” listening for incoming socket con-
nections. An instance of the inner (to do_input) class MyServerConnnection is created
to handle each incoming socket connection.

This example program is a little contrived because two threads are created that “talk to”
each other over a socket interface. Typically, you would use the code in the do_input
inner class when you write a socket-based server class, and you would use the code in
do_output when you write a socket client class.

Programming the User Interface

PART IV
574

3772316072 CH32 7/26/99 2:05 PM Page 574

The do_input inner class contains an inner class of its own, MyServerConnection. An
instance of the MyServerConnection is constructed with a socket created in the do_input
class that connects to the socket created in the do_output class. This socket is used to
create both an input stream and an output stream. As you would expect, the text written
in do_output.run is received on this input stream and anything written to the output
stream is returned to do_output.run (which ignores any input in this example). The
MyServerConnection.run method reads from the input stream until an end-of-file or
other error condition occurs. Then it exits.

The ExampleSockets constructor appears at the bottom of Listing 32.6 and is fairly sim-
ple: we first create an instance of do_input (start the “server”) and then create an
instance of do_output. This example is fairly simple, but you should be able to copy the
code from the do_input as a basis for any Java server programs that you need to write.
Similarly, do_output shows how to write client-side code that sends text to a server.

Writing a Chat Engine Using
Sockets
We will design and write a simple chat engine in this section that allows two clients to
send text messages back and forth using sockets. Later in this chapter, we will introduce
both AWT and JFC GUI programming by writing chat clients using both of these GUI
APIs. Listing 32.8 shows the ChatEngine class that uses multiple threads to process
socket I/O between two chat clients. Two instances of ChatEngine (in different pro-
grams) connect to each other and pass text data between them. This class uses an inter-
face definition in the ChatListener.java file that is shown in Listing 32.7. A program
that uses an instance of the ChatEngine class must implement the ChatListener inter-
face and register itself with the chat engine object by using the
ChatEngine.registerChatListener method.

Listing 32.7 THE ChatListener.java FILE

// File: ChatListener.java
//
// Defines the ChatLister interface
//

public interface ChatListener {
public void receiveText(String s);

}

GUI Programming Using Java

CHAPTER 32
575

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

3772316072 CH32 7/26/99 2:05 PM Page 575

A class implementing the ChatListener interface must define a receiveText method
that will be called by a ChatListener object when incoming text is received from its
socket. The ChatEngine class contains a registerChatListener method that is used by
a class implementing the ChatListener interface to register itself to receive incoming
text. We will see examples of defining and using this interface in the sections on writing
AWT and JFC chat client programs.

Listing 32.8 THE ChatEngine.java FILE

// File: ChatEngine.java
//
// Defines the non-GUI behavior for both the AWT
// and JFC versions of the chat programs.
//

import java.net.*;
import java.io.*;

public class ChatEngine {
protected int port=8080;
protected String host=”127.0.0.1”;
private PrintStream out;
private HandleInputSocket socketThread;

public ChatEngine() {
}

public void startListening(int my_listen_port) {
System.out.println(“ChatEngine.startListening(“ +

my_listen_port + “)”);
try {

socketThread = new HandleInputSocket(my_listen_port);
} catch (Exception e) {

System.out.println(“Exception 0: “ + e);
}

}

public void connect(String host, int port) {
System.out.println(“ChatEngine.connect(“ + host +

“, “ + port + “)”);
this.port=port;
this.host = host;
try {

Socket s = new Socket(host, port);
out = new PrintStream(s.getOutputStream());

} catch (Exception e) {
System.out.println(“Exception 1: “ + e);

}
}

Programming the User Interface

PART IV
576

3772316072 CH32 7/26/99 2:05 PM Page 576

public void logout() {
try { out.close(); } catch (Exception e) { }
socketThread.stop();
socketThread = null;

}

public void send(String s) {
try {

out.println(s);
} catch (Exception e) { }

}

void registerChatListener(ChatListener cl) {
this.chatListener = cl;

}
protected ChatListener chatListener = null;

// inner class to handle socket input:
class HandleInputSocket extends Thread {

int listenPort = 8191;
public HandleInputSocket(int port) {

super();
listenPort = port;
start();

}
public void run() {

ServerSocket serverSocket;
try {

serverSocket =
new ServerSocket(listenPort, 2000);

} catch (IOException e) {
System.out.println(“Error in handling socket” +

“ input: “ + e + “, port=” +
port);

return;
}

try {
while (true) {

Socket socket = serverSocket.accept();
new MyServerConnection(socket);

}
} catch (IOException e) {

System.out.println(“Error socket connection: “ +
e);

} finally {
try {

serverSocket.close();
} catch (IOException e) {

System.out.println(“I/O exception: “ + e);

GUI Programming Using Java

CHAPTER 32
577

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

continues

3772316072 CH32 7/26/99 2:05 PM Page 577

Listing 32.8 CONTINUED

}
}

}
// an inner (inner) class to handle
// incoming socket connections
public class MyServerConnection extends Thread {

protected transient Socket client_socket;
protected transient DataInputStream input_strm;
protected transient PrintStream output_strm;

public MyServerConnection(Socket client_socket) {
this.client_socket = client_socket;
try {

input_strm =
new DataInputStream(client_socket.getInputStream());

output_strm =
new PrintStream(client_socket.getOutputStream());

}
catch (IOException io_exception) {

try { client_socket.close();
} catch (IOException io_ex2) { };

System.err.println(“Exception 2: getting” +
“ socket streams “ +
io_exception);

return;
}
// Start the thread (i.e., call method ‘run’):
this.start();

}

public void run() {
String input_buf;
try {

while (true) {
input_buf = input_strm.readLine();
if (input_buf == null) {

logout();
break;

}
System.out.println(“received on socket: “

+ input_buf);
if (chatListener != null) {

chatListener.receiveText(input_buf);
}

}
}
catch (Exception exception) { }

Programming the User Interface

PART IV
578

3772316072 CH32 7/26/99 2:05 PM Page 578

finally {
try {

client_socket.close();
}
catch (Exception exception) { };

}
}

}
}

}

This example is very similar to the example for handling socket-based IPC that we saw
in the last section. The ChatEngine class uses inner classes to handle reading and writing
data from sockets. The two inner classes in ChatEngine are:

HandleInputSocket
MyServerConnection (almost identical to the class

with the same name in the
last section)

In this example, the main class ChatEngine has a send method that writes text to an out-
put stream opened for a socket connection to another instance of ChatEngine. The fol-
lowing are the public methods in the ChatEngine class:

Method Description

ChatEngine Class constructor (does nothing).

startListening Starts the chat engine listening on a specified port.

connect Connects via a socket to a remote chat engine using
a specified host computer name (or absolute IP
address) and port number.

logout Breaks the connection to a remote chat engine.

send Sends a specified string to the remote chat engine.

registerChatListener Registers an instance of any class implementing the
ChatListener interface to receive incoming text
from the remote chat engine.

The HandleInputSocket inner class in Listing 32.8 is similar to the do_input inner class
in the last section. This inner class is derived from Thread and the run method listens for
incoming socket connections and creates an instance of the MyServerConnection inner
class to handle incoming text from the remote chat engine. This example is more general
than necessary: the code in the HandleInputSocket class works for any (reasonable)
number of socket connections, but in this example we only support two chat engines
talking together “peer to peer”.

GUI Programming Using Java

CHAPTER 32
579

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

3772316072 CH32 7/26/99 2:05 PM Page 579

Introduction to AWT
When the Java language was first released by Sun Microsystems, The Abstract Widget
Toolkit (AWT) was made available for writing Graphics User Interface (GUI) programs.
When the Java language was updated from version 1.0 to 1.1, a new event model and
improvements to AWT were included. As this book was written, Sun has released Java
version 1.2 (now known as version 2.0), but the API for AWT was not changed. The
AWT provides several classes for adding specific components to programs, such as the
following:

Class Description

Button A command or “push” button.

Label For displaying non-editable text (although the text
can be changed under program control).

TextField For allowing the user to edit a single line of text.

TextArea For allowing the user to edit multi-line text.

List For displaying a list of items.

These graphic components are placed in containers, such as the following:

Container Description

Panel The simplest container for holding other Panel
objects or graphic components.

Frame A top-level window with a title bar. A Frame will
usually contain one Panel.

The examples in this chapter do not demonstrate drawing lines, shapes, and so on. Figure
32.1 shows the AWTsample.java program running.

Programming the User Interface

PART IV
580

FIGURE 32.1
The AWTsample
program demon-
strates event-
handling using
anonymous inner
classes with the
AWT API.

There are several layout managers that can be used to position graphic components
inside a Panel. In the GUI examples in this book, we will not use any layout managers;
we will use a setBounds method to specify the X-Y position of a graphic component
and its width and height. Using a null layout manager is a little unusual for Java pro-
grams, but I think that it will make the example programs easier to understand.

3772316072 CH32 7/26/99 2:05 PM Page 580

The example program in Listing 32.9 implements a AWTSample class. This class is
derived from the AWT Frame class, so when we create a new instance of AWTSample, we
will get an application window. The class constructor first calls the super class (Frame)
constructor by using the super keyword. Then three objects are created using the Panel,
Label, and Button classes. We then use the setLayout method to set the layout manager
for the panel object to null.

Listing 32.9 THE AWTsample.java FILE

// File: AWTsample.java

import java.awt.*;
import java.awt.event.*;

public class AWTsample extends Frame {
private int count = 0;
Label countLabel;

public AWTsample() {
super(“AWT Sample Program”);

Panel panel1 = new Panel();
countLabel = new Label();
Button countButton = new Button();
panel1.setLayout(null);
setSize(180, 150);
panel1.setVisible(true);
countLabel.setText(“button clicked “ + count + “ times”);
countButton.setLabel(“click me”);
countButton.addMouseListener(
new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {

countLabel.setText(“button clicked “ +
++count + “ times”);

}
});
panel1.add(countLabel);
countLabel.setBounds(30, 35, 140, 20);
panel1.add(countButton);
countButton.setBounds(40, 65, 100, 30);
add(panel1);
setVisible(true);

}
static public void main(String [] args) {

new AWTsample();
}

}

GUI Programming Using Java

CHAPTER 32
581

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

3772316072 CH32 7/26/99 2:05 PM Page 581

Several useful methods that are defined for most AWT component classes are used in this
example, such as the following:

Method Definition

setVisible Used here to set a Frame and a Panel to be visible.

setSize Sets the width and height of a component.

setLabel Sets the label text for an instance of Label, Button,
and so on.

setText Sets the text of the Label object used to specify how
many times the button is clicked.

setBounds Sets the X an Y position and the width and height of
a graphic component.

add Used to add the label and the button to the panel,
and to add the panel to the frame.

The only thing at all complicated about this example is handling the events associated
with the user clicking on the button object. However, these events are handled with only
a few lines of code:

countButton.addMouseListener(
new java.awt.event.MouseAdapter() {

public void mouseClicked(MouseEvent e) {
countLabel.setText(“button clicked “ +

++count + “ times”);
}

});

The addMouseListener method is used to associate an instance of the MouseListener
with a button (or any other component). Now, it is possible to define a separate class that
implements the MouseListener listener interface (which requires defining five methods:
mouseClicked, mouseEntered, mouseExited, mousePressed, and mouseReleased).
However, there is a MouseAdapter utility class that defines “do nothing” versions of
these five methods. In this code example, we are creating an anonymous inner class (for
example, it is an inner class with no name associated with it) that overrides
mouseClicked. Our mouseClicked method uses the setText method to change the dis-
played text of a label. In Listing 32.9 we import all classes and interfaces from the
ackages java.awt (for the graphic components and containers) and java.awt.event (for
the event-handling classes and interfaces).

In Listing 32.9, we define a static public main method that is executed when we
compile and run this sample program by typing:

javac AWTSample.java
java AWTSample

Programming the User Interface

PART IV
582

3772316072 CH32 7/26/99 2:05 PM Page 582

Writing a Chat Program Using
AWT
The sample program in Listing 32.10 that implements a chat client using AWT is a little
complex because the user interface has several components. Each component is posi-
tioned by an X-Y location in a panel and is sized to a specific width and height. The
interface to the chat engine class ChatEngine is, however, very simple. The ChatAWT
class implements the ChatListener interface and registers itself with an instance of the
ChatEngine class. This registration allows the chat engine object to call the receiveText
method (required to implement the ChatListener interface) in the class ChatAWT.

Figure 32.2 shows the ChatAWT.java and the ChatJFC.java programs running. We will
discuss the ChatJFC program in the section “Writing a Chat Program in JFC.” It is virtu-
ally identical to the ChatAWT program, except that it uses JFC classes instead of AWT
classes.

GUI Programming Using Java

CHAPTER 32
583

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

FIGURE 32.2
Both the ChatAWT
(top of the screen)
and ChatJFC pro-
gram in the sec-
tion “Writing a
Chat Program in
JFC.” It is virtual-
ly identical to the
ChatAWT program,
except that it uses
JFC classes
instead of AWT
classes.

3772316072 CH32 7/26/99 2:05 PM Page 583

Listing 32.10 THE ChatAWT.java FILE

// File: ChatAWT.java

import java.awt.*;
import java.awt.event.*;

public class ChatAWT extends Frame implements ChatListener{
Panel panel1 = new Panel();
Label label1 = new Label();
TextField myPortField = new TextField();
Label label2 = new Label();
TextField hostField = new TextField();
Label label3 = new Label();
TextField portField = new TextField();
Label label4 = new Label();
TextField inputField = new TextField();
Label label5 = new Label();
Button connectButton = new Button();
Button disconnectButton = new Button();
Button quitButton = new Button();
TextArea outputField = new TextArea();

protected ChatEngine chatEngine;
Button listenButten = new Button();

public ChatAWT() {
super(“Chat with AWT GUI”);
chatEngine = new ChatEngine();
chatEngine.registerChatListener(this);
Panel p = new Panel();
quitButton.setBounds(448, 280, 111, 32);
quitButton.setLabel(“Quit”);
quitButton.addMouseListener(
new java.awt.event.MouseAdapter() {

public void mouseClicked(MouseEvent e) {
System.exit(0);

}
});
outputField.setBounds(63, 91, 497, 178);
listenButten.setBounds(5, 281, 153, 33);
listenButten.setLabel(“Start listening”);
listenButten.addMouseListener(
new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {

chatEngine.startListening(
Integer.parseInt(myPortField.getText()));

}
});
panel1.setLayout(null);
this.setSize(575, 348);

Programming the User Interface

PART IV
584

3772316072 CH32 7/26/99 2:05 PM Page 584

label1.setFont(new Font(“Dialog”, 1, 12));
label1.setBounds(6, 5, 60, 33);
label1.setText(“My port”);
myPortField.setText(“8192”);
myPortField.setBounds(72, 11, 90, 33);
label2.setFont(new Font(“Dialog”, 1, 12));
label2.setBounds(200, 3, 83, 38);
label2.setText(“Remote host”);
hostField.setBounds(299, 7, 94, 27);
hostField.setText(“localhost”);
label3.setFont(new Font(“Dialog”, 1, 12));
label3.setBounds(400, 5, 78, 36);
label3.setText(“Remote port”);
portField.setBounds(480, 9, 60, 27);
portField.setText(“8000”);
label4.setFont(new Font(“Dialog”, 1, 12));
label4.setBounds(4, 43, 50, 28);
label4.setText(“Input”);
inputField.setBounds(65, 47, 497, 34);
inputField.setText(“ “);
inputField.addKeyListener(
new java.awt.event.KeyAdapter() {
public void keyPressed(KeyEvent e) {

if (e.getKeyCode() == ‘\n’) {
chatEngine.send(inputField.getText());

}
}

});
label5.setFont(new Font(“Dialog”, 1, 12));
label5.setBounds(0, 90, 48, 34);
label5.setText(“Output”);
connectButton.setBounds(175, 280, 126, 34);
connectButton.setLabel(“Connect”);
connectButton.addMouseListener(
new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {

chatEngine.connect(hostField.getText(),
Integer.parseInt(portField.getText()));

}
});
disconnectButton.setBounds(315, 280, 117, 33);
disconnectButton.setLabel(“Disconnect”);
disconnectButton.addMouseListener(
new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {

chatEngine.logout();
}

});
this.add(panel1, null);
panel1.add(label1, null);

GUI Programming Using Java

CHAPTER 32
585

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

continues

3772316072 CH32 7/26/99 2:05 PM Page 585

Listing 32.10 CONTINUED

panel1.add(myPortField, null);
panel1.add(label2, null);
panel1.add(hostField, null);
panel1.add(label3, null);
panel1.add(portField, null);
panel1.add(label4, null);
panel1.add(inputField, null);
panel1.add(label5, null);
panel1.add(connectButton, null);
panel1.add(disconnectButton, null);
panel1.add(quitButton, null);
panel1.add(outputField, null);
panel1.add(listenButten, null);
setVisible(true);
panel1.setVisible(true);

}
public void receiveText(String s) { // ChatListener interface

outputField.appendText(s + “\n”);
}

static public void main(String [] args) {
new ChatAWT();

}
}

The example in Listing 32.10 is lengthy, but most of the code is simply creating compo-
nents such as text fields, labels, and buttons, and using setBounds(int x, int y, int
width, int height) to position each component inside the panel. When we use the add
method to add a component to a panel, the second null argument passed to add method
indicates that the layout for adding the object is null. This example also shows specify-
ing a font:

Label label3.setFont(new Font(“Dialog”, 1, 12));

In addition to “Dialog”, you can use other font types such a “Times”, “Helvetica”, and
so on.

Introduction to JFC
When the Java language was updated from version 1.1 to 1.2 (now known as version
2.0), the Java Foundation Classes (JFC) were added as a standard library in the package
javax.swing. The JFC API is also known as the Swing API. If you are using version 1.1

Programming the User Interface

PART IV
586

3772316072 CH32 7/26/99 2:05 PM Page 586

of the Java development kit, you will need to download the JFC/Swing package from
Sun’s Java Web site at http://java.sun.com. The JFC provides several classes for
adding specific components to programs, such as the following:

Class Description

Jbutton A command or “push” button.

Jlabel For displaying non-editable text (although the text
can be changed under program control).

JTextPane For displaying text.

JEditorPane For allowing the user to edit text.

JTextArea For allowing the user to edit multi-line text.

Jlist For displaying a list of items.

These graphic components are placed in containers, such as the following:

Component Description

JPanel The simplest container for holding other Panel
objects or graphic components.

JFrame A top-level window with a title bar. A Frame will
usually contain one Panel.

JTabbedPane Creates a multi-tabbed work area. When new JPanel
objects are added to a JTabbedPane, you also specify
either a text label or an icon that appears in the tab
for the JPanel.

JscrollPane Provides a scrolling viewing area to which other
components can be added.

The JFC provides a far richer set of components than AWT. Still, I usually use AWT
because programs using JFC tend to take longer to start running and are not quite as
responsive. That said, JFC provides many cool features, such as editing styled text, dis-
playing HTML, and so on. The examples in this chapter do not demonstrate drawing
lines, shapes, or other graphics.

There are several available layout managers that are used to position graphic components
inside a Panel. In the GUI examples in this book, we will not use any layout managers;
we will use a setBounds method to specify the X-Y position of a graphic component and
its width and height. This is a little unusual for Java programs, but I think that it will
make the example programs easier to understand.

GUI Programming Using Java

CHAPTER 32
587

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

3772316072 CH32 7/26/99 2:05 PM Page 587

The example program in Listing 32.11 implements a JFCSample class. This class is
derived from the JFC JFrame class, so when we create a new instance of the JFCSample,
we will get an application window. The class constructor first calls the super class
(JFrame) constructor by using the super keyword. Then three objects are created using
the JPanel, JLabel, and JButton classes.

Listing 32.11 THE JFCsample.java FILE

// File: JFCsample.java

import javax.swing.*; // swing 1.1
//import com.sun.java.swing.*; // swing 1.0
import java.awt.*;
import java.awt.event.*;

public class JFCsample extends JFrame {
private int count = 0;
JLabel countLabel;

public JFCsample() {
super(“JFC Sample Program”);

JPanel panel1 = new JPanel();
countLabel = new JLabel();
JButton countButton = new JButton();
panel1.setLayout(null);
getContentPane().setLayout(null); // different than AWT
setBounds(50, 100, 230, 150);
setVisible(true);
panel1.setVisible(true);
countLabel.setText(“button clicked “ + count + “ times”);
countButton.setLabel(“click me”);
countButton.addMouseListener(
new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {

countLabel.setText(“button clicked “ +
++count + “ times”);

}
});
getContentPane().add(panel1, null); // add with

// null constraints
panel1.setBounds(0, 0, 180, 120);
panel1.add(countLabel, null); // add with

// null constraints
countLabel.setBounds(30, 35, 190, 20);
panel1.add(countButton, null); // add with

// null constraints

Programming the User Interface

PART IV
588

3772316072 CH32 7/26/99 2:05 PM Page 588

countButton.setBounds(40, 65, 100, 30);
}

static public void main(String [] args) {
new JFCsample();

}
}

We then use the setLayout method to set the layout manager for the frame object
(remember, an instance of JFCSample class is also a frame) to null. For JFC, we need to
use the method getContentPane to get the internal container before calling setLayout;
this is different than the AWT example program in Listing 32.9.

Several useful methods are used in this example:

Method Description

getContentPane JFC containers have an internal content pane;
this method gets this object, to which we add
components.

setVisible Sets a Frame and a Panel to be visible.

setSize Sets the width and height of a component.

setLabel Sets the label text for an instance of Label,
Button, and so on.

setText Sets the text of the Label object used to specify how
many times the button is clicked.

setBounds Sets the X an Y position and the width and height of
a graphic component.

add Adds the label and the button to the panel, and adds
the panel to the frame.

Figure 32.3 shows the JFCsample.java program running.

GUI Programming Using Java

CHAPTER 32
589

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

FIGURE 32.3
The JFCsample
program demon-
strates event-
handling using
anonymous inner
classes with the
JFC API.

3772316072 CH32 7/26/99 2:05 PM Page 589

The only thing at all complicated about this example is handling the events associated
with the user clicking on the button object. However, these events are handled with only
a few lines of code in the same way that we handled events in the AWT example pro-
gram in Listing 32.9:

countButton.addMouseListener(
new java.awt.event.MouseAdapter() {

public void mouseClicked(MouseEvent e) {
countLabel.setText(“button clicked “ +

++count + “ times”);
}

});

The addMouseListener method is used to associate an instance of the MouseListener
with a button (or any other component). Now, it is possible to define a separate class that
implements the MouseListener listener interface (which requires defining five methods:
mouseClicked, mouseEntered, mouseExited, mousePressed, and mouseReleased).
However, there is a MouseAdapter utility class that defines “do nothing” versions of
these five methods. In this code example, we are creating an anonymous inner class (for
example, it is an inner class with no name associated with it) that overrides the
mouseClicked. Our mouseClicked method uses the setText method to change the dis-
played text of a label. In Listing 32.13 we import all classes and interfaces from the
packages java.awt (for the graphic components and containers) and java.awt.event
(for the event-handling classes and interfaces), and from the package javax.swing to get
the Swing (or JFC) classes.

In Listing 32.11, we define a static public main method that is executed when we
compile and run this sample program by typing:

javac JFCSample.java
java JFCSample

The JFCSample program does not handle window closing events, so it must be terminated
by typing Ctrl+C in the terminal window where you run the program.

Writing a Chat Program Using JFC
We will develop the ChatJFC program in this section. It is almost identical to the
ChatAWT program, only it uses the JFC classes instead of the AWT classes. Both pro-
grams were shown in Figure 32.2.

The sample program in Listing 32.12 that implements a chat client using JFC is a little
complex because the user interface has several components. Each component is posi-
tioned by an X-Y location in a panel and is sized to a specific width and height using the
setBounds method. Before looking at the code in Listing 32.12, you should look at the

Programming the User Interface

PART IV
590

3772316072 CH32 7/26/99 2:05 PM Page 590

bottom of Figure 32.2, which shows the ChatJFC program running. The ChatJFC pro-
gram uses the ChatEngine class. The interface to ChatEngine is very simple and was
covered in a previous section. The ChatJFC class implements the ChatListener interface
and registers itself with an instance of ChatEngine. This registration allows the chat
engine object to call the receiveText method (required to implement the ChatListener
interface) in the ChatJFC class.

Listing 32.12 THE ChatJFC.java FILE

// File: ChatJFC.java

import javax.swing.*; // swing 1.1
//import com.sun.java.swing.*; // swing 1.0
import java.awt.*;
import java.awt.event.*;

public class ChatJFC extends JFrame implements ChatListener{
JPanel jPanel1 = new JPanel();
JTextField myPortField = new JTextField();
JLabel label1 = new JLabel();
JLabel label2 = new JLabel();
JTextField hostField = new JTextField();
JLabel label3 = new JLabel();
JTextField portField = new JTextField();
JLabel label4 = new JLabel();
JTextField inputField = new JTextField();
JLabel label5 = new JLabel();
JButton listenButton = new JButton();
JButton connectButton = new JButton();
JButton disconnectButton = new JButton();
JButton quitButton = new JButton();
JTextArea outputField = new JTextArea();
JScrollPane jScrollPane1 = new JScrollPane();

protected ChatEngine chatEngine;

public ChatJFC() {
super(“Chat with JFC GUI”);
chatEngine = new ChatEngine();
chatEngine.registerChatListener(this);
this.setSize(575, 348);
setVisible(true);
jPanel1.setLayout(null);
jPanel1.setBounds(5, 16, 595, 343);
outputField.setRows(500);
jScrollPane1.setBounds(66, 92, 498, 168);
this.getContentPane().setLayout(null);
quitButton.setBounds(448, 280, 121, 32);

GUI Programming Using Java

CHAPTER 32
591

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

continues

3772316072 CH32 7/26/99 2:05 PM Page 591

Listing 32.12 CONTINUED

quitButton.addMouseListener(
new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {

System.exit(0);
}

});
quitButton.setLabel(“Quit”);
this.setSize(592, 371);
label1.setFont(new Font(“Dialog”, 1, 12));
label1.setBounds(1, 5, 69, 33);
label1.setText(“My port”);
myPortField.setBounds(62, 11, 100, 24);
myPortField.setText(“8000”);
label2.setFont(new Font(“Dialog”, 1, 12));
label2.setBounds(200, 3, 93, 38);
label2.setText(“Remote host”);
hostField.setBounds(299, 7, 129, 27);
hostField.setText(“localhost”);
label3.setFont(new Font(“Dialog”, 1, 12));
label3.setBounds(433, 5, 45, 36);
label3.setText(“Port”);
portField.setBounds(469, 9, 93, 27);
portField.setText(“8192”);
label4.setFont(new Font(“Dialog”, 1, 12));
label4.setBounds(4, 43, 60, 28);
label4.setText(“Input”);
inputField.setBounds(65, 47, 507, 34);
inputField.setText(“ “);
inputField.addKeyListener(
new java.awt.event.KeyAdapter() {
public void keyPressed(KeyEvent e) {

if (e.getKeyCode() == ‘\n’) {
chatEngine.send(inputField.getText());

}
}

});
label5.setFont(new Font(“Dialog”, 1, 12));
label5.setBounds(0, 90, 58, 34);
label5.setText(“Output”);
listenButton.setBounds(5, 281, 163, 33);
listenButton.setLabel(“Start listening”);
listenButton.addMouseListener(
new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {

chatEngine.startListening(
Integer.parseInt(myPortField.getText()));

}
});

Programming the User Interface

PART IV
592

3772316072 CH32 7/26/99 2:05 PM Page 592

connectButton.setBounds(175, 280, 136, 34);
connectButton.addMouseListener(
new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {

chatEngine.connect(hostField.getText(),
Integer.parseInt(portField.getText()));

}
});
connectButton.setLabel(“Connect”);
disconnectButton.setBounds(315, 280, 127, 33);
disconnectButton.addMouseListener(
new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {

chatEngine.connect(hostField.getText(),
Integer.parseInt(portField.getText()));

}
});
disconnectButton.setLabel(“Disconnect”);
this.getContentPane().add(jPanel1, null);
jPanel1.add(label1, null);
jPanel1.add(myPortField, null);
jPanel1.add(label2, null);
jPanel1.add(hostField, null);
jPanel1.add(label3, null);
jPanel1.add(portField, null);
jPanel1.add(label4, null);
jPanel1.add(inputField, null);
jPanel1.add(label5, null);
jPanel1.add(listenButton, null);
jPanel1.add(connectButton, null);
jPanel1.add(disconnectButton, null);
jPanel1.add(quitButton, null);
jPanel1.add(jScrollPane1, null);
jScrollPane1.getViewport().add(outputField, null);

}
private String output_string = “”;
public void receiveText(String s) {

if (s == null) return;
output_string = output_string + s;
outputField.setText(output_string + “\n”);

}

static public void main(String [] args) {
new ChatJFC();

}
}

GUI Programming Using Java

CHAPTER 32
593

32

G
U

I
P

R
O

G
R

A
M

M
IN

G
U

SIN
G

JA
V

A

3772316072 CH32 7/26/99 2:05 PM Page 593

The ChatJFC program is very similar to the ChatAWT program. I wrote the ChatJFC pro-
gram by copying the ChatAWT program and doing the following:

• Adding the import swing (JFC) package statement.

• Changing Label to JLabel, Button to JButton, and so on.

• Using the getContentPane method where required to get the internal container for
adding components and setting the layout manager to null.

Using Native Java Compilers
There are two native mode Java compilers under development, one by TowerJ
(www.towerj.com) and the other by Cygnus (www.cygnus.com). At the time this chapter
was written (March 1999), the Cygnus compiler was available only in early test releases,
but it looked promising. The TowerJ compiler is a commercial product. I have used it for
three programs, and I have seen performance improvements from a factor of four to a
factor of 11 over using a JIT (Just In Time compiler). One of the benefits of Java is the
portability of its byte code. However, for server-side programs, giving up portability in
favor of large performance improvements is often a good option.

Summary
This short chapter has hopefully given you both a quick introduction to the Java language
and the motivation to study the language further. There are many sources of information
for programming Java on the Internet. Because Web site links change, I will keep current
links to my favorite Java resources on the Internet at my Web site
(www.markwatson.com/books/linux_prog.html).

Many interesting topics were not covered in this short chapter, such as:

• Drawing graphics

• Writing applets that run inside of Web browsers

• More techniques for handling user interface events

If you are primarily a C or C++ programmer, I urge you to also learn Java. I have been
using C for 15 years and C++ for 10 years, but I prefer Java for most of my development
work. Yes, it is true that Java programs will run slower than the equivalent C or C++ pro-
grams. However, after using Java for about 3 years, I believe that Java enables me to
write a large application in about half the time it takes to write the same application in
C++. I have talked with other developers who agree that they are approximately twice as
productive when programming in Java instead of C or C++.

Programming the User Interface

PART IV
594

3772316072 CH32 7/26/99 2:05 PM Page 594

IN THIS CHAPTER

• OpenGL is a Software Interface to
Graphics Hardware 596

• The Orbits Sample Program 597

33
C

H
A

PT
ER

OpenGL/Mesa
Graphics
Programming

by Mark Watson

3872316072 CH33 7/26/99 2:04 PM Page 595

The OpenGL API was developed at Silicon Graphics and has become an industry standard
for high-quality 3D graphics. Although there are commercial ports of OpenGL to Linux, a
high-quality public domain OpenGL-like implementation called Mesa has been written by
Brian Paul. Mesa can not be called OpenGL because it is not licensed from Silicon
Graphics, but I have found it to be an effective tool for OpenGL programming on Linux.
Mesa might be included with your Linux distribution. Although I assume that you have
installed and are using Mesa, I will refer to OpenGL in this chapter. I will keep a current
link to the Mesa distribution on my web site.

The OpenGL API is complex. We will use one simple example in this chapter to illustrate
how to use the OpenGL auxiliary library to draw simple shapes, placing and rotating the
shapes under program control. We will also learn how to use lighting effects and how to
change the viewpoint. For most 3D graphics applications (like games), you need a sepa-
rate modeling program to create 3D shapes, and you also need specialized code to use
these shapes in OpenGL programs. The topics of modeling 3D images and using them in
OpenGL programs is beyond the scope of this introductory chapter.

Before reading this chapter, please download the latest Mesa distribution and install it in
your home directory. The sample program for this chapter is located in the src/OpenGL
directory on the CD-ROM. You will have to edit the first line of Makefile to reflect the
path in your home directory where you have installed Mesa. The example program uses
the OpenGL Utilities Library (GLUT). OpenGL itself is operating system- and device-
independent. The GLUT library allows programmers to initialize OpenGL, create windows,
and so on in a portable way. There are three example directories in the Mesa installation
directory: book, demos, and samples. Please make sure that building Mesa also built exe-
cutables for the many sample programs in these three directories. Then edit the first line
of Makefile for the example program for this chapter and try running it to make sure
that Mesa is set up properly on your computer. A few of the example programs in the
Mesa distribution may not run with your graphics card; do not worry about this.

OpenGL is a Software Interface to
Graphics Hardware
There are OpenGL software interface implementations for most 3D graphics cards, so
OpenGL and Mesa will probably run efficiently on your computer unless you have a very
old graphics card. Microsoft supports OpenGL on Windows 95, 98, and NT, so the pro-
grams that you develop under Linux using Mesa will probably run with few modifica-
tions under Windows. I worked at a computer animation company, Angel Studios

Programming the User Interface

PART IV
596

3872316072 CH33 7/26/99 2:04 PM Page 596

(www.angel.com), where we used proprietary software for rendering real-time 3D graph-
ics on a wide variety of hardware, including Nintendo Ultra-64, Windows, and SGI
workstations. This proprietary software, as an option, used OpenGL to talk with graphics
hardware.

The Orbits Sample Program
There are many features of OpenGL that we are not covering in the orbits example pro-
gram for this chapter (for example, the use of display lists and texture mapping). The
sample program in this section does illustrate several OpenGL programming techniques,
but it is also simple enough for a tutorial example. The example program orbits.c is
located in the src/OpenGL directory.

The sample program uses the GLUT function glutSolidSphere to draw both a large
“planet” and a small orbiting satellite. This example demonstrates the following:

• Creating a window for OpenGL graphics and initializing OpenGL

• Creating simple 3D objects using GLUT

• Placing objects anywhere in a three-dimensional space using X-Y-Z coordinates

• Rotating an object about any or all of the x-, y-, and z-axes.

• Enabling the use of material properties so objects can be colored

• Enabling depth tests so that rendered objects close to the viewer correctly cover
objects that are obscured

• Handling keyboard events

• Updating OpenGL graphics for animation effects

These operations are performed using both the OpenGL core API and the OpenGL utility
library. All OpenGL implementations include the OpenGL utility library, so the simple
example in this chapter should be easily portable to other operating systems and OpenGL
implementations.

OpenGL uses a modeling coordinate system where the X coordinate moves increasingly
toward the right on the screen, the Y coordinate moves increasingly upward, and the z
coordinate increases looking into the screen. The origin (for example, at X=Y=Z=0) is
located at the center of the screen.

The sample program cycles viewing angle, plus smooth or flat shading, when you hit any
key (except for an escape, or q characters, that halt the program) while the program is
running.

OpenGL/Mesa Graphics Programming

CHAPTER 33
597

33

O
PENG

L/M
ESA

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

3872316072 CH33 7/26/99 2:04 PM Page 597

Figure 33.1 shows the orbits sample program running in the default smooth-shaded
mode. The background color was changed to white for this figure; the program on the
CD-ROM has a black background.

Programming the User Interface

PART IV
598

FIGURE 33.1
The orbits pro-
gram running
with smooth-
shading.

Creating a Window for OpenGL Graphics and
Initializing OpenGL
In this chapter, we will use the following OpenGL utility library functions to initialize
OpenGL, the GLUT library, and to create a window for drawing:

Function Description

glutInit Initializes GLUT and OpenGL.

glutInitDisplayMode Sets display properties (our example program will set
properties allowing for double buffering, depth queu-
ing, and use of RGB colors).

glutInitWindowSize Sets the size of the main window.

glutInitWindowPosition Positions the main window on the desktop or X
Windows display.

glutCreateWindow Actually creates the main window.

3872316072 CH33 7/26/99 2:04 PM Page 598

The initialization code in the sample program looks like the following:

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize(500, 500);
glutInitWindowPosition(100, 100);
glutCreateWindow(argv[0]);

In calling glutInitDisplay, we use the following constants:

Constant Description

GLUT_DOUBLE Enables double buffering for smooth animation.

GLUT_RGB Specifies the use of RGB color table.

GLUT_DEPTH Enables the use of a depth buffer to determine when one
object is obscuring another in a scene.

Creating Simple 3D Objects Using GLUT
There are several GLUT utility functions for creating both wire frame and solid objects. To
create a sphere, use either of the following:

void glutSolidSphere(GLdouble radius, GLint slices,
GLint stacks);

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

Here, radius is the radius of the sphere. The slices argument is the number of flat
bands created around the z-axis. The higher the number of slices, the rounder the sphere.
The stacks argument is the number of flat bands along the z-axis. The higher the slices
value, the rounder the sphere. Lower slices and stacks values produce shapes that are
drawn quicker. A sphere is drawn (or rendered) centered at the origin in modeling coordi-
nates (for example, when the OpenGL Matrix mode is in modeling mode; more on this
later).

To create a cube, use either of the following:

void glutSolidCube(GLdouble size);
void glutWireCube(GLdouble size);

The size argument is the length of any edge of the cube.

To draw a cone, use either of the following:

void glutSolidCone(GLdouble base, GLdouble height,
GLint slices, GLint stacks);

void glutWireCone(GLdouble base, GLdouble height,
GLint slices, GLint stacks);

OpenGL/Mesa Graphics Programming

CHAPTER 33
599

33

O
PENG

L/M
ESA

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

3872316072 CH33 7/26/99 2:04 PM Page 599

The base argument is the radius of the cone’s base. The height argument is the height of
the cone. The slices argument is the number of flat bands drawn around the z-axis. The
stacks argument is the number of flat bands drawn about the z-axis. The center of the
base of the cone is placed at X=Y=Z=0 in the modeling coordinate system. The cone
“points” along the z-axis.

If you want to draw a torus, use either of the following GLUT functions:

void glutSolidTorus(GLdouble inner_radius,
GLdouble outer_radius,
GLint nsides, GLint rings);

void glutWireTorus(GLdouble inner_radius,
GLdouble outer_radius,
GLint nsides, GLint rings);

The inner_radius and outer_radius arguments are the inner and outer radii of the
torus. The nsides argument is the number of flat bands drawn for each radial section.
The rings argument is the number of radial bands.

Placing Objects in 3D Space Using X-Y-Z
Coordinates
Before placing objects in a 3D world, we need to make sure that OpenGL is in the model
mode. This is accomplished by calling:

glMatrixMode(GL_MODELVIEW);

We can translate the origin of the model world to coordinates X, Y, and Z by calling:

glTranslatef(GLfloat X, GLfloat Y, GLfloat Z);

One problem that we have is remembering where we have moved the origin. Fortunately,
there are OpenGL utility functions that push the entire state of OpenGL onto a stack, which
pulls the state of OpenGL off a stack. These functions are:

glPushMatrix();
glPopMatrix();

In practice, we usually push the “matrix” (for example, the state of the OpenGL engine),
perform drawing operations on one or more objects, then pop the “matrix” back off the
stack. The following example shows how to draw a sphere of radius equal to 1.0 at
X=10, Y=0.0, and Z=1.0:

glPushMatrix();
{

glColor4f(1.0, 0.0, 0.0, 1.0); // make the sphere red
glTranslatef(10.0, 0.0, 1.0); // translate the model

// coordinate system
glutSolidSphere(1.0, 40, 40); // Draw a very detailed sphere

} glPopMatrix();

Programming the User Interface

PART IV
600

3872316072 CH33 7/26/99 2:04 PM Page 600

As a matter of programming style, I enclose within curly braces any operations between
the “push” and the “pop”; this improves the readability of the code. In this example, we
also see a call to glColor4f that is used to specify the red, green, and blue drawing col-
ors (values are between 0.0 and 1.0). The fourth argument of glColor4f is the alpha
value; an alpha value of 0.0 makes a transparent object—not too useful—and a value of
1.0 makes an entirely opaque object. In the sample program, try changing the alpha
value in the calls in display to a value of 0.5 so that you can see through the rendered
objects.

Rotating an Object About Any or All of the
X-, Y-, and Z- Axes
Rotating objects created with the GLUT utilities for drawing simple shapes is a little more
complicated than changing an object’s X-Y-Z location. In the example program in dis-
play, we draw a central planet that is centered at X=Y=Z=0 and a small satellite that
orbits around the central planet. We will start by looking at the code for rotating the cen-
tral planet about the origin (for example., X=Y=Z=0) of the model coordinate system:

// push matrix, draw central planet, then pop matrix:
glPushMatrix();
{
glRotatef((GLfloat)planet_rotation_period, 0.0, 1.0, 0.0);
glColor4f(1.0, 0.0, 0.0, 1.0);
glutSolidSphere(1.0, 10, 8); // Draw the central planet

} glPopMatrix();

Here, we use a planet_rotation variable that is incremented each time the OpenGL
scene is drawn. This value ranges between 0.0 and 360.0 because the arguments to
glRotatef are in degrees, not radians. The last three arguments of glRotatef specify the
rotation axis. The arguments (0.0, 1.0, 0.0) specify that the angle of rotation is about the
positive y-axis. By slowly varying the value of planet_rotation_period between 0.0
and 360.0, the central planet slowly rotates.

The placement and rotation of the satellite is more complex because we want to both
translate its position and to rotate it. To do this, the code from the example program’s
display function is as follows:

// push matrix, draw satellite, then pop matrix:
glPushMatrix();
{
glRotatef((GLfloat)central_orbit_period, 0.0, 1.0, 0.0);
glTranslatef(1.9, 0.0, 0.0);
glRotatef((GLfloat)-satellite_rotation_period,

0.0, 1.0, 0.0);
glColor4f(0.0, 1.0, 0.0, 1.0);
glutSolidSphere(0.2, 5, 4); // Draw the orbiting satellite

} glPopMatrix();

OpenGL/Mesa Graphics Programming

CHAPTER 33
601

33

O
PENG

L/M
ESA

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

3872316072 CH33 7/26/99 2:04 PM Page 601

Initially, we call glRotatef to rotate the satellite about the origin—just as we did for the
central planet. It is important to realize that the satellite is centered at the origin until we
move it. After rotating the coordinate system, we call glTranslate to move it to model-
ing coordinates (1.9, 0.0, 0.0), and finally rotate the coordinate system once again to sim-
ulate the satellite’s orbit around the planet.

Figure 33.2 shows the orbits sample program running in the flat-shaded mode. The
background color was changed to white for this screen shot; the program on the CD-
ROM has a black background.

Programming the User Interface

PART IV
602

FIGURE 33.2
The orbits pro-
gram running
with flat shading.

Enabling the Use of Material Properties
The example program’s init function sets up the OpenGL environment. The following
function call configures the OpenGL engine to allow us to later use drawing colors:

glEnable(GL_COLOR_MATERIAL);

By default, objects are flat-shaded; init also configures the OpenGL engine to use
smooth-shading. When you press the Spacebar, the example program switches between
smooth- and flat-shading (and also cycles through one of three viewing positions). The
following function call requests a smooth shading drawing model:

glShadeModel(GL_SMOOTH);

We can also use glClearColor to change the default background color for the window.
The first three arguments are the red, green, and blue color values for the background;

3872316072 CH33 7/26/99 2:04 PM Page 602

the last argument specifies the alpha (or transparency) of the background. Here, to make
the background almost black, we use low values for the red, green, and blue background-
color components. Setting the background alpha to zero makes it totally transparent.

glClearColor(0.1, 0.1, 0.1, 0.0);

In Figure 33.1 and Figure 33.2, we set the background to white by passing the value 1.0
for the first three arguments of glClearColor. The example orbits.c on the CD-ROM
sets a black background, however.

Enabling Depth Tests
The example program’s init function sets up the OpenGL environment to use a depth test
to hide obscured objects from view. The following function call configures the OpenGL
engine to allow us to later use this depth-cueing:

glCullFace(GL_BACK);
glEnable(GL_DEPTH_TEST);

In addition to making these two calls, we need to add the GLUT_DEPTH option when set-
ting up the GLUT display mode in the main function:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

Handling Keyboard Events
It is useful to be able to handle keyboard input in OpenGL graphics programs. Using the
GLUT library, this is easily done using a Callback function that is called with the key
value whenever any key on the keyboard is pressed. The sample program uses the fol-
lowing Callback function:

void key_press_callback(unsigned char key, int x, int y)

We will use the first argument key and ignore the last two arguments in the example pro-
gram. We register this Callback function in the main function by calling:

glutKeyboardFunc(key_press_callback);

Updating OpenGL Graphics for Animation
Effects
In the example program, we use a display Callback function that is called by the GLUT
library whenever the window needs to be redrawn. The function signature for display is:

void display(void)

OpenGL/Mesa Graphics Programming

CHAPTER 33
603

33

O
PENG

L/M
ESA

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

3872316072 CH33 7/26/99 2:04 PM Page 603

We register this Callback function in main by calling:

glutDisplayFunc(display);

The last thing that display does before returning is to request an immediate redraw
event by calling:

glutPostRedisplay();

This effectively causes the OpenGL engine and the GLUT event-handler to update the ani-
mation continually.

Sample Program Listing
We have seen pieces of most of the example program in the last few sections. In this sec-
tion, we will list out the entire file with a few additional comments. This example, as
seen in Listing 33.1, uses a single include file glut.h for using both OpenGL/Mesa and
the OpenGL utility functions.

Listing 33.1 THE orbits.c FILE

#include <GL/glut.h>

void init(void)
{

glClearColor(0.1, 0.1, 0.1, 0.0);
glEnable(GL_COLOR_MATERIAL);
glShadeModel(GL_SMOOTH);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glEnable(GL_DEPTH_TEST);

}

void display(void) {

static int central_orbit_period = 0;
static int planet_rotation_period = 0;
static int satellite_rotation_period = 0;

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// push matrix, draw central planet, then pop matrix:
glPushMatrix();
{
glRotatef((GLfloat)planet_rotation_period, 0.0, 1.0, 0.0);
glColor4f(1.0, 0.0, 0.0, 1.0);

Programming the User Interface

PART IV
604

3872316072 CH33 7/26/99 2:04 PM Page 604

glutSolidSphere(1.0, 10, 8); // Draw the central planet
} glPopMatrix();

// push matrix, draw satellite, then pop matrix:
glPushMatrix();
{
glRotatef((GLfloat)central_orbit_period, 0.0, 1.0, 0.0);
glTranslatef(1.9, 0.0, 0.0);
glRotatef((GLfloat)-satellite_rotation_period,

0.0, 1.0, 0.0);
glColor4f(0.0, 1.0, 0.0, 1.0);
glutSolidSphere(0.2, 5, 4); // Draw the orbiting satellite

} glPopMatrix();

glutSwapBuffers();
central_orbit_period = (central_orbit_period + 2) % 360;
planet_rotation_period = (planet_rotation_period + 1) % 360;
satellite_rotation_period =

(satellite_rotation_period + 6) % 360;
glutPostRedisplay();

}

void reshape(int w, int h) {
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60.0, (GLfloat)w/(GLfloat)h, 1.0, 20.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

}

void cycle_view() {
static int count = 0;
static int shade_flag = 0;
if (++count > 2) {
count = 0;
shade_flag = 1 - shade_flag;

}
glLoadIdentity();
switch (count)
{
case 0:
gluLookAt(0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
break;

case 1:
gluLookAt(0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);
break;

OpenGL/Mesa Graphics Programming

CHAPTER 33
605

33

O
PENG

L/M
ESA

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

3872316072 CH33 7/26/99 2:04 PM Page 605

case 2:
gluLookAt(0.0, 0.5, -3.3, 1.0, 0.0, 0.0, -0.7, 0.2, 0.4);
break;

}
if (shade_flag == 0) glShadeModel(GL_SMOOTH);
else glShadeModel(GL_FLAT);

}

void key_press_callback(unsigned char key, int x, int y) {
switch (key)
{
case 27: /* escape character */
case ‘q’:
case ‘Q’:
exit(1);

default:
cycle_view();
break;

}
}

int main(int argc, char *argv[]) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize(500, 500);
glutInitWindowPosition(100, 100);
glutCreateWindow(argv[0]);
init();
glutKeyboardFunc(key_press_callback);
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return 0;

}

This simple sample program demonstrates how to animate simple geometric objects.
This program can be used as a foundation for writing simple 3D games that use only the
“canned” 3D shapes (such as spheres, cubes, cones, and so on), which are defined in the
OpenGL utility library. More information about OpenGL is available at

http://www.opengl.org/

More information on Mesa can be found at:

http://www.opengl.org/Documentation/Implementations/Mesa.html

Programming the User Interface

PART IV
606

Listing 33.1 CONTINUED

3872316072 CH33 7/26/99 2:04 PM Page 606

Special Programming
Techniques PART

V
IN THIS PART

• Shell Programming with GNU bash 609

• Secure Programming 639

• Debugging: GNU gdb 687

3972316072 part5 7/26/99 2:30 PM Page 607

3972316072 part5 7/26/99 2:30 PM Page 608

IN THIS CHAPTER

• Why bash? 610

• bash Basics 610

• Using bash Variables 613

• Using bash Operators 615

• Flow Control 619

• Shell Functions 628

• Input and Output 629

• Command-line Processing 633

• Processes and Job Control 635

34
C

H
A

PT
ER

Shell
Programming with
GNU bash

by Kurt Wall

4072316072 CH34 7/26/99 2:28 PM Page 609

Within the first two days of becoming a Linux user in 1993, I wrote my first bash script,
a very kludgy effort to automate my backups. This anecdote illustrates how pervasive
shell scripting is in Linux. In this chapter, I will give you a firm foundation in the basics
of bash shell programming.

Why bash?
GNU’s bash (Bourne Again Shell, named in punning homage to the Bourne shell and its
author, Steven Bourne) is Linux’s default shell. Written by Brian Fox and maintained by
Chet Ramey, bash’s most popular features are its rich command-line editing facilities
and its job control abilities. From the programmer’s perspective, bash’s chief advantages
are its customizability and the complete programming environment it provides, including
function definitions, integer math, and a surprisingly complete I/O interface. As you
might expect of a Linux utility, bash contains elements of all of the popular shells,
Bourne, Korn, and C shell, as well as a few innovations of its own. As of this writing, the
current release of bash is 2.0.3. Most Linux distributions, however, use the tried and test-
ed 1.14 version. Nevertheless, I will cover bash version 2, pointing out features not
available in earlier versions as they arise, because version 2 is much closer to POSIX
compliance than version 1.

bash Basics
Throughout this chapter, I assume that you are comfortable using bash, so my discussion
focuses on bash’s features from the shell programmer’s perspective. By way of review,
however, I will refresh your memory of bash’s wildcard operators and its special charac-
ters.

Wilcards
bash’s wildcard operators are *, ?, and the set operators, [SET] and [!SET]. * matches
any string of characters and ? matches any single character. Suppose you have a directo-
ry containing the following files:

$ ls
zeisstopnm zic2xpm zipgrep zipsplit znew
zcmp zforce zip zipinfo zless
zdiff zgrep zipcloak zipnote zmore

The command ls zi* matches zic2xpm, zip, zipcloak, zipgrep,zipinfo, and
zipsplit, but ls zi? only matches zip.

Special Programming Techniques

PART V
610

4072316072 CH34 7/26/99 2:28 PM Page 610

The set operators allow you to use either a range or a disjoint set of characters as wild-
cards. To specify an inclusive range of characters, use a hyphen between characters. For
example, the set [a-o] includes all of the lowercase characters “a” through “o.” Use a
comma to indicate a disjoint set, such as the range of characters between “a” and “h” and
between “w” and “z”. In bash’s set notation, this range of characters could be specified
with “[a-h,w-z]”. If you want to look only for a few individual characters, such as all of
the English vowels, the notation “[aeiou]” would do. The “!” prefixing a set means to
include everything not in the set. So, an easy way to look for all of the consonants is to
write [!aeiou].

The following examples illustrate using the set notation and also how you can use the
wildcard operators with sets. To list all of the files in the directory above whose second
letter is a vowel, you could write:

$ ls z[aeiou]*

This will match zeisstopnm, zip zipgrep, zipnote, zic2xpm,zipcloak, zipinfo, and
zipsplit. On the other hand, to list the files that have only consonants as their second
letter, use lsz[!aeiou]*, which matches zcmp, zdiff, zforce, zgrep, zless, zmore, and
znew. The command, ls *[0-9]* matches only those filenames containing at least one
numeric digit between zero and nine, which is zic2xpm in this case.

Brace Expansion
Brace expansion is a more general case of the filename globbing enabled by wildcard
characters. The basic format of an expression using brace expansion follows:

[preamble]{str1[,str2[,...]]}[postscript]

Each string inside the braces will be matched with the optional preamble and postscript.
For example, the following statement

$ echo c{ar,at,an,on}s

results in

cars cats cans cons

Because brace expressions can be nested, the preceding statement could be rewritten as
follows to obtain the same output:

$ echo c{a{r,t,n},on}s

Shell Programming with GNU bash

CHAPTER 34
611

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

4072316072 CH34 7/26/99 2:28 PM Page 611

Special Characters
The wildcard and set operators are four examples of bash’s special characters—charac-
ters that have a specific meaning to bash. Table 34.1 lists all of the special characters,
with a brief description of each one.

Table 34.1 bash SPECIAL CHARACTERS

Character Description

< Redirect input

> Redirect output

(Start subshell

) End subshell

| Pipe

\ Quote (escape) the next character

& Execute command in background

{ Start command block

} End command block

~ Home directory

` Command substitution

; Command separator

Comment

‘ Strong quote

“ Weak quote

$ Variable expression

* String wildcard

? Single character wildcard

Input and output redirection should be familiar to you. Although I will discuss subshells
later in this chapter, it is important to note that all the commands between (and) are
executed in a subshell. Subshells inherit some of the environment variables, but not all of
them. This behavior is different from commands in a block (blocks are delimited by {
and }), which are executed in the current shell and thus retain all of the current environ-
ment.

The command separator, ;, allows you to execute multiple bash commands on a single
line. But more importantly, it is the POSIX-specified command terminator.

Special Programming Techniques

PART V
612

4072316072 CH34 7/26/99 2:28 PM Page 612

The comment character, #, causes bash to ignore everything from the character to the
end of the line. The difference between the strong quote and weak quote characters,
‘ and “, respectively, is that the strong quote forces bash to interpret all special charac-
ters literally; the weak quote only protects some of bash’s special characters from
interpretation as special characters.

Using bash Variables
As you might expect, bash, has variables. Usually they are character strings, but bash
also has special facilities for dealing with numeric (integer) values, too. To assign a value
to a variable, use the following syntax:

varname=value

To obtain a variable’s value, you can use one of the following two formats:

$varname
${varname}

The second form, ${varname}, is the more general format and also more difficult to type.
However, you must use it to distinguish variables from trailing letters, digits, or under-
scores. For example, suppose you have a variable named MYNAME and you want to display
its value followed by an underscore character. You might be tempted to try the following
command:

$ echo $MYNAME_

but this attempt will fail because bash will attempt to print the value of the variable
MYNAME_, not MYNAME. In this situation, you must use the second syntax, as illustrated
below:

$ echo ${MYNAME}_

Listing 34.1 illustrates this subtlety.

Listing 34.1 VARIABLE SYNTAX

1 #!/bin/bash
2 # Listing 34.1
3 # varref.sh - Variable syntax
4 #############################
5
6 MYNAME=”Kurt Wall”
7 echo ‘${MYNAME}_ yields: ‘ ${MYNAME}_
8 echo ‘$MYNAME_ yields: ‘ $MYNAME_

Shell Programming with GNU bash

CHAPTER 34
613

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

4072316072 CH34 7/26/99 2:28 PM Page 613

The strong quotes on lines 7 and 8 prevent bash from expanding the variables. As you
can see in the script’s output below, $MYNAME_ is empty and prints nothing, but
${MYNAME}_ produces the expected output.

$./varref.sh
${MYNAME}_ yields: Kurt Wall_
$MYNAME_ yields:

In addition to user-defined variables, bash comes with numerous built-in or predefined
variables. Many of these are environment variables, such as $BASH_VERSION or
$DIRSTACK. Another subset of predefined variables are the positional parameters that con-
tain the command-line arguments, if any, passed to the script (shell functions, covered
later, also accept arguments). The parameter “$0” contains the name of the script; the
actual parameters begin at “$1” (if there are more than nine, you must use the ${} syn-
tax—for example, “${10}” to obtain their values). The positional parameters passed to
each script or function are local and read-only to those functions. However, other vari-
ables declined in a function are global by default, unless you declare them otherwise
with the local keyword.

bash also has three special positional parameters, “$#”, “$@”,and “$#”. “$#” evaluates to
the number of positional parameters passed to a script or a function (not counting “$0”).
“$*” is a list of all the positional parameters, except “$0”, formatted as a single string
with each parameter separated by the first character the $IFS, the internal field separator
(another bash environment variable). “$@”, on the other hand, is all of the positional
parameters presented as N separate double-quoted strings.

What is the difference between “$*” and “$@”? And why the distinction? The difference
allows you to treat command-line arguments in two ways. The first format, “$*”, because
it is a single string, can be displayed more flexibly without requiring a lot of shell code
to do so. “$@”, on the other hand, allows you to process each argument individually
because its value is N separate arguments. Listing 34.2 illustrates the differences between
“$#” and “$@”.

Listing 34.2 POSITIONAL PARAMETERS

1 #!/bin/bash
2 # Listing 34.2
3 # posparm.sh - Using positional parameters
4 ##
5
6 function cntparm
7 {
8 echo -e “inside cntparm $# parms: $*\n”
9 }

Special Programming Techniques

PART V
614

4072316072 CH34 7/26/99 2:28 PM Page 614

10
11 cntparm “$*”
12 cntparm “$@”
13
14 echo -e “outside cntparm $*\n”
15 echo -e “outside cntparm $#\n”

This script’s output is as follows:

1 $./posparm.sh Kurt Roland Wall
2 inside cntparm 1 parms: Kurt Roland Wall
3
4 inside cntparm 3 parms: Kurt Roland Wall
5
6 outside cntparm Kurt Roland Wall

7
8 outside cntparm Kurt Roland Wall

Lines 11 and 12 in particular illustrate the practical difference between the positional
parameters, $* and $@. For the time being, treat the function definition and calls as a
black box. Line 11, using “$*”, passes the positional parameters as a single string, so
that cntparm reports a single parameter, as show on line 2 of the output list. The second
call to cntparm, however, passes the script’s command-line arguments as 3 separate
strings, so the cntparm reports three parameters (line 4). There is no functional differ-
ence in the appearance of the parameters when printed, however, as lines 6 and 8 of the
output make clear.

The -e option to the echo command forces it to print the \n sequence as a new line
(lines 8, 14, and 15). If you do not use the -e option, do not force a new line with \n
because echo automatically adds one to its output.

Using bash Operators
I introduce many of bash’s operators in the course of discussing other subjects. In this
section, however, I acquaint you with bash’s string- and pattern-matching operators.
Later sections will use these operators frequently, so covering them now will make the
other sections proceed smoothly.

String Operators
The string operators, also called substitution operators in bash documentation, test
whether a variable is unset or null. Table 34.2 lists these operators with a brief descrip-
tion of each operator’s function.

Shell Programming with GNU bash

CHAPTER 34
615

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

4072316072 CH34 7/26/99 2:28 PM Page 615

Table 34.2 bash STRING OPERATORS

Operator Function

${var:-word} If var exists and is not null, returns its value, else
returns word.

${var:=word} If var exists and is not null, returns its value, else
sets var to word, then returns its value.

${var:+word} If var exists and is not null, returns word, else
returns null.

${var:?message} If var exists and is not null, returns its value, else
displays “bash: $var:$message” and aborts the cur-
rent command or script.

${var:offset[:length]} Returns a substring of var beginning at offset of
length length. If length is omitted, the entire string
from offset will be returned.

To illustrate, consider a shell variable status initialized to defined. Using the first four
string operators from Table 34.2 on status results in the following:

$ echo ${status:-undefined}
defined
$ echo ${status:=undefined}
defined
$ echo ${status:+undefined}
undefined
$ echo ${status:?Dohhh\! undefined}
defined

Now, using the unset command to delete status’s definition from the environment, and
executing the same commands, the output is as follows:

$ unset status
$ echo ${status:-undefined}
undefined
$ echo ${status:=undefined}
undefined
$ echo ${status:+undefined}
undefined
$ unset status
$ echo ${status:?Dohhh\! undefined}
bash: status: Dohhh! undefined

It was necessary to unset status a second time because the third command, echo ${sta-
tus:+undefined}, reset status to undefined upon executing.

Special Programming Techniques

PART V
616

4072316072 CH34 7/26/99 2:28 PM Page 616

The substring operators listed at the bottom of Table 34.2 are especially useful for, well,
obtaining substrings. Consider a variable foo with the value Bilbo_the_Hobbit. The
expression ${foo:7} returns he_Hobbit, while ${foo:7:5} returns he_Ho. These two
operators are best used when working with data that is in a known, and fixed, format
(such as the output of the ls command). Be aware, though, that ls’s output format varies
widely among the various UNIX-like operating systems, so this sort of shell code would
not be portable.

Pattern-Matching Operators
Pattern-matching operators are most useful for working with freely formatted strings or
variable-length records delimited by fixed characters. The $PATH environment variable is
an example. Although it can be quite long, the individual directories are colon-delimited.
Table 34.3 lists bash’s pattern-matching operators and their function.

Table 34.2 bash PATTERN-MATCHING OPERATORS

Operator Function

${var#pattern} Deletes the shortest match of pattern from the front of
var and returns the rest.

${var##pattern} Deletes the longest match of pattern from the front of
var and returns the rest.

${var%pattern} Deletes the shortest match of pattern from the end of
var and returns the rest.

${var%%pattern} Deletes the longest match of pattern from the end of
var and returns the rest.

${var/pattern/string} Replaces the longest match of pattern in var with
string. Replaces only the first match. This operator is
only available in bash 2.0 or greater.

${var//pattern/string} Replaces the longest match of pattern in var with
string. Replaces all matches. This operator is only
available in bash 2.0 or greater.

The canonical usage of bash’s pattern-matching operators is manipulating file and path
names. For example, suppose you have a shell variable named myfile that has the value
/usr/src/linux/Documentation/ide.txt (which is the documentation for the kernel’s
IDE disk driver). Using “/*” and “*/” as the pattern, you can emulate the behavior of
the dirname and basename commands, as the output from Listing 34.3 illustrates.

Shell Programming with GNU bash

CHAPTER 34
617

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

4072316072 CH34 7/26/99 2:28 PM Page 617

Listing 34.3 PATTERN-MATCHING OPERATORS

1 #!/bin/bash
2 # Listing 34.3
3 # pattern.sh - Demonstrate pattern matching operators
4 ###
5
6 myfile=/usr/src/linux/Documentation/ide.txt
7
8 echo ‘${myfile##*/}=’ ${myfile##*/}
9 echo ‘basename $myfile =’ $(basename $myfile)
10
11 echo ‘${myfile%/*}=’ ${myfile%/*}
12 echo ‘dirname $myfile =’ $(dirname $myfile)

Line 8 deletes the longest string matching “*/” in the filename, starting from the begin-
ning of the variable, which deletes everything through the final “/”, returning just the
filename. Line 11 matches anything after “/”, starting from the end of the variable,
which strips off just the filename and returns the path to the file. The output of this script
is:

$./pattern.sh
${myfile##*/} = ide.txt
basename $myfile = ide.txt
${myfile%/*} = /usr/src/linux/Documentation
dirname $myfile = /usr/src/linux/Documentation

To illustrate the pattern-matching and replacement operators, the following command
replaces each colon in the $PATH environment variable with a new line, resulting in a
very easy to read path display (this example will fail if you do not have bash 2.0 or
newer):

$ echo -e ${PATH//:/\\n}
/usr/local/bin
/bin
/usr/bin
/usr/X11R6/bin

Special Programming Techniques

PART V
618

NOTE

The dirname command strips the non-directory suffix from a filename passed to
it as an argument and prints the result to standard output. Conversely, basename
strips directory prefixes from a filename. Part of the GNU shell utilities, dirname
and basename have pathetic man pages, so if you want more information, you
will have to read the info pages. To quote their manual pages, “[t]he Texinfo
documentation is now the authoritative source.”

4072316072 CH34 7/26/99 2:28 PM Page 618

/home/kwall/bin
/home/wall/wp/wpbin

Of course, your path statement will look somewhat different. The -e argument to echo
tells it to interpret the \n as a new line rather than a literal string. Perversely, however,
you have to escape the escape (\\n) to get the new lines into the variable in order for
echo to interpret them.

Flow Control
The few shell scripts presented so far have been fall-through scripts, lacking any control
structures such as loops and conditionals. Any programming language worth the name
must have facilities for repeating certain code blocks multiple times and for conditionally
executing, or not executing, other code blocks. In this section, you will meet all of
bash’s flow-control structures, which include the following:

• if—Executes one or more statements if a condition is true or false.

• for—Executes one or more statements a fixed number of times.

• while—Executes one or more statements while a condition is true or false.

• until—Executes one or more statements until a condition becomes true or false.

• case—Executes one or more statements depending on the value of a variable.

• select—Executes one or more statements based upon an option selected by a user.

Conditional Execution: if
bash supports conditional execution of code using the if statement, although its evalua-
tion of the condition is slightly different from the behavior of the if statement of lan-
guages like C or Pascal. This peculiarity aside, bash’s if statement is just as fully
featured as C’s. Its syntax is summarized below.

if condition
then
statements
[elif condition
statements]
[else
statements]
fi

First, be sure you understand that if checks the exit status of the last statement in
condition. If it is 0 (true), then statements will be executed, but if it is non-zero,
the else clause, if present, will be executed and control jumps to the first line of code fol-
lowing fi. The (optional) elif clause(s) (you can have as many as you like) will be

Shell Programming with GNU bash

CHAPTER 34
619

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

4072316072 CH34 7/26/99 2:28 PM Page 619

executed only if the if condition is false. Similarly, the (optional) else clause will be
executed only if all else fails. Generally, Linux programs return 0 on successful or
normal completion, and non-zero otherwise, so this limitation is not burdensome.

Special Programming Techniques

PART V
620

WARNING

Not all programs follow the same standards for return values, so check the doc-
umentation for the programs whose exit codes you test in an if condition. The
diff program, for example, returns 0 if no differences were found, 1 if differ-
ences were found, and 2 if there were problems. If a conditional statement fails
to behave as expected, check the documented exit code.

Regardless of the way programs define their exit codes, bash takes 0 to mean true or nor-
mal and non-zero otherwise. If you need specifically to check or save a command’s exit
code, use the $? operator immediately after running a command. $? returns the exit code
of the command most recently run.

The matter becomes more complex because bash allows you to combine exit codes in
condition using the && and || operators, which approximately translate to logical AND
and logical OR. Suppose that before you enter a code block, you have to change into a
directory and copy a file. One way to accomplish this is to use nested ifs, such as in the
following code:

if cd /home/kwall/data
then

if cp datafile datafile.bak
then

more code here
fi

fi

bash, however, allows you to write this much more concisely, as the following code snip-
pet illustrates:

if cd /home/kwall/data && cp datafile datafile.bak
then
more code here
fi

Both code snippets say the same thing, but the second one is much shorter and, in my
opinion, much clearer and easier to follow. If, for some reason, the cd command fails,
bash will not attempt the copy operation.

4072316072 CH34 7/26/99 2:28 PM Page 620

Although if only evaluates exit codes, you can use the [...] construct or the bash built-
in command, test, to evaluate more complex conditions. [condition] returns a code
that indicates whether condition is true or false. test does the same thing, but I find it
more difficult to read.

The range of available conditions that bash automatically provides—currently 35—is
rich and complete. You can test a wide variety of file attributes and compare strings and
integers.

Shell Programming with GNU bash

CHAPTER 34
621

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

NOTE

The spaces after the opening bracket and before the closing bracket in
[condition] are required. It is an annoying requirement of bash’s shell
syntax. As a result of this, some people continue to use test. My suggestion is
to learn to use [condition] because your shell code will be more readable.

Table 34.4 lists the most common file test operators (the complete list can be obtained
from bashs excellent manual pages).

Table 34.4 bash FILE TEST OPERATORS

Operator True Condition

-d file file exists and is a directory

-e file file exists

-f file file exists and is a regular file (not a directory or special
file)

-r file You have read permission on file

-s file file exists and is not empty

-w file You have write permission on file

-x file You have execute permission on file or, if file is a direc-
tory, you have search permission on it

-O file You own file

-G file file’s group ownership matches one of your group mem-
berships

file1 -nt file2 file1 is newer than file2

file1 -ot file2 file1 is older than file2

4072316072 CH34 7/26/99 2:28 PM Page 621

The sample shell script for the file test operators lists each directory in $PATH followed
by some of the attributes for each directory. The code for this script, descpath.sh, is
presented in Listing 34.4:

Listing 34.4 FILE TEST OPERATORS

1 #!/bin/bash
2 # Listing 34.4
3 # descpath.sh - File test operators
4 ###################################
5
6 IFS=:
7
8 for dir in $PATH;
9 do
10 echo $dir
11 if [-w $dir]; then
12 echo -e “\tYou have write permission in $dir”
13 else
14 echo -e “\tYou don’t have write permission in $dir”
15 fi
16 if [-O $dir]; then
17 echo -e “\tYou own $dir”
18 else
19 echo -e “\tYou don’t own $dir”
20 fi
21 if [-G $dir]; then
22 echo -e “\tYou are a member of $dir’s group”
23 else
24 echo -e “\tYou aren’t a member of $dir’s group”
25 fi
26 done

The for loop, which I discuss in the next section, by default breaks up fields or tokens
using whitespace (spaces, newlines, and tabs). Setting IFS (line 6), the field separator, to
: causes for to parse its fields on :. For each directory, the script tests whether or not
you have write permission (line 11), own it (line 16), and are a member of its group (line
21), printing a nicely formatted display of this information after the name of each direc-
tory (lines 12, 14, 17, 19, 22, and 24). On my system, the output of this script is as fol-
lows (it will, of course, be different on yours):

/usr/local/bin
You don’t have write permission in /usr/local/bin
You don’t own /usr/local/bin
You aren’t a member of /usr/local/bin’s group

/bin
You don’t have write permission in /bin
You don’t own /bin

Special Programming Techniques

PART V
622

4072316072 CH34 7/26/99 2:28 PM Page 622

You aren’t a member of /bin’s group
/usr/bin

You don’t have write permission in /usr/bin
You don’t own /usr/bin
You aren’t a member of /usr/bin’s group

/usr/X11R6/bin
You don’t have write permission in /usr/X11R6/bin
You don’t own /usr/X11R6/bin
You aren’t a member of /usr/X11R6/bin’s group

/home/kwall/bin
You have write permission in /home/kwall/bin
You own /home/kwall/bin
You are a member of /home/kwall/bin’s group

/home/kwall/wp/wpbin
You have write permission in /home/kwall/wp/wpbin
You own /home/kwall/wp/wpbin
You are a member of /home/kwall/wp/wpbin’s group

bash’s string tests compare strings based on their lexicographic or dictionary order. This
means, for example, that as is less than asd. Table 34.5 lists the string tests.

Table 34.5 bash STRING COMPARISONS

Test True Condition

str1 = str2 str1 matches str2

str1 != str2 str1 does not match str2

str1 < str2 str1 is less than str2

str1 > str2 str1 is greater than str2

-n str str has length greater than 0 (is not null)

-z str str has length 0 (is null)

The integer tests behave as you might expect. Table 34.6 lists these tests.

Table 34.6 bash INTEGER TESTS

Test True Condition

-eq equal

-ge greater than or equal

-gt greater than

-le less than or equal

-lt less than

-ne not equal

Shell Programming with GNU bash

CHAPTER 34
623

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

4072316072 CH34 7/26/99 2:28 PM Page 623

Determinate Loops: for
As Listing 34.4 showed, for allows you to execute a section of code a fixed number of
times. bash’s for construct, however, only allows you to iterate over a fixed list of values
because it does not have a way to automatically increment or decrement a loop counter
in the manner of C, Pascal, or Basic. Nevertheless, the for loop is a frequently used loop
tool because it operates neatly on lists, such as command-line parameters and lists of
files in a directory. The complete syntax of for is as follows:

for value in list
do

statements using $value
done

list is a list of values, such as filenames. value is a single list item, and statements are
bash expressions that somehow use or manipulate value. Linux, interestingly, lacks a
convenient way to rename groups of files. Under MS-DOS, if you have 17 files each
with a *.doc extension, you can use the COPY command to copy each *.doc file to, say, a
*.txt file. The DOS command would be as follows:

C:\ copy doc*.doc doc*.txt

Use bash’s for loop to remedy this shortcoming. The following code can be turned into
a shell script—helpfully named copy—that does precisely what you want:

for docfile in doc/*.doc
do

cp $docfile ${docfile%.doc}.txt
done

Using one of bash’s pattern-matching operators, this code snippet makes a copy of each
file ending in a .doc extension by replacing the .doc at the end of the filename with
.txt.

Indeterminate Loops: while And until
Where the for loop limits how many times a particular section of code will be executed,
bash’s while and until constructs cause continued code execution while (as long as) or
until a particular condition is met. The only requirement is that either your code or the
environment in which it is running must ensure that the condition in question is eventual-
ly met, or you will cause an infinite loop. Their syntax is as follows:

while condition
do

statements
done

Special Programming Techniques

PART V
624

4072316072 CH34 7/26/99 2:28 PM Page 624

This syntax means that as long as condition remains true, execute statements until
condition becomes false (until a program or command returns non-zero):

until condition
do

statements
done

In a way, the until syntax means the opposite of while’s: until condition becomes true,
execute statements (that is, until a command or program returns a non-zero exit code,
do something else).

Experienced programmers will recognize that until loops are an invitation to “busy-
waiting,” which is poor programming practice and often a huge waste of resources,
particularly CPU cycles. On the other hand, bash’s while construct gives you a way to
overcome for’s inability automatically to increment or decrement a counter. Imagine,
for example, that your pointy-haired boss insists that you make 150 copies of a file. The
following sample snippet makes this possible (never mind that PHB is a moron):

declare -i idx
idx=1
while [$idx != 150]
do

cp somefile somefile.$idx
idx=$idx+1

done

In addition to illustrating the use of while, this code snippet also introduces the use of
bash’s integer arithmetic. The declare statement creates a variable, idx, defined as an
integer. Each iteration of the loop increments idx, ensuring that the loop condition even-
tually tests false and control exits the loop. This script is on the CD-ROM as phb.sh. To
delete the files it creates, execute rm somefile*.

Selection Structures: case And select
The next flow-control structure to consider is case, which behaves similarly to the
switch statement in C: it allows you to execute blocks of code depending on the value of
a variable. The complete syntax for case is as follows:

case expr in
pattern1)
statements ;;
pattern2)
statements ;;
...
esac

Shell Programming with GNU bash

CHAPTER 34
625

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

4072316072 CH34 7/26/99 2:28 PM Page 625

expr is compared to each pattern, and the statements associated with the first match are
executed. ;; is the equivalent of a break statement in C, causing control to jump to the
first line of code past esac. Unlike C’s switch keyword, however, bash’s case statement
allows you to test the value of expr against patterns that can contain wildcard charac-
ters.

The select control structure (not available in bash versions earlier than 1.14) is unique
to the Korn and bash shells. Additionally, it does not have an analogue in conventional
programming languages. select allows you to easily build simple menus and respond to
the user’s selection. Its syntax is as follows:

select value [in list]
do
statements that manipulate $value
done

Listing 34.5 illustrates how select works.

Listing 34.5 CREATING MENUS WITH select

1 #!/bin/bash
2 # Listing 34.5
3 # menu.sh - Creating simple menus with select
4 ###
5
6 IFS=:
7 PS3=”choice? “
8
9 # clear the screen
10 clear
11
12 select dir in $PATH
13 do
14 if [$dir]; then
15 cnt=$(ls -Al $dir | wc -l)
16 echo “$cnt files in $dir”
17 else
18 echo “Dohhh! No such choice!”
19 fi
20 echo -e “\nPress ENTER to continue, CTRL-C to quit”
21 read
22 clear
23 done

The script first sets the IFS character to: so that select can properly parse the $PATH
environment variable (line 6). Then, it changes the default prompt that select uses, the

Special Programming Techniques

PART V
626

4072316072 CH34 7/26/99 2:28 PM Page 626

built-in shell variable PS3, to something more helpful than #? (line 17). After clearing the
screen (line 10), it enters a loop, presenting a menu of directories derived from $PATH
and prompting the user to make a choice, as illustrated in Figure 34.1.

Shell Programming with GNU bash

CHAPTER 34
627

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

FIGURE 34.1
select is an easy
way to create sim-
ple menus.

If the user selects a valid choice, the command substitution on line 15 pipes the output of
the ls command through the word count command, wc, to count the number of files in
the directory and displays the result (lines 14-16). Because ls can be used with no argu-
ments, the script first makes sure the $dir is not null (if it were null, ls would operate
on the current directory even if the user selects an invalid menu choice). If the user
makes an invalid selection, line 18 displays an error message, followed by the prompt on
how to proceed on line 20. The read statement, which I will cover later in the section
“Input and Output,” allows the user to view the output of line 16 (or 18) and patiently
waits for the user to press Enter to iterate through the loop again or to press Ctrl+C to
quit.

NOTE

As presented, the script loops infinitely if you do not press Ctrl+C. However,
using the break statement is the correct way to proceed after making a valid
selection.

As befits a programming language, bash boasts a complete and capable array of flow-
control structures. Although they behave in ways slightly different than do their ana-
logues in conventional programming languages, they nevertheless enhance shell scripts
with considerable power and flexibility.

4072316072 CH34 7/26/99 2:28 PM Page 627

Shell Functions
bash’s function feature, an expanded version of the function facility available in other
shells, has two main advantages:

• Faster execution, because shell functions are already in memory.

• Modularity, because functions help you generalize your shell scripts and allow a
better degree of organization.

You can define shell functions using one of the following two forms:

function fname
{

commands
}

or

fname()
{

commands
}

Either form is acceptable and there is no functional (pun intended) difference between
the two. The usual convention is to define all of your functions at the beginning of a
script, before they are used, as I did in Listing 34.2. To call a function once it is defined,
simply invoke the function name followed by any arguments it needs.

It is worth making clear that, compared to C or Pascal, bash’s function interface is very
primitive. There is no error-checking and no method to pass arguments by value.
However, as with C and Pascal, variables declared inside a function definition can be
made local to the function, thus avoiding namespace clashes by preceding the declaration
or first use of the variable with the keyword local, as illustrated in the following snip-
pet:

function foo
{

local myvar
local yourvar=1

}

Because Listing 34.2 contains an example of the declaration and use of a shell function,
you’re referred back to that script. You might try changing the declaration form as an
experiment just to persuade yourself that the two forms are equivalent.

Special Programming Techniques

PART V
628

4072316072 CH34 7/26/99 2:28 PM Page 628

Input and Output
Due to space considerations, I will not cover all of bash’s input and output operators and
facilities. Many of them deal with the arcana of file descriptors, I/O to- and from-device
files, and manipulating standard input and output. The ones I will cover are a few I/O
redirectors and string I/O.

I/O Redirectors
You have already seen the basic I/O redirectors, > and <, which redirect output and input,
respectively. The output redirector allows you to send the output from a command to a
file. For example the command:

$ cat $HOME/.bash_profile > out

creates a file named out in the current working directory containing the contents of your
bash initialization file, .bash_profile, by redirecting cat’s output to that file.

Similarly, you can provide the input to a command from a file or command using the
input redirector, <. You can rewrite the previous cat command to use input redirection, as
shown in the following:

$ cat < $HOME/.bash_profile > out

The output of this command is the same, and also illustrates that you can redirect input
and output simultaneously.

The output redirector, >, will overwrite any existing file. Sometimes this is not what you
want, so bash provides the append operator, >>, which adds data to the end of a file. The
following command adds the alias cdlpu to the end of my .bashrc initialization file:

$ echo “alias cdlpu=’cd $HOME/kwall/projects/lpu’”
➥>> $HOME/.bashrc

Shell Programming with GNU bash

CHAPTER 34
629

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

TIP

Shell functions make your code vastly easier to read and maintain. Using func-
tions and comments, you can save yourself much weeping, wailing, and gnash-
ing of teeth when you have to go back and enhance that throw-away code you
wrote six months ago.

4072316072 CH34 7/26/99 2:28 PM Page 629

Here-documents are an interesting case of input redirection. They force the input to a
command to come from the shell’s standard input. A here-document is the way to feed
input to a shell script without having to enter it interactively. All of the lines read become
input to the script. The syntax follows:

command << label
input...
label

This syntax says that command should read input until it encounters label on a line by
itself. One way to use here-documents is to script programs that do not have a convenient
scripting interface. The tried and true ftp program is a fine example. Listing 34.6 illus-
trates how to script ftp using a here-document:

Listing 34.6 USE A HERE-DOCUMENT TO SCRIPT ftp

1 #!/bin/bash
2 # Listing 34.6
3 # ftp.sh - Use a here-document to script ftp
4 ##
5
6 USER=anonymous
7 PASS=kwall@xmission.com
8
9 ftp -i -n << END
10 open ftp.caldera.com
11 user $USER $PASS
12 cd /pub
13 ls
14 close
15 END

Line 9 starts ftp in non-interactive mode (-i) and suppresses the auto-login attempt (-n).
The script uses END as the label to signal the end of input. Using various ftp com-
mands, the script first opens an ftp session to Caldera Systems’ ftp site (line 10). Then
it sends the login sequence on line 11 using the $USER and $PASS variables previously
defined. Once logged in, it changes to the standard public ftp directory, pub (line 12) and
executes an ls command to demonstrate that the script worked. Finally, it closes the ses-
sion (line 14). Upon encountering the bare END label, the script closes input to ftp and
exits both the ftp program and the script. You can also use here-documents to include
documentation in scripts.

Special Programming Techniques

PART V
630

4072316072 CH34 7/26/99 2:28 PM Page 630

String I/O
For string output, you have already encountered the echo statement. In addition to its -e
options, which enable the interpretation of escaped characters, such as \n (newline) and
\t(tab), echo also accepts a -n option that omits appending the final newline to its out-
put. Additional escape sequences that echo understands include those that Table 34.7
lists.

Table 34.7 echo ESCAPE SEQUENCES

Sequence Description

\a Alert/Ctrl+G (bell)

\b Backspace/Ctrl+H

\c Omit the final newline appended to output

\f Formfeed/Ctrl+J

\r Return/Ctrl+M

\v Vertical Tab

\n ASCII character with an octal value, where n is one
to three digits

\\ A single \

For handling string input, the read operator is what you want. Its syntax is

read var1 var2 ...

Although ideal for getting input in an interactive mode from a user, read can also be
used to process text files one line at a time. In interactive mode, read’s use is simple, as
the following short code snippet demonstrates:

echo -n ‘Name: ‘
read name
echo “Name is $name”

Using read to process text files is somewhat more complicated. The easiest way is to cre-
ate a script and then redirect its input from the file you want to process. Listing 34.7
processes the contents of /etc/passwd.

Shell Programming with GNU bash

CHAPTER 34
631

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

4072316072 CH34 7/26/99 2:28 PM Page 631

Listing 34.7 showpass.sh

1 #!/bin/bash
2 # Listing 34.7
3 # showpass.sh - Using read to process a text file
4 ###
5
6 IFS=:
7
8 while read name pass uid gid gecos home shell
9 do
10 echo “**********************”
11 echo “name : $name”
12 echo “pass : $pass”
13 echo “uid : $uid”
14 echo “gid : $gid”
15 echo “gecos : $gecos”
16 echo “home : $home”
17 echo “shell : $shell”
18 done

Setting IFS enables the script to parse the /etc/passwd entries properly (line 6). Line 8
reads the input, assigning each field in turn to the appropriate variable (if the number of
input fields exceeds the variables to receive them, the final fields are appended to the last
variable in the list, shell in this case). You can execute this script with (at least) one of
the following two commands:

$./showpass.sh < /etc/passwd

or

$ cat /etc/passwd | ./showpass.sh

The output will be the same, regardless of which command you use. An abbreviated form
of the output is shown in Figure 34.2, piped through the more command.

Special Programming Techniques

PART V
632

FIGURE 34.2
Using the read
statement to
process text files.

4072316072 CH34 7/26/99 2:28 PM Page 632

In versions of bash greater than 2.0, read accepts a few options, listed in Table 34.8, that
fine-tune its behavior.

Table 34.8 read OPTIONS

Option Description

-a Reads values into an array, starting at index 0

-e Uses the GNU readline library to do the read, enabling use
of bash’s editing features

-p prompt Prints prompt before excuting the read

Using read’s -p option, instead of writing code such as the following:

echo “Enter Name: “
read name

you can write

read -p “Enter Name: “ name

Command-line Processing
A polished shell script should process command-line options of the form -option in
order to mimic the standard UNIX and Linux command format. The good news is that
bash has a built-in command, getopts, that makes processing arbitrary command-line
options very easy. Experienced C programmers will recognize that bash’s getopts is quite
similar to C’s standard library routine getopt.

getopts takes two arguments, a string made up of letters and colons, and a variable
name. The first argument is a list of valid options; if the option requires an argument, it
must be followed by a colon. getopts parses the first argument, picking the options off
and assigning each one, in turn (less the leading dash), to the second argument, a user-
assigned variable name. As long as options remain to be processed, getopts returns 0,
but after it has processed all options and arguments, it returns 1, which makes it ideal for
use in a while loop that processes command-line parameters. Listing 34.8 makes the dis-
cussion much more concrete.

Listing 34.8 getopts.sh

1 #!/bin/bash
2 # Listing 34.8

Shell Programming with GNU bash

CHAPTER 34
633

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

continues

4072316072 CH34 7/26/99 2:28 PM Page 633

Listing 34.8 CONTINUED

3 # getopts.sh - Using getopts
4 ############################
5
6 while getopts “:xy:z:” opt;
7 do
8 case $opt in
9 x) xopt=’-x set’ ;;
10 y) yopt=”-y set and called with $OPTARG” ;;
11 z) zopt=”-z set and called with $OPTARG” ;;
12 \?) echo ‘USAGE: getopts.sh [-x] [-y arg]
➥[-z arg] file ...’
13 exit 1
14 esac
15 done
16 shift $(($OPTIND - 1))
17
18 echo ${xopt:-’did not use -x’}
19 echo ${yopt:-’did not use -y’}
20 echo ${zopt:-’did not use -z’}
21
22 echo “Remaining command-line arguments are:”
23 for f in “$@”
24 do
25 echo -e “\t$f”
26 done

Line 6 states that valid options are x, y, and z, and that y and z must be followed by
arguments. As getopts peels the options off, it stores them in opt, which is used as the
test value in the case statement (lines 8-15). The case statement handles each of the
valid options, including a default case that prints a usage message and exits the script
(line 12) if invalid options are used. The arguments passed with the y and z options are
stored in the built-in variable $OPTARG. These arguments should be saved in other vari-
ables as soon as possible, because $OPTARG will change as getopts iterates through the
option list. Lines 18-20 merely print whether or not an option was used and the value of
its argument, if applicable.

Lines 16 and 22-25 demonstrate more about how getopts works. $OPTIND is a number
equal to the next command-line argument to be processed. The shift built-in moves
positional parameters out of the way, that is, shift N moves N positional parameters out
of the way. So, $OPTIND-1 equals the number of positional parameters, all of the option
arguments, to remove, leaving the non-option arguments in place for normal script pro-
cessing. Lines 22-25 print the values of each of the remaining positional parameters to
demonstrate that they are unmolested. The output of this script, if executed in the source
code directory for this chapter, is illustrated in Figure 34.3.

Special Programming Techniques

PART V
634

4072316072 CH34 7/26/99 2:28 PM Page 634

Thanks to the getopts statement, handling long, complex command-lines in a shell
script is a breeze. As a result, making your shell scripts behave like other UNIX pro-
grams is a breeze, too—at least with respect to calling conventions.

Processes and Job Control
This section continues the focus on building shell scripts that appear polished. This time,
I’ll talk about using the shell built-in command trap to make your shell scripts more bul-
let-proof.

Shell Signal-Handling
The primary motivation for using trap is appropriately to handle abnormal events, such
as interrupts (Ctrl+C) and suspends (Ctrl+). Although you may not be interested in writ-
ing elaborate error-handling code in your throw-away script, even simple code that mere-
ly acknowledges the signal gives your code the appearance of robustness. On the other
hand, if this chapter has really enthused you for shell-scripting and you get into low-level
system programming with bash, trap will be an essential component of your code (yes,
Virginia, you can do system-programming tasks with shell code).

bash recognizes about 30 signals when running under Linux. To see the complete list,
use the command kill -l. In practice, you may need only to take some sort of action
for perhaps a dozen signals. In this section I will only concern myself with SIGTERM,
SIGINT, and SIGKILL.

Shell Programming with GNU bash

CHAPTER 34
635

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

FIGURE 34.3
getopts simplifies
handling
command-line
options.

4072316072 CH34 7/26/99 2:28 PM Page 635

Using trap
The syntax of the trap command is:

trap command sig1 sig2 ...

When any of the signals sig1, sig2, and so forth are received, trap arranges to execute
command, which can be a binary, shell script, or shell function. When command completes,
the script resumes execution. The signals can be specified by name or by number.
Consider listing 34.9. It sets up two signal handlers, one for SIGINT and one for SIGTERM.

Listing 34.9 SIMPLE trap USAGE

1 #!/bin/bash
2 # Listing 34.9
3 # trap.sh - Using trap to handle signals
4 ##
5
6 trap “echo ‘Do not interrupt me!’” INT
7 trap “echo ‘Attempted murder is illegal!’” TERM
8
9 echo “$0’s PID is $$”
10 while true;
11 do
12 sleep 30
13 done

In addition to illustrating trap’s usage and behavior, I sneaked in a another bash feature
related to job control: the built-in variable $$, which evaluates to the process ID (PID) of
the currently executing script (line 9). Line 6 sets up code to execute if the script receives
a SIGINT (interrupt or Ctrl+C). Line 7 sets up a handler for SIGTERM that cannot ordinari-
ly be signaled from the keyboard, but must be generated using a command such as kill
$(pidof trap.sh. The while loop on lines 10-13 is an infinite loop. true is a bash
built-in command that always returns 0; every 30 seconds, the loop repeats itself. We
print the shell script’s PID so we know which PID to use with the kill command.

If we run this script in the foreground and then attempt to interrupt it using Ctrl+C, the
output is as follows:

$./trap.sh
./trap.sh’s PID is 25655
[type CTRL-C]
Do not interrupt me!

Special Programming Techniques

PART V
636

4072316072 CH34 7/26/99 2:28 PM Page 636

Your PID will almost certainly be different. Now, put the script into the background and
attempt to kill it using kill’s default SIGTERM signal:

[type CTRL-Z]

[1]+ Stopped ./trap.sh
$ bg
[1]+ ./trap.sh &
$ kill %1
Attempted murder is illegal!

$ kill -KILL %1
[1]+ Killed ./trap.sh

As you can see, you receive the expected output. Because the script has not installed a
handler for SIGKILL, you can kill using the kill -KILL syntax.

When evaluating what sort of signals to handle in your code, be sure to have a look at
the section 7 manual page, which describes each signal Linux supports in some detail
(man 7 signal). By doing so, you can make your shell programs robust and complete.

Summary
This chapter has covered a lot of ground, introducing the fundamentals of programming
with the bash shell. After covering basics, such as wildcards, special characters, and
brace expansion, I discussed using variables and working with positional parameters. The
section on operators showed you how to use bash’s string and pattern matching opera-
tors. Flow control constructs, such as if, while, and case, enable you to create more
flexible, modular shell scripts, as do shell functions. You also learned how to read input
and to generate output in shell code. Finally, you learned two ways to make your shell
programs appear sophisticated. getopts gives you the ability to process complex com-
mand-lines easily and trap allows you to set up signal handlers. For further information
about bash programming, see the bash manual page, and the extensive documentation
that comes with the source distribution.

Shell Programming with GNU bash

CHAPTER 34
637

34

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
W

ITH
G

N
U

 B
A
S
H

4072316072 CH34 7/26/99 2:28 PM Page 637

638

4072316072 CH34 7/26/99 2:28 PM Page 638

IN THIS CHAPTER

• Types of Applications 640

• Specific Code Issues 642

• Erasing Buffers 677

• HTML Form Submissions Past
Firewalls 677

• Snooping, Hijacking, and Man in the
Middle Attacks 678

• HTML Server Includes 679

• Preforked Server Issues 679

• Timeouts 679

• Three Factor Authentication 680

• Pluggable Authentication
Modules 680

• General Program Robustness 681

• Cryptography 681

35
C

H
A

PT
ER

Secure
Programming

by Mark Whitis

4172316072 CH35 7/26/99 2:27 PM Page 639

Security is vital for some types of programs and certain types of environments. If you are
writing a system that controls a trillion dollars worth of financial assets, security needs to
be of the utmost concern.

Security is important, however, for a much wider range of programs and environments
than people often realize. From huge corporate offices and banks to your public library
to your personal computer, there is a concern for security. Securing personal information
is very important, be it credit card information or just your age and email address.
Besides securing information, there is also a need for security against malicious attacks
from other people on the network. They could break into your system and steal pass-
words or just simply render your system unusable.

The domino effect is an important issue in computer security. Crackers cover their tracks
by breaking into insecure systems and using them to launch attacks against other sys-
tems. Crackers regularly install password sniffers on compromised machines and use the
intercepted passwords to log in to and compromise other systems, repeating the process
ad-infinitum. Anyone who fails to exercise due diligence in keeping their systems secure
may face legal liability for damages caused by misuse of those systems.

Types of Applications
The following sections briefly cover some of the many different types of programs that
can be exploited. More details on vulnerabilities and defensive coding practices will fol-
low in separate sections; these issues often apply to many different types of programs.

Setuid Programs
The UNIX security model relies heavily on providing access to privileged services
through trusted programs that are run by ordinary users but execute with all the privi-
leges of a more powerful user. The files storing these executables have the setuid or set-
gid bits set, which gives the program all the privileges of the file owner (often root). The
untrusted user, however, has control of the arguments, data files, and environment vari-
ables used by the program. The user can control the path used by the program to search
for other programs it may execute or for shared libraries it may rely on (fortunately
many systems, including Linux, will override the shared library path for setuid pro-
grams). The user can control when the program runs and when it is prematurely termi-
nated. The user may be able to access the program’s internal data by connecting a
debugger while the program has temporarily switched to unprivileged operation or by
causing the program to dump core. All of these can be used to cause an unwary program
to grant unauthorized access.

Special Programming Techniques

PART V
640

4172316072 CH35 7/26/99 2:27 PM Page 640

Network Servers (Daemons)
Servers are good targets for attacks because they are available to do your bidding at any
time. A cracker can easily launch a series of attacks against a server until one of them
succeeds. The attacker has full control of the data sent to the server and when it is sent.
The attacker can cause signals to be sent over a tcp stream.

Network Clients
Although clients are not as easy to attack as servers (because they establish connections
at their convenience and not the attacker’s), they tend to be very vulnerable. Many clients
are very large and complicated programs, and much less attention has been given to
security than for a typical server.

Web browsers often permit the server to execute code on the client machine (Java,
JavaScript, ActiveX, and so on). It is often not difficult to induce a user to visit a hostile
Web site. If an email advertising free money or some similar bait is sent to all the
employees of a company, chances are some fool will visit; or users may be targeted indi-
vidually. Alternatively, instead of targeting a particular site, an attacker can simply prey
on whoever comes to visit and will still get some very sensitive sites.

Mail User Agents
Mail User Agents (MUAs) can be targeted directly, particularly with buffer overflow type
exploits. And attachments to messages may contain hostile programs or documents that
contain macro viruses.

CGI Programs
CGI programs are invoked by the Web server at the request of an HTTP client to handle
certain queries, form submissions, or even dynamic generation of entire Web sites. They
have most of the vulnerabilities that would be associated with a server. Further, CGI pro-
grams are often written in very insecure scripting languages.

Utilities
General utility programs that are not setuid are often thought of as not having security
implications. Unfortunately, they may be used in contexts where that is not the case.

Most UNIX compatible systems used to run the find utility periodically to locate old
temporary files and core files and delete them. When find executes another program

Secure Programming

CHAPTER 35
641

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 641

with the files it has located, it passes the command, including a filename, to the shell
blindly. Special characters in a filename would be interpreted by the shell, resulting in
the ability to execute arbitrary commands. Other programs that are driven by the names
of existing files and invoke other programs may have similar vulnerabilities unless pre-
cautions are taken.

Many companies may accept zip or tar archives via a Web site or email and then manual-
ly or automatically extract and process the file. The filenames themselves may be a prob-
lem. Consider what happens when you unpack a tar archive containing a few extra files
with names like /etc/passwd or /etc/rhosts. Buffer overflows are theoretically possi-
ble in the filename or other header fields.

Simple utilities, such as fgrep, cut, head, and tail, might be called from a CGI pro-
gram. If these programs were vulnerable to buffer overflows as a result of input patterns,
a system using them would be vulnerable to compromise.

Applications
Applications such as word processors and spreadsheets are vulnerable as well. The sim-
ple fact of the matter is that people will receive data files from untrustworthy sources.
Many of these have macro capabilities and the ability to have a macro automatically exe-
cute when a file is loaded; thus the popular “macro virus” was born. Even worse, some
systems have mail and Web browsers configured to automatically open the application
whenever a data file of that type is received. Far more subtle exploits are possible using
buffer overflows, for example.

Specific Code Issues
The following sections discuss issues related to various code features. This discussion
emphasizes the C language.

Shell Scripts and system() Calls
Using a shell to process input from untrustworthy users in almost any way is asking for
trouble. If you write a shell script to handle CGI requests, chances are very good that you
have created a gaping security hole. Likewise if you use the system() function in C, or
any similar function in any language, to execute a command that is derived from input
from untrustworthy users.

A shell’s fundamental purpose is to allow a user to execute any arbitrary system com-
mand, and even with various precautions either built in to the shell or the program that
uses it, the shell is eager to perform its original function. Any character that has special

Special Programming Techniques

PART V
642

4172316072 CH35 7/26/99 2:27 PM Page 642

meaning to the shell can cause problems—spaces, tabs, semicolons, vertical bars, amper-
sands, and many others can cause grief. Some people who thought they had protected
against all the special characters were surprised to find that there were many more in the
range of ASCII characters 128–255.

Secure Programming

CHAPTER 35
643

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

TIP

It is a good idea to write your scripts to only allow the characters or values that
you know are acceptable instead of trying to deny all the known bad.

Here is a code fragment, perhaps from a CGI program to look up phone numbers in the
company directory.

sprintf(command, “fgrep -i %s address.book”, name);
system(command)

Ignoring the buffer overflow and the use of a utility function of questionable security,
this code is extremely vulnerable if name comes from an untrustworthy source. Consider
what would happen if we search for the employee ; echo intruder.com

>>/etc/rhosts;. Or how about the faithful employee root /etc/passwd? Adding quo-
tation marks to our command around the %s” will protect us from that rogue space and
slow the attacker down for about the amount of time it takes him to type a couple quota-
tion marks.

If you must execute a program with any untrusted user input as arguments, use one of
the exec() family of calls instead of system():

execle(“/bin/fgrep”, “-i”, name, “address.book”,
“PATH=/usr/bin:/bin:/usr/sbin:/sbin\0USER=nobody\0”);

This leaves the shell out of the picture and closes that particular hole. You should actual-
ly use a version that ignores the path and allows you to specify an environment as well.
execle() and execve() are the only ones that meet those criteria.

The eval command in many shells is particularly dangerous for shell scripts because it
causes a command to be reparsed. Unfortunately, the programming environment offered
by most shells is very weak and you are forced to use dangerous commands like eval to
write non-trivial programs.

One of my all time favorite exploits was in the mgetty+sendfax program. It invoked an
external program using system() or a similar function with the calling station ID as an
argument. You didn’t even need a computer to use this exploit; you simply programmed
an unfriendly string into your fax machine’s calling station ID.

4172316072 CH35 7/26/99 2:27 PM Page 643

Note that some versions of bash drop privileges if they are ever called from a suid or
sgid program. This can either help or hurt programs that use the system() call. system()
should not be used from these programs anyway because it does not permit control over
the environment; use an appropriate member of the exec() family instead. The system()
call also executes the user’s login shell, which may not interpret a command the way you
want.

Input from Untrustworthy Users
Any input that comes from a potentially untrustworthy source must be handled very care-
fully in any program that executes with privileges the source does not already enjoy. Any
program that executes on a different computer from the source of the input inherently has
a privilege that the user does not: the right to execute on that machine. This directly
applies to all servers, clients, CGI programs, MUAs, and applications that read data files,
as well as all setuid programs, and can apply indirectly to common utility programs.

Use of untrusted input, even very indirectly, to generate a system command or a filename
is inherently a security issue. Simply copying the input (directly or indirectly) to another
variable requires caution (see the following section, “Buffer Overflows”). Logging the
data to a file that might be processed by another program or displayed on a user’s termi-
nal is a cause for concern as well.

Special Programming Techniques

PART V
644

WARNING

Control characters and delimiters such as space, semicolon, colon, ampersand,
vertical bar, various quotation marks, and many others can cause problems if
they ultimately end up in shell commands, filenames, or even log files.

Buffer Overflows
Buffer overflows are one of the most common vulnerabilities and can affect all types of
sensitive programs. In the simplest case, a buffer overflow allows the user supplying
input to one untrusted variable to overwrite another variable, which is assumed to be safe
from untrusted input. Imagine the trivial program in Listing 35.1 running with
stdin/stdout connected to an outside source through some means.

Listing 35.1 A SIMPLE BUFFER OVERFLOW PROGRAM AND ITS EXECUTION

#include <stdlib.h>
#include <stdio.h>
main()

4172316072 CH35 7/26/99 2:27 PM Page 644

{
char command[80]=”date”;
char name[20];

printf(“Please enter your name: “);
gets(name);
printf(“Hello, %s, the current date and time is: “,name);
fflush(stdout);
system(command);

}

$./a.out
Please enter your name: bob
Hello bob, the current date and time is: Wed Mar 10 11:18:52 EST 1999
$./a.out
Please enter your name: run whoami
Hello, run whoami, the current date and time is: whitis
$

Now, what happens if the user says his name is “I would like to run /bin/bash”? Instant
shell prompt. The infamous Internet worm created by Robert Morris, Jr. in 1988 used a
similar buffer overflow.

It turns out that “command” is stored in memory right above “name”. Local variables in
most implementations of C and many other languages are stored next to each other on
the stack. Of course, crackers trying to repeat this feat with other programs often found
the variables they were overwriting were too mundane to be of much use. They could
only usefully overwrite those variables declared in the same function before the variable
in question. True, the variables for the function that called this function were just a little
further along on the stack, as well as the function which called it, and the function before
it; but before you overwrote those variables you would overwrite the return address in
between and the program would never make it back to those functions.

About eight years later, buffer overflow exploits started becoming much more common.
You see, the return address is a very important value. By overwriting its value, you can
transfer control of the program to any existing section of code. Of course, you still need
an existing section of code that will suit your evil purposes and you need to know exactly
where it is located in memory on the target system. Dissatisfied with being limited to the
existing code? Well, why not supply your own binary executable code in the string itself?
Write it carefully so it does not include any zero bytes that might get lost in a string copy
operation. Now you just need to know where it will end up in memory. You can make a
lot of guesses. A further improvement is to include a thousand NOP instructions in the
string itself so that your aim doesn’t have to be exact; this reduces the number of
attempts needed a thousand fold. This is explained in much further detail in the article

Secure Programming

CHAPTER 35
645

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 645

“Smashing the Stack for Fun and Profit” by Aleph One in Phrack 49. Now you can exe-
cute any arbitrary code. Exploiting newly discovered buffer overflows became a cook-
book operation.

You might try to protect your program by declaring all your variables as static to keep
them off the stack. Besides the coding disadvantages, you now make yourself more vul-
nerable to the more simplistic buffer overflows.

The solar designer non-executable< stack kernel patch will make the stack non-exe-
cutable; this provides some protection while causing difficulties for signal handling,
trampoline functions, objective C, and Lisp. At the expense of reducing the protection
offered, the patch has workarounds for the affected code. You can also get around this by
return-into-libc exploits or their procedure linkage table variants.

Canary values are another technique useful for providing protection against buffer over-
flows. Listing 35.2 shows a trivial program with a buffer overflow that would be
exploitable using the stack smashing technique, except that we have added canary values.

Listing 35.2 CANARY VALUES

#include <stdlib.h>
#include <stdio.h>
#include <assert.h>

int canary_value = 0x12345678;

void function()
{

int canary;
char overflowable[12];

canary=canary_value;

printf(“type some text: “);
gets(overflowable);

assert(canary==canary_value);
return;

}

main()
{

function();
}

Of course, it is helpful to initialize the canary value to a random number when your pro-
gram starts up; otherwise, an attacker can simply insert the known canary value at the

Special Programming Techniques

PART V
646

4172316072 CH35 7/26/99 2:27 PM Page 646

appropriate place in the overflow. A canary value with a zero byte in the middle can
make it easier to guess but harder to overwrite because most overflows will stop at a zero
byte, which is interpreted as an end of string.

The stackguard compiler is a version of gcc that has been extended to automatically
insert canary values and checks into every function. The non-executable stack patch and
the stackguard compiler can help protect against buffer overflows if you have control
over the machines the program is compiled and executed on. If you will be distributing a
program, manual canary checking is more appropriate. None of these tools are a substi-
tute for eliminating buffer overflows; they simply provide some extra protection.

Potential buffer overflows are usually the result of calling a function and passing it the
address of a string to modify without also giving it size information. Frequently, the
problem lies in an ancient function in the C standard library. gets(), sprintf(),
strcpy(), and strcat() are some of the most common sources of overflows; the vast
majority of uses of these functions create a buffer overflow. Table 35.1 lists some vulner-
able standard library functions and alternatives. Note that strncpy() and strncat() will
still not terminate the string properly. Use of scanf(), and variants, without a maximum
width specifier for character strings is vulnerable.

A flexible strncpy() replacement can be found on my Web site. This version allows a
variety of different semantics to be selected at compile time. For example, you can select
whether or not the remainder of the destination string will be filled with zeros. Not fill-
ing is faster and can be used with a virtually infinite size to emulate strcpy() when the
buffer size is not known, but such usage is likely to result in unexpected buffer overflows
just like strcpy(). Filling with zeros guards against accidental disclosure of sensitive
information and will also cause coding errors (specifying the wrong size) to show up
early in the debugging process. This version also handles NULL source or destination
pointers and zero sizes gracefully.

Table 35.1 VULNERABLE STANDARD LIBRARY FUNCTIONS AND ALTERNATIVES

Bad Syntax Better Syntax Notes

gets() fgets() Different handling of newlines may leave unread
characters in stream

sprintf() snprintf() Not available on many other OSes

vsprintf() vsnprintf() Not available on many other OSes

strcpy() strncpy() Omits trailing null if there is an overflow

strcat() strncat() Omits trailing null if there is an overflow

stpcpy() stpncpy() Copies exactly the specified size of characters
into the target

Secure Programming

CHAPTER 35
647

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 647

In addition to these string handling library routines, other library functions or your own
functions may be vulnerable if they have a poorly designed calling convention that does
not include a size for modifiable strings. Coding errors, such as boundary errors, may
cause overflows in routines that do string operations.

Note that even some of the “improved” functions exhibit troublesome behavior in
response to an overflow. Some of them will not write past the end of the string but will
not terminate it properly either, so other functions that read that string will see a bunch of
garbage tacked onto the end or may segfault. Similarly, functions such as fgets() or
fscanf() with a size limit may leave unread data at the end of a long line of text. This
data will typically be read later and treated as a separate line of text, which may change
its interpretation considerably; it is very likely that the residual text will end up in the
wrong variable (or the right one, from the cracker’s point of view).

Differential truncation can be a problem. If you truncate a string to one length in one
place and a different length in another, you may find that you treat the same value differ-
ently. Two condition tests in different parts of the program can result in unusual paths
through the program due to differential truncation.

Special Programming Techniques

PART V
648

NOTE

Buffer overflows are not confined to strings; other arrays can also be over-
flowed.

Environment Variables
Many environment variables can be manipulated to cause inappropriate behavior of pro-
grams. The LD_LIBRARY_PATH can be used to cause a program to use a trojan version of a
library; fortunately, Linux now disables the use of this variable for setuid programs. The
related variables LD_KEEPDIR, LD_AOUT_PRELOAD, and LD_AOUT_LIBRARY_PATH are simi-
larly subject to abuse. PATH can be used to trick a privileged program into invoking a tro-
jan version of some executable.

The TZ variable can cause abnormal behavior, including buffer overflows. Compare the
output of the commands “date” and “TZ=’this is a long string’ date”. TZ can
also be used to mislead programs about the current time or date, possibly allowing
actions that should be prohibited; try “TZ=EST600 date”. The related variable TZDIR can
probably be misused as well.

4172316072 CH35 7/26/99 2:27 PM Page 648

The termcap variables TERM and TERMCAP can be abused. The iP (initialization program)
or iprog capability can be used to trick any curses based program into executing an arbi-
trary program.

Locale variables can influence many standard library functions. LANG, LC_ALL, LC_COL-
LATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, and LC_TIME can affect many characters and
their placement, such as the currency symbol, decimal point character, thousands separa-
tor, grouping character, positive sign, and negative sign. They can also influence format-
ting, such as the number of fractional digits, whether a currency symbol precedes a value
and whether there is a space after it, whether parentheses are used to surround negative
numbers, and whether to use 12 hour or 24 hour time. Under the influence of these vari-
ables, programs may generate strings of unexpected length or will be parsed improperly,
and existing strings may be parsed incorrectly as well. The setlocale() function can be
used to override these settings.

ENV can be used to make a shell invoke other programs even in some situations where the
user would not normally be able to issue commands to a shell. This affects any user
whose login shell is actually a script (such as one that tells the user that they aren’t
allowed to log in), as well as other users. Some system administrators use a login shell of
/bin/true or /bin/false to disable users; these are actually shell scripts. This has been
exploited in the past in conjunction with Telnet’s ability to set environment variables.
system() and related calls might be affected, such as the following:

• SHELL might affect use of system() and related calls.

• DISPLAY and HOSTDISPLAY can cause X Windows–capable programs to open a win-
dow on the attacker’s machine.

• HOSTTYPE and OSTYPPE might trick some programs into running a trojan binary
instead of a system utility.

• USER, HOSTNAME, and HOME will affect programs that rely on them instead of getting
the information from a more reliable source.

• MAIL might trick a shell into telling you when a file you cannot see has been
updated.

A quick look at the standard library shared object file reveals the following suspicious
strings, many of which are probably environment variables that will affect the operation
of some functions:

NLSPATH MALLOC_CHECK

MALLOC_TRACE LANGUAGE

RES_OPTIONS LC_MESSAGES

LOCALDOMAIN LC_XXX

Secure Programming

CHAPTER 35
649

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 649

POSIXLY_CORRECT POSIX

JMALLOC_TRIM_THRESHOLD_ LOCPATH

MALLOC_TOP_PAD_ DYNAMIC

MALLOC_MMAP_THRESHOLD_ GLOBAL_OFFSET_TABLE_

MALLOC_MMAP_MAX_

It is possible that functions in the standard library, or other libraries, may respond to
some of these values or save them for future reference before you get a chance to clobber
them. In some cases, you might even need to use a separate wrapper program to clobber
these before your program starts up. A program can probably also act as a wrapper for
itself by fork()ing and exec()ing itself, altering the execution environment as needed. If
the parent process is allowed to die afterwards, it may not receive signals aimed at the
original process. The parent may also have to forward signals it receives to the child.

Some versions of telnetd allow remote users to set the DISPLAY, TERM, and USER envi-
ronment variables and/or arbitrary variables including ENV.

Programs that run with privilege under the influence of untrustworthy users should take
steps to negate the effect of the environment variables on their own operation, and also
be sure to replace the environment with a safe environment when invoking other pro-
grams. Such programs should also call setlocale() to override any inherited settings.

The gethostbyname() Function
The values returned by gethostbyname() should not be trusted. Anyone who controls a
portion of the IN-ADDR.ARPA reverse mapping domain space can cause just about any
value to show up here. A bogus response may offer the name of a trusted host. Always
do a forward lookup on the returned value and compare the results with the original IP
address. The tcp wrappers package made the mistake of calling gethostbyaddr() twice
instead of buffering the result, once to check the consistency of the forward and reverse
mappings and again to get the host name to compare against trusted host names. A hos-
tile DNS server can return one value that matches its real identity, thus satisfying the
consistency test, and then return the name of a trusted machine to gain access. DNS
replies can also be spoofed, which could cause a false positive match for the consistency
check. The name that is returned might be longer than some buffer you will eventually
copy it to.

Signals
Signals may cause programs to behave in unexpected ways, often with security conse-
quences. The user who invokes a setuid program can send signals to it.

Special Programming Techniques

PART V
650

4172316072 CH35 7/26/99 2:27 PM Page 650

Some signals may also be delivered over the network to a program that has any open
TCP/IP connection by the program at the other end. SIGPIPE may be delivered if a
TCP/IP connection is closed by the other end. SIGURG can be delivered if out of band sig-
naling is used. Wuftp v2.4, the FTP daemon used on many Linux and other systems, had
an interesting remote root exploit. Wuftpd caught those two signals and tried to handle
them in a reasonable manner. It turned out that some client programs would abort a file
transfer by not only sending an ABOR command, with out-of-band signaling, but also clos-
ing the data connection. The SIGURG signal may arrive while the SIGPIPE signal is being
handled. The SIGPIPE handler sets the euid back to 0 before doing some other stuff.
While this might seem safe since the handler is about to call _exit() to terminate the
entire process, the SIGURG signal may arrive in the interim. The SIGURG program uses a
longjmp() to terminate the current execution sequence (which also aborts the SIGPIPE
handler) and revert back to the main command handler. Now you have a wuftpd process
that is running as root but is still accepting commands from the remote user. It also turns
out that a side effect of this peculiar combination of signals is to record the user as
logged out and close the logfile, so no further activity is logged. The remote user can
now, for example, download a password file, add a user with root privileges and a known
password, and then upload the modified file over the original. This exploit actually can
occur by accident under normal conditions, which was apparently how it was discovered.
There are other parts of the wuftpd code that were vulnerable to signals, and many other
programs are vulnerable as well.

Any program that relies on switching the euid (or egid) back and forth between a privi-
leged user and an unprivileged one must be very careful about signals that occur while in
the privileged state. Any signals that occur while in the privileged state must be handled
very carefully; temporarily suspending signal delivery during these critical blocks of
code is advisable. Ironically, for other programs you may want to look out for signals in
the unprivileged state; daemons that were started by root may be immune to signals from
unprivileged users except when they drop permissions to emulate that user.

You should also be aware that many system calls and library functions may return before
completing their task if a signal is received; this is so the program can resume execution
along a different path if desired. For example, the read() and write() system calls may
return before reading or writing the specified number of bytes of data if a signal occurs;
in this case, errno will be set to EINTR. The POSIX standard allows these functions to
return either -1 or the number of bytes actually transferred; if it returns -1, it may not be
possible to resume the connection reliably since you do not know how many bytes were
transferred (unless the implementation undoes the partial transfer). When using these
functions, you should check if the number of bytes read equals the number requested.

Secure Programming

CHAPTER 35
651

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 651

I believe that the higher level fread() and fwrite() functions normally resume an inter-
rupted transfer after a signal (as long as the handler permits it) but this might not be true
in all cases (unbuffered streams come to mind).

Some system calls that can probably be interrupted by signals include the following:

accept() write() chdir() chmod() chown() chroot()

close() connect() dup() execve() fcntl() fsync()

fwrite() ioctl() link() lseek() mkfifo() mknod()

msgop() nanosleep() open() pause() poll() read()

readlink() readv() recv() rename() select() semop()

send() sigaction() sigpause() stat() statfs() truncate()

unlink() ustat() utime() wait() wait4()

The siginterrupt() function can be used to specify, to a degree, whether system calls
will resume after a particular signal.

Some library functions that are probably affected include getch(), wgetch(),
mvgetch(), mvwgetch(), ungetch(), has_key(), errno(), pthread_cond_timedwait(),
readv(), writev(), and system(). Users of pthreads will want to consult the documen-
tation for additional considerations regarding signals and interrupted signal calls.

Incorrect handling of an interrupted system call or function could result in some serious
breaches of security. If one imagines a program that reads a text file or data stream using
an interruptible function and does not handle interruption properly, delivering a signal at
the right time might have the same effect as sneaking in a newline. Similarly, interrupted
writes can cause the omission of newlines or other text. Many exploits are possible just
by adding additional delimiters or removing existing ones. A line break is usually the
most powerful delimiter.

Special Programming Techniques

PART V
652

TIP

The order in which variables are declared, read, or written may affect the
degree of vulnerability due to interrupted system calls, buffer overflows, special
characters, and other types of exploits.

Signals will cause premature timeouts from various functions. The ping program is setu-
id but prevents users other than root from using its flood ping feature, which could clog
networks. It was discovered that invoking ping and sending it a bunch of signals could
allow an unprivileged user to effectively flood ping.

4172316072 CH35 7/26/99 2:27 PM Page 652

Userid and Groupid
A process under Linux has a uid associated with it, which is the numeric identifier used
by the kernel to identify the user. It also has a gid, which identifies the primary group
membership of the user.

Linux also supports an euid and egid, which are the effective user and group identifier.
For a setuid and/or setgid program, the euid and/or egid values initially indicate the privi-
lege user and group ids inherited from the file ownership and setuid and/or setgid per-
missions of the executable file. The uid and gid are initially set to the uid and gid of the
invoking process or user.

Programs may change the uid, euid, gid, and egid values within certain constraints. If the
program is not running as root, it can only set the real value to the effective value, set the
effective value to the real value, or swap the two. If the program is running as root, it can
set any of these values to any other value.

The getuid(), geteuid(), getgid(), and getegid() system calls can retrieve the corre-
sponding values. The setuid(), setgid(), seteuid(), and setegid() calls can set the
corresponding values, although the first two calls may have the side effect of modifying
the effective and saved values as well if the caller is root. The setreuid() and
setregid() calls set both the real and effective values simultaneously, which is particu-
larly useful to swap the values (two separate calls to set the individual functions might
have the side effect of losing the privilege to perform the second operation).

Linux behaves as if the POSIX _POSIX_SAVED_IDS feature is enabled with some other
semantics that provide compatibility with BSD. Kernel versions prior to 1.1.38 were bro-
ken and saved ids did not work properly.

More recent versions of the Linux kernel prohibit setuid or setgid programs from dump-
ing core; programs that are likely to be ported to other operating systems or older Linux
systems should use the setrlimit() system call to prevent core dumps by setting the
maximum size to zero. Core dumps can be triggered and inspected to obtain privileged
information. Symbolic links may also be used to trick a privilege program dumping core
into clobbering an important file. Similarly, a debugger may be connected to a running
setuid/setgid program while it is running in the unprivileged state. This may allow
inspection of sensitive data obtained while in the privileged state or perhaps even modi-
fying data that will affect the operation of the program when it reverts to the privileged
state. Removing read permission on the executable file prevents this. Core dumps and
debugger connections have been used to dump the contents of the normally unreadable
shadow password file.

Secure Programming

CHAPTER 35
653

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 653

Beware of zero and negative one. Uninitialized variables, default values, values returned
by running atoi() on a non-string value, and a variety of other events can result in a
variable having the value zero, and zero is also often used to unset a value. If that vari-
able is later used to set any of the uid or gid values, a program may run in the privileged
state when it intended to run in the unprivileged state. The value -1 passed to any of
these functions has the effect of leaving the original value unchanged, which can also
cause an unintended retention of privileges or may set the value to the saved value. On
many systems the user nobody had a value of 65535, which if stored in a signed 16-bit
value also means -1. Anytime you set the real values or set the effective values to a value
other than the real value, the saved uid is set to the new effective id.

In addition to the primary group, any process has supplementary groups inherited from
the user. The getgroups() and setgroups() are used to access this information. Many
programmers have forgotten to clear the supplementary groups when lowering privileges;
on many systems this can result in the process having unintended privileges from, for
example, the root, bin, daemon, and adm groups.

The setfsuid() and setfsgid() calls allow separate control of the userid and group
used for filesystem operations. Using these can allow a privilege program to access files
with the kernel, enforcing the restrictions appropriate to the supplied user without the
process running as that user and exposing itself to signals from that user. To maintain
compatibility with BSD, use just setreuid() and setregid(). To maintain compatibility
with _POSIX_SAVED_IDS, use just setuid() and setgid().

There are problems with writing portable code that will work on any platform as any
privileged user and be able to temporarily drop privileges and reraise them, and also be
able to permanently drop them. The POSIX semantics seem to be particularly broken.
BSD is more flexible. Linux tries to emulate both at the same time with extensions.
Mixing BSD, POSIX, and Linux specific semantics in the same program may not work
as expected. Privileged programs that are not run as root should be able to use the
POSIX semantics to temporarily drop privileges by calling setuid() and setgid() with
the appropriate values before and after. Similarly, privileged programs that are not run
root should be able use setreuid() and setregid() to swap real and effective user ids.
To temporarily drop root privileges on Linux, only use seteuid() and setegid().
Calling setuid(), setgid(), seteuid(), and setegid() with unprivileged values should
permanently drop privileges. It would be best to abstract these operations by writing
higher level functions that can be modified to suit the idiosyncrasies of a particular plat-
form.

Special Programming Techniques

PART V
654

4172316072 CH35 7/26/99 2:27 PM Page 654

Library Vulnerabilities
The standard library, and other libraries used by your program, may have various vulner-
abilities. Many library functions have been found which were vulnerable to buffer over-
flows. You may want to wrap calls to library functions in a function of your own that
insures string values are not longer than the library is known to handle. The process of
loading shared libraries can be affected by environment variables on some systems;
although recent Linux versions ignore them for setuid programs, care may still be needed
when loading another program from any privileged program. Many library functions
themselves are susceptible to environment variables.

Executing Other Programs
The system(), popen(), execl(), execlp(), execv(), and execvp() calls are all vulner-
able to shell special characters, PATH, LD_*, or other environment variables; use
execve() or execle() instead.

When you run another program, it will inherit your execution context, which may
include environment, copies of file descriptors, uid, gid, euid, egid, and supplementary
groups. Special memory mappings performed by munmap() or mmap() might be inherited.

Before running execve() or execle() you will probably want to run fork(); otherwise
the new program will replace the current one. After you run fork(), you should be sure
to drop uid, euid, gid, egid, and supplemental groups as appropriate. Close any open files
you do not want the subprocess to have access to. If you need to build a pipe for input or
output, do so and then modify any file descriptors for redirection.

There is a Linux specific function called __clone() that works something like fork()
but allows you finer control over the execution environment.

/tmp Races
Programs that use publicly writable directories are vulnerable to /tmp races or similar
exploits. The program files in /tmp can be modified to gain unauthorized access.
Symbolic links to existing files from the filename a program is about to use in a world-
writable directory can cause a privileged program to clobber a file on behalf of the user.
The attacker may even be able to get arbitrary text inserted into the file, although there
may be garbage before or after it; often, the text will still serve the nefarious purpose of
the attacker.

Secure Programming

CHAPTER 35
655

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 655

Instead of using /tmp, use a subdirectory specific to each user such as /tmp/username or
/tmp/uid. For best protection, these directories should be created at account creation
time rather than when the program runs. The user-specific directory should have permis-
sions to prevent access by other users.

/tmp race conditions often depend on modifying the contents, location, or permissions
between two consecutive operations of a file. Race conditions can depend on exact tim-
ing and can be hit or miss, but there are techniques that often may be employed which
will insure that the race is won on the first try.

Denial of Service Attacks
Denial of Service (DOS) attacks are those that do not allow the intruder unauthorized
access but allow them to interfere with normal operation of the system or access by nor-
mal users. Some DOS attacks can cause the machine to crash, which can damage data
and may help an intruder gain access since some exploits need the machine to reboot.

While you can reduce vulnerability to DOS attacks, it is generally not possible to make a
system immune to them. They come in so many flavors and are often indistinguishable
from normal activities except by observing patterns of behavior. Many DOS attacks are
also aimed at the TCP/IP stack itself.

One of the simplest forms of a DOS attack is to send large numbers of requests or to
start a number of requests but not finish them. Large numbers of requests can monopo-
lize CPU cycles, network bandwidth, or consume other resources. A smaller number of
requests that are started but not finished can use up the maximum number of simultane-
ous TCP connections for a particular process, preventing legitimate connections. If there
is not an upper limit on the maximum number of incoming connections and subprocess-
es, a daemon can be induced to start hundreds of suprocesses, which will slow down the
machine and may even fill up the process table to the point where other programs cannot
spawn their own subprocesses.

If a program temporarily locks some resource, it can often be tricked into keeping it
locked so other programs, or other instances of the same program, have to wait for the
resource.

Often network-based attacks use third-party machines to conceal their identity or amplify
their ferocity. For some types of attacks, they can forge bogus source addresses.
Fortunately, the Linux TCP stack’s SYN flood protection will help shield you from ran-
dom addresses.

Some of the countermeasures will be in the program itself while others may be in the
TCP/IP stack, the local firewall, or a firewall that is located at the upstream end of your

Special Programming Techniques

PART V
656

4172316072 CH35 7/26/99 2:27 PM Page 656

network connection (a local firewall cannot protect a link from flooding). Some counter-
measures will be automatic, whereas others will be manual.

Some techniques for reducing the impact of DOS attacks include taking actions that may
adversely affect some legitimate users but allow others through. These countermeasures
are normally enabled only when the system perceives it is under attack. Degraded opera-
tion is better than no operation. Timeouts may be decreased to small values that allow
resources to be freed faster but could prevent users with slow machines or connections
from using the system. Access attempts from large network blocks may be disabled.
Some services, or portions thereof, may be disabled. Packets associated with connections
from users who have already authenticated may be given priority over questionable ones.
Packets associated with IP addresses that have been used by legitimate users in the past
may be given priority over those from unfamiliar addresses. Users with valid accounts
may be permitted to use the service while all anonymous users are denied. Bandwidth
may be increased or decreased. You may secretly bring up the server or a backup on one
or more different IP address or networks and notify legitimate users of the alternate (not
necessarily giving them all the same information so if there is a turncoat a smaller group
will be affected). You may set up some sort of front end that has a much lower resource
consumption per session, which validates incoming connections in some way and only
forwards or redirects reasonable ones to your main server.

You may use cryptographically encoded tokens, which can be validated without keeping
a list of different sessions or ip addresses and distinguish valid connections or at least
allow you to send packets back to that host. The Linux TCP stack deals with SYN flood
attacks by returning a cryptographically encoded sequence number with the SYN-ACK
packet. It keeps no record of the SYN but it can tell when it gets the ACK packet that it
must have sent a SYN-ACK to that host and considers the three-way handshake com-
plete.

Often, you have to rely on your upstream provider and other ISPs to trace the traffic back
toward the source. In some cases you can launch counterattacks, although there are legal
and ethical considerations. If the attacker is not using a half-open connection on you, you
may be able to use those techniques to slow down the attacking machine. Some mail
servers, when they recognize spam, suddenly become slow (reading or writing, say, one
character per second) tying up the mail relay used by the spammers.

Random Numbers
Random number generators should be cryptographically secure. The rand() library
function is not remotely suitable for a secure program. If you use all 32 bits of the result
from rand(), you disclose the internal state of the random number generator and an
attacker can guess what other past and recent values are. There are also only four billion

Secure Programming

CHAPTER 35
657

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 657

possible values that need to be tried. While the rand() function is guaranteed not to
repeat until it has used all four billion values, if you only use a smaller number of bits
from each word they will be much less random and will even repeat frequently.

I have seen a couple random password generators that used rand(). These took only
minutes to break and it was even observed that of a sample of two passwords assigned by
one such generator, both were identical. The random() function might not be truly cryp-
tographically secure, but it is much better than rand(). It has up to 2048 bits of internal
state and returns much more random data.

A good random number generator would maintain a very large internal state, include
cryptographic hashes in its algorithm, and allow mixing in more entropy over time.
Seeding a random number generator must be done carefully. People often seed the ran-
dom number generator with the current time at one-second precision. If you can guess
roughly when the program started, you need try only 86,400 possible seed values per day
of ambiguity. Linux provides /dev/random, which may be used as a source of some
entropy to use as part of the seed. The script /etc/rc.d/init.d/random on a Red Hat system
is used to save the state of /dev/random across reboots, thereby increasing the amount of
entropy available immediately after a reboot.

Special Programming Techniques

PART V
658

TIP

If you fork multiple subprocesses, be sure to reseed the random number genera-
tor or take other steps to insure that each process does not return the same
stream of numbers.

Tokens
Tokens are often used by, for example, a Web application to identify individual sessions.
They are typically passed in the URL, hidden form fields, or as cookies. A cryptographic
random number generator, hash, or other cryptographic technique should be used to gen-
erate these. Otherwise, an attacker may find it easy to guess their values.

Be careful with a session token stored in a URL. It may end up being submitted to
another Web site in the referrer field or in the logfiles for a caching Web proxy.

Passwords
Passwords should be sufficiently long and be chosen from a large number of values.
Mixing uppercase, lowercase, digits, and symbols is recommended. It should not be a
word in any dictionary or a predictable modification of one.

4172316072 CH35 7/26/99 2:27 PM Page 658

Random passwords generated by programs are often actually very weak and are also
written down by users who can’t remember them. Theoretically, you could write a strong
password generator but in actual practice the ones I have normally encountered were triv-
ial to break. You might think that a random password eight characters long from a set of
96 characters would require seven quadrillion guesses for a complete brute force attack.
If you only used a 16bit random number generator, the attacker need only try 65,536
possibilities if they can guess your algorithm. A good 32-bit generator would need about
four billion. A typical rand() based generator, although supposedly 32-bit, would only
generate around 4000. And a brute force attack needs to try half the possibilities on aver-
age before it finds a match. If the seed is weak, you may need to search far fewer possi-
bilities.

Passwords should be stored and matched using a one-way encryption algorithm.
Passwords should be changed periodically; otherwise, even good passwords can be bro-
ken with a brute force attack running over an extended period of time against the
encrypted password. Multiple failed password attempts should automatically lock out an
account to minimize guessing and brute force attacks. This does create a possible DOS
attack, however.

Passwords are vulnerable to snooping over network connections if encryption is not used
and to keystroke grabbers on insecure client machines. Even if a user has already authen-
ticated, you may want to require reauthentication before performing sensitive operations
such as dispersing funds. The user may have stepped away from their computer momen-
tarily and been replaced by someone else.

Secure Programming

CHAPTER 35
659

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

WARNING

Default passwords for accounts and trapdoor passwords create security holes.

Filenames
Filenames specified by the user or derived from untrustworthy user input are risky. If
they are used, they should be very carefully vetted. If possible, use a more restrictive
naming convention than UNIX allows.

For example, check the length. Allow only characters A–Z, a–z, 0–9, underscore, dash,
dot, and slash. Do not allow them to start or end with a dash, dot, or slash. Do not allow
any two or more consecutive characters from the set of dots and slashes. Do not allow
the slashes at all if subdirectories are not needed. Prepend a fixed directory name to the
file or pathname.

4172316072 CH35 7/26/99 2:27 PM Page 659

Some of these rules may seem weird but they make for a relatively simple function that
can weed out dangerous filenames without stopping too many useful names. The path-
name “../../../.././././/////etc/./password” contains multiple tricks that can cause many pro-
grams to do bad things even if a fixed string is added onto the front. It also illustrates the
folly of the deny known bad approach. A comparison against the name “/etc/password”
will fail but that is exactly the file that path will open in most contexts.

In many applications, the resulting pathnames should be parsed into their separate direc-
tory components. Each in turn should be further checked against Linux file permissions,
additional rules imposed by your application (including separating users who do not have
an identity with the kernel from each other), and symbolic links at each step of the path.
If you are working in a directory that is world-writable or accessible to even a single
untrustworthy user, your checking code should be insensitive to race conditions.

In some applications it is appropriate to rely on the underlying Linux file permissions as
enforced by the kernel with the program running, at least temporarily, as a specific user
known to the system. In other applications, typically where the remote user does not
have a unique identity on the local system, it is appropriate to roll your own access
checks. In other situations you may need a combination of the two.

Guessing the names of backup files can be used to access documents that would other-
wise be off limits. This trick has been employed to read the source code to CGI programs
instead of executing them. Where possible, it is better to use sequential filenames gener-
ated by the program itself in a directory tree that is not accessible by untrustworthy
users.

Symbolic Links
Many of the most common operations are vulnerable to symbolic links and similar
attacks. While tedious workarounds are possible for many calls, many other common
operations cannot be done safely in a variety of common situations. Worse, these prob-
lems can affect even mundane programs in fairly common real-world situations. The vul-
nerabilities listed here were evaluated against the 2.0.x kernels; it appears that there has
not been any improvement in the 2.2.x kernels. Dropping privilege to the level of the
user initiating an operation is not sufficient, either. A workaround will be described, and
illustrated in code listings, which solves some of these problems for reading and writing
files, changing ownership, and permissions.

Operations such as creating or deleting a new file or directory cannot be done safely even
with the illustrated workaround, although it reduces the vulnerability. Fortunately, it
appears there may be a ray of hope in the rename() call. If this call is used, restricted to
moving to the current working directory (which you will need to change using the usual

Special Programming Techniques

PART V
660

4172316072 CH35 7/26/99 2:27 PM Page 660

workaround described in Listing 35.3), you can create or modify a file in a known safe
place and rename it into its proper location. Use of this is quite cumbersome. Each user
on the system will need to have a safe directory on each and every partition where they
could possibly create or modify a file (this could be particularly annoying on a small
removable device) in a directory that anyone else has write access to, and a program will
need to be able to locate that directory. A less general solution, confined to a particular
application, is somewhat less daunting.

A symbolic link created by a local user on a system from their Web directory to the root
directory might allow remote users access to every single file on the system, depending
on server configuration and the access checks it performs.

Symbolic links are often used in combination with race conditions to overwrite or delete
otherwise inaccessible files. These race conditions may occur in publicly writable direc-
tories (such as the /tmp races mentioned previously) or may be used to change what file
is being referred to between the access checks and the file access itself.

Any program, including suid program servers and any program that is run as root or
another privileged user, which opens, creates, unlinks, or changes permissions on a file
where any directory (including, but not limited to, shared directories such as /tmp or a
user’s home directory tree) is inherently dangerous. Symbolic links, hard links, or
rename() calls can be used to trick the program into providing unauthorized access. To
guard against such problems, it is often necessary to parse each component of a path-
name and test the accessibility of each directory in turn, checking for symbolic links and
race conditions. I think Linux and most other operating systems still lack a combination
of system calls that allow this to be done with complete safety. Unfortunately, there is no
flstat() function that would allow you to check directory information associated with a
file descriptor (instead of just a pathname) and also return information on symbolic links
instead of silently following. It is, therefore, necessary to use both fstat() and lstat()
together with open() and fchdir() as well as backtracking after opening the next stage
in the path to see if any changes have occurred. I will refer to this as the usual
workaround in the following discussion. This workaround has the undesirable side effect
of changing the current working directory and will not work if any component of the
path has execute-only permission.

If there is a possibility that an open() call could create a file in a directory in which an
ordinary user has permissions, you must drop permissions to the least common denomi-
nator of all users who have write access to that directory (often not possible) or use the
rename() trick. Even if a file will not be created, if an existing file will be modified
(flags contains O_WRONLY or O_RDWR) you must at least stat() the file before opening and
fstat() it afterwards (before writing any data) and compare the results to guard against

Secure Programming

CHAPTER 35
661

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 661

symlink attacks. These precautions must be taken in privileged programs and may also
be necessary in ordinary programs as well if anyone other than the user running the pro-
gram has write access to the directory. Basically, all shared directories are dangerous, not
just those that are writable by everyone. One ordinary user who can anticipate that anoth-
er user with write access to a directory they share will create or modify a file of a given
name can induce the victim to clobber a file. Even if you fchdir() down each compo-
nent of the path using lstat(), open(), and fstat(), you are still vulnerable to sym-
links in the last component. The truncate() call to truncate a file is vulnerable, but
fortunately the usual workaround can be used with ftruncate().

Root, due to its unlimited privileges (at least on local filesystems) effectively shares
every directory owned by another user, making root exploits possible if root takes any
action in those directories.

Similar precautions may apply to changing the permissions of a file or ownership.
chown() should never be used; use fchown() or lchown() instead. chmod() should also
never be used, use fchmod instead with lstat(), chdir(), and fstat(). When using
fchmod() or fchown(), always check that chmod (or at least the program) does follow
links, although it does have dereferencing calls so perhaps the system call is okay. chown
does follow links—use lchown.

The access() call, used to check if the real uid/gid has access to a particular directory, is
vulnerable. The normal use of this function before calling open() is also vulnerable to
race conditions because the attacker can change things between the two operations.

Many calls primarily used by root are vulnerable but typical use of them is safe because
they are normally used in a safe environment. The acct() call is vulnerable, but since it
is normally issued only by root with a trusted pathname, there should not be a problem.
The chroot() call is vulnerable; do not chroot() to a directory unless the path to that
directory is not writable by any untrusted users. The mknod() call is vulnerable; confine
use of this call to /dev/.

The execve() call (and all other members of the exec() family) is vulnerable. Do not
invoke any programs if the path to them is not well guarded (this wouldn’t be a good
idea anyway in many applications); the standard directories /bin/, /sbin/, /usr/bin/,
/usr/sbin/, and, hopefully, /usr/local/bin and /usr/local/sbin should be okay on
most systems. Invoking programs in a user’s /home/$USER/bin directory, where other-
wise appropriate, should be okay if the program is running as that user and no one else
has write access to /home/$USER or /home/$USER/bin. Shared directories, such as a com-
mon development directory, are risky due to symbolic links as well as trojan programs.
All developers in a shared development project must be trusted.

Special Programming Techniques

PART V
662

4172316072 CH35 7/26/99 2:27 PM Page 662

Creating, deleting, or renaming either directories or files is not safe. open() and creat()
have already been covered. The mkdir(), rmdir(), and unlink() commands are all vul-
nerable with no alternatives or workaround. The utime() call, which changes the access
time of files, is vulnerable and there is no alternative or workaround.

The system calls specifically for dealing with links are vulnerable to various degrees.
The link() call is vulnerable. There are no alternatives and the usual workaround does
not apply. symlink() is vulnerable unless there is no leading path component (the link is
being created in the current directory). Use the usual workaround to traverse to the prop-
er directory and then create the link. The target of a symlink must also be checked at the
time the link is followed. The readlink() is vulnerable if there are any directory compo-
nents in the path. When used within the confines of the current directory, it should be
okay since it reads the contents of the link rather than following it.

The stat() call is vulnerable. fstat() may be used with the usual workaround. lstat()
will not follow a symbolic link; you must use it only in the current working directory,
however. fstat() and lstat() are used together with open() and fchdir() to imple-
ment the usual workaround; these are safe when used in this particular way, traversing
each component of a pathname. But they still cannot protect system calls against links in
the final pathname component unless an fxxx() version, which uses file descriptors
instead of names, or an lxxx() call, which ignores links, is available or the call itself
inherently does not follow links.

The statfs() call, which reports the disk usage on a mounted partition, can be fooled by
symbolic links. The consequences of this are minor compared to most of the others and,
fortunately, filesystems are rarely mounted in places where ordinary users could tamper
with the path.

The rename() call is potentially vulnerable to symbolic links at any stage of either path
except the last component of the target path. If you are moving from a safe path to anoth-
er path and you use the usual workaround to traverse all components of the target direc-
tory, you should be safe.

Many standard library functions use the vulnerable system calls. One of the most obvi-
ous and frequently used examples is fopen(). In this case, you can use open() with the
usual workaround and then use fdopen() on the already open file descriptor. As long as
you are not creating a file, you should be safe this way.

The realpath() standard library function is handy for translating names into their
canonical form (stripped of all symbolic links, consecutive slashes, “.”, and “..”). It is not
safe against race conditions. Even if it were safe itself, there would be the same problem
as with the access() call; the interval between calling realpath() and performing any
operations on the file would allow for race conditions.

Secure Programming

CHAPTER 35
663

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 663

It would not be a good idea to rely on getcwd() to safely return the current working
directory or to assume you could get back here safely with the path even if the returned
value is correct. Use open() to open the current directory (“.”) and save the file descrip-
tor; that way, you should be able to get back even if some clown moves or deletes it.

It will be necessary to decide how you want to follow symbolic links. One option is to
not follow them at all. Another is to always follow them. An intermediate approach is to
follow symlinks if the object pointed to is owned by the same user that owns the link or
if the link is owned by root. If you follow any links, you need to exercise caution. Be
aware that on many systems, each user’s home directory may be a link from
/home/$USER to some other location; not following links at all will deny access to the
user’s home directory. On other systems, “directories” such as /usr, /tmp, and /var may
be symbolic links from the root filesystem to a larger file system.

Hard links may also create some of the same problems as symbolic links. In more detail,
the standard workaround, illustrated in Listing 35.3, is to break the path into individual
directory components at each “/”. Traverse each component in the following manner.
lstat() the component you are about to open. If the link count is greater than 1 you
may have a hard link exploit. You can check the Linux specific symlink flag and stop if it
is set, but you cannot rely on it because of race conditions; we will catch both in a subse-
quent step anyway. Now open() the directory component for reading. Then fstat() the
open file descriptor and compare it to the results returned earlier by lstat(); any dis-
crepancy indicates that a symbolic link was crossed or the directory entry has been
changed in the interim. Now use fchmod() to change to the already open directory and
then close() the file descriptor.

Listing 35.3 illustrates a safer replacement for the chroot() and open() system calls and
the fopen() standard library function. This illustrates the usual workaround, and wrap-
pers for other system calls can be patterned after these functions.

Listing 35.3 SOME SAFER I/O FUNCTIONS

/* Copyright 1999 by Mark Whitis. All rights reserved. */
/* See the following URL for license terms: */
/* http://www.freelabs.com/~whitis/software/license.html */

#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <assert.h>

Special Programming Techniques

PART V
664

4172316072 CH35 7/26/99 2:27 PM Page 664

#include <limits.h>
#include <unistd.h>

int debug=5;

/*
* These functions have the unpleasant side effect of
* changing the working directory (although they try to
* restore it). This can be bad if you need re-entrant
* code. Also, be careful in signal handlers - you might
* find yourself in a very unfriendly place. Strange
* things might also happen on strange remote filesystems
* which do not obey UN*X semantics.
*/

int one_chdir_step(char *name)
{

int fd;
int rc;
struct stat lstats;
struct stat fstats;

if(debug>=5) {
fprintf(stderr,

“one_chdir_step(): attempting to chdir to %s\n”, name);
}

rc = lstat(name, &lstats);
if(rc<0) {

if(debug) perror(“one_chdir_step(): lstat()”);
return(-1);

}

#if 0
if(lstats.st_nlink>1) {

/* hard link detected; this might be legit but we */
/* are paranoid */
if(debug) {

fprintf(stderr,
“one_chdir_step(): lstats.st_nlink=%d\n”,
lstats.st_nlink);

}
errno = EXDEV;
return(-1);

}
#endif

/* this will fail if directory is execute only */
fd = open(name, O_RDONLY, 0);

Secure Programming

CHAPTER 35
665

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

continues

4172316072 CH35 7/26/99 2:27 PM Page 665

Listing 35.3 CONTINUED

if(fd<0) {
if(debug) perror(“one_chdir_step(): open()”);
return(-1);

}

rc = fchdir(fd);
if(rc<0) {

if(debug) perror(“one_chdir_step(): fchdir()”);
close(fd);
return(-1);

}

rc = fstat(fd,&fstats);
if(rc<0) {

if(debug) perror(“one_chdir_step(): fstat()”);
close(fd);
return(-1);

}

/* perhaps we should check some other fields here as well */
if((fstats.st_dev != lstats.st_dev)
|| (fstats.st_ino != lstats.st_ino)
) {

/* we have probably traversed a symbolic link or the */
/* directory has changed both may be normal or a sign */
/* of hostility */
if(debug) {

fprintf(stderr,
“one_chdir_step(): stat comparison failed\n”);

}
close(fd);
return(-1);

}

if(debug>=5) {
fprintf(stderr, “one_chdir_step(): successful\n”);

}

close(fd);
return(0);

}

/* note this can leave us in a weird, and possibly hostile, */
/* place if it fails although it tries to resore the current */
/* working directory */

int safer_chdir(char *pathname)
{

char pathtokens[PATH_MAX];

Special Programming Techniques

PART V
666

4172316072 CH35 7/26/99 2:27 PM Page 666

char *current;
int saved_cwd;
int saved_errno;
int rc;

saved_cwd = open(“.”, O_RDONLY, 0);
if(saved_cwd<0) {

if(debug) perror(“safer_chdir(): could not open current dir”);
return(-1);

}
strncpy(pathtokens, pathname, sizeof(pathtokens));
pathtokens[sizeof(pathtokens)-1]=0;

if(pathname[0]==’/’) {
/* leading delimeter confuses strtok() */
one_chdir_step(“/”);

}

/* strtok() is ugly and really shouldn’t be used */
/* Not reentrant */
current = strtok(pathtokens,”/”);

while(current) {
rc=one_chdir_step(current);
if(rc<0) {

/* something went wrong, attempt to restore current */
/* directory and return. We might even want to call */
/* abort if the fchdir() fails */
saved_errno=errno;
fchdir(saved_cwd);
close(saved_cwd);
errno=saved_errno;
return(-1);

}

current = strtok(NULL,”/”);

}

close(saved_cwd);
return(0);

}

int safer_open(const char *pathname, int flags, mode_t mode)
{

char pathtokens[PATH_MAX];
char *p;

Secure Programming

CHAPTER 35
667

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

continues

4172316072 CH35 7/26/99 2:27 PM Page 667

Listing 35.3 CONTINUED

char *prefix;
char *basename;
int saved_cwd;
int saved_errno;
int fd;
int rc;

if(flags & O_CREAT) {
/* we cannot safely create a file. Use the */
/* rename() trick instead. But this function */
/* still does it more safely than the normal open() */

if(debug) {
fprintf(stderr, “safer_open(): O_CREAT is risky\n”);

}
}

saved_cwd = open(“.”, O_RDONLY, 0);
if(saved_cwd<0) {

if(debug) {
perror(“safer_open(): could not open current dir”);

}
return(-1);

}

strncpy(pathtokens, pathname, sizeof(pathtokens));
pathtokens[sizeof(pathtokens)-1]=0;
p = strrchr(pathtokens,’/’);
if(p) {

*p = 0;
prefix = &pathtokens[0];
basename = p+1;

} else {
prefix = “”;
basename = &pathtokens[0];

}

if(*prefix) {
rc=safer_chdir(prefix);
if(rc<0) {

if(debug) {
perror(“safer_open(): could not safer_chdir()”);

}
saved_errno=errno;
fchdir(saved_cwd);
close(saved_cwd);
errno=saved_errno;
return(-1);

}

Special Programming Techniques

PART V
668

4172316072 CH35 7/26/99 2:27 PM Page 668

}
fd = open(basename, flags, mode);
if(fd<0) {

if(debug) perror(“safer_open(): could not open()”);
saved_errno=errno;
fchdir(saved_cwd);
close(saved_cwd);
errno=saved_errno;
return(-1);

}

/* success */
fchdir(saved_cwd);
close(saved_cwd);
return(fd);

}

/* for symetry. No special handling */
int safer_close(int fd)
{

return(close(fd));
}

/* Note that fopen() and lseek() are an exception to
* the usual naming pattern. “l” has nothing to do
* with links and “f” has nothing to do with file
* descriptors. fdopen() is what you would
* expect to be called fopen.
*
* It is still not a good idea to create a file with
* safer_fopen() unless it is in a directory no one else
* has write access to.
*
* The trick here is we use safer_open() and fdopen() to
* replace fopen()
*/

FILE *safer_fopen(const char *path, const char *mode)
{

int open_flags;
int append;
int fd;
off_t offset;
int saved_errno;
FILE *file;

append=0;
if(strcmp(mode,”r”)==0) {

open_flags = O_RDONLY;

Secure Programming

CHAPTER 35
669

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

Gcontinues

4172316072 CH35 7/26/99 2:27 PM Page 669

Listing 35.3 CONTINUED

} else if(strcmp(mode,”r+”)==0) {
open_flags = O_RDWR;

} else if(strcmp(mode,”w”)==0) {
open_flags = O_WRONLY;

} else if(strcmp(mode,”w+”)==0) {
open_flags = O_RDWR | O_CREAT;

} else if(strcmp(mode,”a”)==0) {
open_flags = O_WRONLY;
append=1;

} else if(strcmp(mode,”a+”)==0) {
open_flags = (O_RDWR | O_CREAT);
append=1;

} else {
errno=EINVAL;
return(NULL);

}

fd=safer_open(path, open_flags, 0666);
if(fd<0) {

return(NULL);
}
if(append) {

offset=lseek(fd, 0, SEEK_END);
}

if(offset == (off_t) -1) {
saved_errno=errno;
close(fd);
errno=saved_errno;
return(NULL);

}

file=fdopen(fd, mode);

if(!file) {
saved_errno=errno;
close(fd);
errno=saved_errno;
return(NULL);

}
if(debug>=5) {

fprintf(stderr, “safer_fopen(): open successful\n”);
}
return(file);

}

int safer_fclose(FILE *stream)
{

Special Programming Techniques

PART V
670

4172316072 CH35 7/26/99 2:27 PM Page 670

int fd;

fd=fileno(stream);
fclose(stream);
close(fd);

}

/* Invoke the program with a pathname as an argument. */
/* It will try to open the path as a file and print */
/* the files contents */
main(argc,argv)
int argc;
char *argv[];
{

int i;
char buf[4096];
int fd;
FILE *file;
int rc;

/* these two tests depend on printing out the CWD below */
/* you cannot affect parent process CWD */

#if 0 /* one_chdir_step() test */
for(i=1; i<argc; i++) {

one_chdir_step(argv[i]);
}

#endif

#if 0 /* safer_chdir() test */
assert(argc==2);
safer_chdir(argv[1]);

#endif

#if 0 /* safer_open() test */
assert(argc==2);
fd=safer_open(argv[1],O_RDONLY,0);
if(fd<0) {

perror(“error opening file”);
exit(1);

} else {
printf(“open succesful\n”);

}
rc=read(fd, buf, sizeof(buf));
if(debug>=5) printf(“rc=%d\n”,rc);

close(fd);
#endif

Secure Programming

CHAPTER 35
671

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

Gcontinues

4172316072 CH35 7/26/99 2:27 PM Page 671

Listing 35.3 CONTINUED

#if 1 /* safer_fopen() test */
assert(argc==2);
file = safer_fopen(argv[1],”r”);
if(!file) {

perror(“Opening file”);
exit(1);

}
buf[0]=0; /* clear buffer */
while(fgets(buf,sizeof(buf),file)) {

buf[sizeof(buf)-1]=0; /* terminate string */
fputs(buf,stdout);

}
safer_fclose(file);

#endif

getcwd(buf, sizeof(buf));
printf(“CWD=%s\n”,buf);

}

chroot() Environments
Where possible, a server should operate in a chroot()ed environment. This will limit all
file accesses to the chroot()ed directory tree, even those that result from execution of
arbitrary code from a buffer overflow. Please note, however, that it is impossible to pre-
vent such arbitrary binary code running as root from escaping from a chroot() jail.

Special Programming Techniques

PART V
672

NOTE

It is a good idea to explicitly set the current working directory for setuid pro-
grams or after executing chroot() to a relatively safe directory.

Splitting Programs
It is often a good idea to split privileged programs into smaller pieces that communicate
with each other, with each program running with the minimum privileges needed to
accomplish its duties. This minimizes the damage that can be caused by buffer overflows
and many other exploits and allows you to focus your auditing on the critical programs.
Be careful that the communications between programs is not itself vulnerable to attack.
The qmail program, a replacement for sendmail, is one of the most aggressive examples
of this approach. No one has come up with a way to exploit flaws in qmail itself to gain
unauthorized access, although there have been minor DOS attacks.

4172316072 CH35 7/26/99 2:27 PM Page 672

Interprocess Communication
Virtually any method of interprocess communication can create weaknesses if you are
not careful. Even if there were no vulnerabilities in the mechanism itself, you must be
careful about the data that is passed. In general, DOS attacks are possible on all forms.

A pipe between a parent and a child is fairly safe. However, since the parent is often
invoked by an untrusted user and the child performs privileged services, you need to be
careful that the child was not started in a hostile execution environment, that data valida-
tion occurs in the child, and that the parent is who you think it is. The parent-child rela-
tionship can be cumbersome in many applications.

TCP/IP connections have the advantage of being usable over the network, but that can be
a disadvantage as well since TCP/IP sockets are more accessible to the outside world.
Peer information can be obtained if a trusted identd is running. It is possible for a peer
to generate a couple types of signals.

UNIX domain sockets are not accessible to remote machines, which is a security advan-
tage, but it also can be a disadvantage in many other respects. However, UNIX domain
sockets rely on world-writable directories to create the socket unless both processes are
running as the same user. This can be easily exploited using /tmp races. Various UNIX
domain socket implementations have various serious problems. The file permissions are
not checked for UNIX domain sockets on Solaris, BSD 4.3, or SunOS, so all sockets are
world readable and writable; creating the socket in a protected directory may be safe.
Linux and BSD 4.4 do check the permissions. Some older but still widely used Linux
kernels will panic if you open too many sockets. There is no portable way to identify the
peer on such a socket either; even the unportable ways are unpleasant. SIGPIPE and pos-
sibly other signals may be delivered.

Linux 2.1.x and probably 2.2.x have the ability to query the peer uid on sockets using
socket options on one or maybe both types of sockets.

SYS V IPC messages, shared memory, and semaphores implement permission checks
similar to file permission checks; I don’t know of a reliable way to get the uid of a con-
nected process, and more than two processes can share these resources. Semaphores are
vulnerable to deadlocks. Since shared memory may be used to share access to internal
program data structures, programs may be lazy about validating the information, or it
may be changed between validation and use (copying to regular memory and then vali-
dating the data would be safer). It is also easy to insert executable code into shared
memory and then use a buffer overflow to invoke it. A limited number of shared memory
segments or semaphores can exist at one time and the table tends to fill up, particularly
when processes are aborted, which can even lead to accidental denial of service. With the
DIPC extensions (which are not installed by default) these resources may be shared

Secure Programming

CHAPTER 35
673

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 673

across multiple machines, which has both advantages and disadvantages. DIPC is not
available on other platforms (kernel mods are required). Programs that use DIPC may
also have to deal with byte ordering problems.

Named pipes rely on the existence of a separate fifo object in the filesystem for each
possible simultaneous connection, and probably do not queue connection requests; it
appears that they honor file permissions.

Psuedottys can probably be used as an IPC mechanism. A variety of signals may be
delivered. Filesystem permissions are checked but the filesystem objects are shared with
other programs like telnetd, and so permissions need to be set at runtime by a process
running as root. You need a way to tell the other process which psuedotty pair to use.

TLI allows access to uids/gids but apparently it isn’t very well documented. TLI is not
that widely available and may not even be available on Linux.

The identd Daemon
The identd daemon runs on computers and may be polled to determine the name of the
user who owns a particular open TCP/IP connection using the RFC 1413 protocol.
The data returned by identd is not necessarily trustworthy but is still useful. Only trust
the data from an identd server for authentication purposes if you trust the security of the
machine and the integrity of anyone who has root access.

identd is typically used to identify users and log that information. If there is trouble, that
information may help narrow down the blame. Of course, anyone can run a bogus
identd server on any machine they control. That is actually not the weakness it appears
to be because after an attack your action will be to deny access to the smallest group pos-
sible, which includes the attacker. If you can narrow it down to a particular user you
deny access to that user; otherwise, you deny access to the entire machine or even an
entire network.

If you accept connections from the localhost or other secure machines on your local net-
work, identd on those machines can usually be trusted to the same degree the machines
themselves are and may be used to help authenticate users. identd queries may be vul-
nerable to various “man in the middle” and TCP hijacking attacks, which should be taken
into account. Use of identd in this manner also helps validate that local TCP connec-
tions have not been spoofed; if that is the case, your identd daemon on the other side is
likely to return an error that the connection in question does not exist on that machine.
The attacker will have to work harder to spoof the original connection and the identd
one as well. Your firewall should be configured to prevent outsiders from spoofing or
hijacking TCP connections between internal hosts.

Special Programming Techniques

PART V
674

4172316072 CH35 7/26/99 2:27 PM Page 674

Beware, however, of ssh port forwarding or IP masquerading and identd. And take pre-
cautions to insure that the response you received actually originated on the local host. A
secret token of some sort is advisable to further verify the local origin and identity of a
TCP/IP connection. This token may be stored, for example, in a file accessible only by a
particular user.

TCP Versus UDP
This may ruffle a few feathers, but I don’t recommend using UDP for anything because
of its serious security drawbacks. TCP is vulnerable to DOS via open connections in
which the data transfer is never completed, but in almost every other security aspect it is
superior to UDP. UDP has some performance advantages that make it popular for appli-
cations such as remote filesystem access and real-time video and audio. Yet even those
applications tend to have TCP versions. As a programmer, if you implement a UDP ver-
sion you will probably have to supplement it with a TCP version to get through firewalls.
You might as well start with the TCP version; there likely won’t be a compelling reason
to implement UDP.

TCP is much less vulnerable to source address spoofing than UDP due to the three-way
handshake. TCP is vulnerable to hijacking but with UDP you don’t even need to hijack.

TCP sessions can be authenticated once per session at the application level. A firewall
only needs to validate a TCP connection when it is first opened and can tell what direc-
tion the connection is being made from, which is vital information to a firewall. There is
no direction information for UDP; a firewall can’t tell if an arbitrary UDP packet is an
inbound request (which should usually be blocked) or an inbound reply (which may need
to be allowed). Most firewalls block almost all UDP traffic and that which they don’t
block is very vulnerable to misuse.

Any application that does use UDP should probably reject any packets that originate
from certain well known ports, particularly the one used by DNS; those packets are prob-
ably attacks that snuck through a firewall.

The popularity of UDP for real-time audio and video is primarily due to the fact that if a
packet doesn’t arrive there is no point in transmitting it. TCP connections may be used to
for these applications with appropriate throttling algorithms, which limit the amount of
data transmitted to what the link can sustainably handle. UDP applications also should
throttle the data or quality will suffer. The only real difference is that a few extra retrans-
mitted TCP packets may use up bandwidth when the throttling is not perfect. Multicast
applications are stuck with UDP; these applications will be completely unusable across
most firewalls.

Secure Programming

CHAPTER 35
675

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 675

Dynamic Versus Static Memory Allocation
Allocation of fixed size buffers can cause some inconvenience by imposing hard limits,
but those limits are likely to be well known and clients can try to avoid them in advance.
Differential truncation or residual data on a line after reaching a hard limit can cause
problems as mentioned previously.

Programs that use dynamic memory are prone to memory leaks and fragmentation.
Memory leaks are often not a big problem in short lived utility programs but they can
cause problems in preforked server processes, which may normally live for days. As a
guard against memory leaks, I normally make the process check the number of requests
it has serviced and its total memory usage between requests, then have the process die
and be replaced by a fresh process if either limit has been exceeded. The first check
keeps minor leaks from consuming more memory than needed and the second stops fast
leaks quickly.

Programs that use dynamic memory can also be the targets of DOS attacks that exhaust
available system memory. Setting process limits with setrlimit() can help prevent total
exhaustion of system resources but it may result in the process being terminated without
warning; this could occur in an unexpected and inconvenient place, which could leave
unfinished business. Having the process monitor its own usage can give it the opportuni-
ty to die more gracefully, but it may not always catch the problem in time unless the
checks permeate all code that reads or copies data.

Buffer overflows in dynamically allocated memory can corrupt the memory pool itself;
creative use of this might even permit an attacker to write to any arbitrary section of
memory. Programmers who make heavy use of dynamic memory often allocate a new
memory block after measuring the length of a string that will be copied; this is resistant
to buffer overflows on copies but other techniques need to be used when reading from a
data stream.

Use of stale pointers is a common problem in programs that use dynamic memory and
can result in crashes, unpredictable behavior, and other buffer overflows or values myste-
riously appearing in the wrong variable. It is helpful in programs that use either type of
memory allocation scheme to include a distinctive signature field in each type of data
structure. This will make it easier to detect many cases where a pointer points at the
wrong data.

Programs that use dynamic memory, with or without using setrlimit() or other limit-
ing techniques, still have hard limits, despite the rhetoric to the contrary; the limits are
just larger and often less predictable. I prefer to avoid dynamic allocation in most cases
and to exercise care when I do use it. Both schemes require careful usage.

Special Programming Techniques

PART V
676

4172316072 CH35 7/26/99 2:27 PM Page 676

Security Levels
The security level features implemented in newer kernels allow you to designate certain
files as immutable or append only. While you cannot really use those from your own pro-
grams, they can be used to restrict access to important files, which may help reduce the
damage caused by some exploits.

POSIX.1e Capabilities
POSIX.1e style capabilities being developed (Linux-Privs Project) will allow much finer
control of the privileges a program has. Instead of very course controls, such as being
root and not being root, this will allow fine tuning of exactly which privileged system
calls a program can execute. By giving up all privileges that are not needed, a program
can minimize the effects of many exploits.

A program that only needs the ability to bind to a restricted socket, for example, can give
up others. Unfortunately, many daemons require the setuid() family of calls and I don’t
know of any plans to separate the ability to switch between various ordinary uids (nor-
mal users) and switching to privileged ones (root, bin, etc.). This would be very handy
for the many daemons that access a user’s files on their behalf. If you have write access
to root’s files, you can easily gain root privileges.

Erasing Buffers
If you use some form of binary communications with other processes you should be
careful to erase buffers, particularly the portion of strings after the terminating null, to
insure that you do not accidentally divulge sensitive information. Many years ago, I
wrote a program that allowed me to obtain the plaintext of passwords from a NetWare
server immediately after they had been accessed by someone else in another building.
The server did not clear its buffers and always sent a reply of a certain minimum length;
my program simply issued a system call that would fail and all but the first couple bytes
of the previous request’s response were returned unmodified.

HTML Form Submissions Past
Firewalls
Web browsers on machines inside your firewall can be tricked by outside Web sites into
transmitting arbitrary text to internal TCP based services (by specifying the target service
in the ACTION attribute of the FORM tag). Some encodings permit more flexibility in
attacks than others. Many browsers will block a few well-known services from being the
target of form submissions. This deny known bad approach is problematic. All text-based

Secure Programming

CHAPTER 35
677

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 677

(and possibly some binary encoded) TCP services other than HTTP should look for
strings typically sent by Web browsers such as GET, PUT, POST, Content-Type:, Content-
Length:, Referrer:, and Accept:. If any line received begins with one of these strings,
log an attempted security violation (preferably along with the Referrer: field) and ter-
minate processing of data and commands on that connection.

Snooping, Hijacking, and Man in
the Middle Attacks
When writing servers and clients, you should keep in mind that it is possible for an
attacker to modify or take over an existing TCP connection. UDP services are much
more vulnerable. A “man in middle” attack can take over a TCP connection or even mod-
ify it in transit. This is easier if the attacker controls a machine between the two systems,
or is at least attached to a network segment that the packets travel over. Hijacking attacks
can be done remotely without control over the intervening network. Hijacking attacks
normally involve guessing the sequence numbers on packets and interjecting packets
with the right sequence number. A vulnerability recently reported in the Linux TCP/IP
stack allows hijacking without needing to guess the sequence number; this will probably
be fixed fairly quickly but many systems will still be running older kernels.

Snooping (a.k.a. sniffing or eavesdropping) on packets in transit is common. This is par-
ticularly common on ethernet segments where a compromised machine is used to snoop
some or all packets on the ethernet segment. Every machine on a typical ethernet can
intercept packets travelling between any two machines on that ethernet segment, includ-
ing packets that are transiting the local network on their journey between two other net-
works. An attacker who has broken into your ISP’s Web server may be able to see every
packet that travels in and out of your Internet connection. Hubs do nothing to protect
against this. Switches, bridges, routers, and firewalls reduce the vulnerability to snooping
and spoofing by reducing the network into smaller segments. Many of these devices are
not designed with security in mind, however, and can be tricked to allow sniffing or
spoofing; choose and configure your network hardware carefully.

Particularly sensitive communications should require periodic re-validation, particularly
before critical transactions such as those that would cause funds to be dispersed.
Encryption is strongly recommended for sensitive communications.

Any security sensitive internal communications should be behind a firewall. Among other
checks, the firewall should make sure that no outside host can spoof (masquerade as) any
internal host, including localhost (127.0.0.1). This will make spoofing or hijacking of
internal connections considerably more difficult but cannot protect connections where
one party is outside.

Special Programming Techniques

PART V
678

4172316072 CH35 7/26/99 2:27 PM Page 678

HTML Server Includes
If your Web server has the server include feature enabled, there are a number of security
implications, depending on your server version and configuration. An ordinary user on
the system (or anyone who can install Web pages) may be able to use server includes to
read an otherwise restricted file. Even worse, they may be able to execute arbitrary pro-
grams on the machine. Many CGI programs can be tricked into including server include
tags in their output, which may be parsed by the server, allowing any remote user to do
the same things. The server include tags may be included in form input, cookies, or the
URL and may inadvertently be echoed by a CGI script.

Preforked Server Issues
Preforked servers, where a server spawns a fixed number (or limited range depending on
load) of child processes in advance to handle incoming connections, are very efficient but
have some special considerations. The code that manages the number of child processes
often actually gives the server some protection against DOS attacks, which would cause
the spawning of large numbers of processes. Remote users will have as much or more
trouble getting through but the operation of the local machine is less likely to be disrupt-
ed.

Since preforked server processes often handle many different transactions, care must be
taken to ensure that an attacker cannot influence the internal state in a way that could
affect the processing of subsequent transactions. You must also ensure that an attacker
cannot obtain information still stored in internal data structures about past transactions.
Erasing data structures and the stack (use a recursive function that calls itself many times
and initializes a large automatic variable with zeros) will help. Memory leaks will be
more of a problem in preforked servers and other long-lived processes.

Timeouts
Any network client or server should have configurable timeouts with defaults appropriate
to the application. In server processes, I normally set a timer using alarm() or
setitimer() at the beginning of each transaction. The signal, if it arrives, must be han-
dled appropriately. In the event that a DOS attack is detected, it may be appropriate to
dramatically reduce the timeouts for the duration of the attack; this will adversely affect
some users but will probably improve service for most.

Secure Programming

CHAPTER 35
679

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 679

Three Factor Authentication
Authentication of users is normally based on one or more of the following three factors:
biometric, knowledge, or possessions. Biometric factors are things such as signatures,
fingerprints, retina scans, and voice prints. The second factor is based on something you
know, usually a secret password, key, or token. The third is based on something you have
in your possession, such as a smart card, a ring, a credit card sized one time password or
time-based password generator, or a pregenerated list of challenge responses. For high
security applications, it is advisable to use all three.

There is an interesting device called the Biomouse, which is a small fingerprint reader. A
newer version also includes a smart card reader in the same unit. Linux drivers are avail-
able.

Many of these newfangled gadgets can be useful but they all have their limitations.
Ignore all the sales hype that says they are invulnerable. Smart cards should have
onboard encryption processors, not merely be memory-based devices. Even then there is
an impressive array of technology available to attack smart cards (or any other integrated
circuit-based security device). Biometrics can be faked or recorded. You leave thousands
of copies of your fingerprints every day that could be used to reconstruct your finger. The
Biomouse senses pores as well as ridges, so a latent print may not be sufficient to recon-
struct the necessary image but there can be other sources of that data, particularly from
the biometric devices themselves. The fingerprint scanner used by a merchant down the
street when one of your employees cashed a check or the elevator button that is really a
clandestine scanner may be the key to fooling your fingerprint scanners. Voice prints can
be recorded. The most common time-based token generator cards are based on old
undocumented algorithms that would not be likely to withstand a serious reverse engi-
neering attack. In extreme cases, biometric devices may be defeated by forcing an autho-
rized user to allow access, or by very sophisticated mimicking devices. The data from
these gadgets may be vulnerable to interception on a compromised workstation or net-
work. These vulnerabilities are also a good reason to use two or three factor authentica-
tion. Gadgets can help to improve security, but beware of a false sense of security.

Pluggable Authentication Modules
Linux has borrowed the Pluggable Authentication Module (PAM) concept from Sun
Microsystems. These separate out the authentication code from the application and put it
in some shared library modules, which may be configured as needed for various sites.
PAM can be configured to use /etc/passwd, shadow passwords, one-time passwords,

Special Programming Techniques

PART V
680

4172316072 CH35 7/26/99 2:27 PM Page 680

zero knowledge systems such as SRP, remote authentication servers, and biometric sys-
tems such as the Biomouse. Other PAM modules check whether a user is on a local con-
sole or a remote terminal. Configuration files edited by the system manager instruct PAM
on which modules to use for which applications and under which circumstances.

Applications that use PAM need to be modified to use the PAM API and should to be
prepared to act as the middleman for a more complicated dialog than simply asking for a
username and password. The PAM guides are available online at
http://www.sics.se/~pelin/pam/ and include a sample program.

Changing passwords is supported by PAM but changing other fields in /etc/passwd and
/etc/shadow is not. Use the putpwent() function or see the sample program in
Appendix A, “A Symbol Table Library,” for an example of how to access the file directly.

If you want your program to be portable to systems that do not have PAM, I suggest
writing a dummy PAM library that calls getpw() or getpwent() and crypt(), or try
porting libpwdb to the target system. If you are not using PAM or libpwdb, you may
need to deal with shadow passwords and NIS.

General Program Robustness
It is important to write security sensitive programs to be as robust as possible. Many
security exploits depend on the fact that programs behave in unexpected ways in
response to unexpected circumstances.

Check return values from functions. Check errno after using functions that set errno
(such as some math functions). Make extensive use of assert() to verify assumptions.
Functions that take pointers should do something sensible with NULL values. Functions
that take a size parameter, giving the size of a string parameter which will be modified,
should handle a size of zero or even a negative size.

Cryptography
This section will be brief and skimpy on the technical details due to export laws that
make export of cryptographic hardware, software, or technical advice illegal, although a
book is probably the safest way to export technical information on cryptography.

Encryption is vital to safeguarding sensitive information, particularly in transit.
Cryptography is used to ensure the privacy of information in transit or storage, authenti-
cate users and messages, and prevent repudiation (denying that you originated a message
later when it proves inconvenient).

Secure Programming

CHAPTER 35
681

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 681

Small or large licenses for use of RSA’s encryption software, RSAref, in commercial
software (including the underlying algorithms) in clients and servers are obtained from
Consensus (http://www.consensus.com); there are some inconvenient terms regarding
reverse engineering. The cost per copy is significantly higher than the high volume
licenses available to large software companies, but this is probably the most viable
option for small software companies. SSLeay (see the following section, “Encryption
Systems”) can be compiled to use RSAref. If you want to use the various free applica-
tions in a commercial environment, it is possible to obtain licenses to the RSA algorithm
for all free software on a given machine for price per machine; Information on this can
be found at http://www.rsa.com.

Types of Cryptographic Algorithms
Beware of any encryption system that relies on an unpublished algorithm. These are usu-
ally extremely weak and might not even keep your kid sister out.

Hash functions provide one way (irreversible) encryption. These are commonly used for
password storage, to generate one time passwords, and as file signatures used to deter-
mine whether a file has been altered. Although you cannot decrypt a hashed password,
you can encrypt passwords supplied by the user and compare the hash values. Examples
of hash algorithms are MD5, MD2, MD4, SHA, Tiger, and RIPE-MD-160. Hash func-
tions can also be turned into symmetric ciphers.

Symmetric cipher algorithms use the same key to both encrypt and decrypt information.
DES, 3DES, Blowfish, Twofish, RC4, and SAFER are examples of symmetric algo-
rithms. Some of these algorithms are limited to fixed key lengths; others allow variable
key lengths.

One problem with symmetric algorithms is key distribution. Both the sender and recipi-
ent need to have the same secret key. Asymmetric cipher algorithms use two separate
keys, one public and one private. The public key can be made readily available. A docu-
ment encrypted with the public key can only be decrypted with the private key and vice
versa. Because these algorithms are normally much less efficient than symmetric sys-
tems, asymmetric systems are normally used to exchange a unique secret session key,
which is then used to encrypt the actual data stream using a symmetric algorithm.
Asymmetric systems normally require much longer key lengths to achieve the same level
of security. 1024 bits is commonly used for a symmetric system. RSA, ElGamal, and
LUC are public key (asymmetric) systems. Elliptic curves are also used.

Digital signatures use public key encryption and/or hashes to permit verifying the origi-
nator and/or content of a message and prevent repudiation of a message. X.509 certifi-
cates are essentially specially formatted and digitally signed binary documents that attest

Special Programming Techniques

PART V
682

4172316072 CH35 7/26/99 2:27 PM Page 682

to the identity of a person, company, or Web server. The PGP encrypted mail system
relies on key signatures, which are similar to certificates, to validate the association of a
particular public key with a particular person or organization. Although certificates are
usually issued by a central authority, key signatures are usually issued by specific indi-
viduals and each user of PGP decides whose signatures to trust; this forms what is
referred to as a “web of trust”.

Cryptographically secure pseudo-random number generator algorithms are an important
part of many encryption systems, particularly public key systems. These are used for
many purposes, including generating the unique session key, initially generating the pri-
vate and public key pairs, and generating unique tokens for use a tokens for Web sites.
RFC 1750 has recommendations for random number generators
(ftp://ftp.isi.edu/in-notes/rfc1750.txt).

Zero knowledge systems can provide more security for user authentication without using
algorithms that could encrypt data, and thus be subject to export controls. Stanford’s SRP
(Secure Remote Password) provides zero knowledge based password verification, which
is not vulnerable to eavesdropping. Optionally, exchange of a session key for session
encryption and a PAM module, and modified telnet and ftp programs are available. More
information is available at http://srp.stanford.edu/srp/.

A more detailed overview of the different algorithms can be found on the Internet at
http://www.ssh.fi/tech/crypto/algorithms.html. Bruce Schneier’s book Applied
Cryptography (2nd Edition, John Wiley & Sons, 1995) is the standard text in the field.
This book is actually exportable but the floppy containing the software included as list-
ings in the book is not. The cryptography FAQ, at http://www.cis.ohio-
state.edu/hypertext/faq/usenet/cryptography-faq/, has more additional informa-
tion, and most of the Web sites mentioned in this section will have links to other sites of
interest.

Most ciphers are block oriented; they encrypt a block of some number of bits at a time
and the operation is repeated until the whole stream is encrypted. Block chaining is fre-
quently used so that the results of one block affect the operation of the next block. The
block length is often equal to the key length.

Encryption Systems
The SSL algorithm is a public key based system introduced by Netscape and used to
encrypt arbitrary TCP/IP data streams, and is widely used for encryption of Web pages.
SSLeay is a very popular implementation of SSL. It can be downloaded from
ftp://ftp.psy.uq.oz.au/pub/Crypto/ and ftp://www.replay.com. These Web sites

Secure Programming

CHAPTER 35
683

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 683

also have some other cryptography software. If you want to add encrypted TCP/IP com-
munications to an application, check out SSLeay.

PGP, RIPEM, and GnuPG, CTC, S/MIME, and MOSS are public key based systems for
secure email. Visit http://www.gnupg.org/ for more information on GNU Privacy
Guard and http://www.bifroest.demon.co.uk/ctc/.

SSH is a public key based replacement for the UNIX rsh program. SSH provides secure
remote command execution, remote login, and remote copy. Personal use and even some
commercial uses are free but a paid license is needed for many commercial uses. Other
implementations are available; see http://www.net.lut.ac.uk/psst/. If you are writ-
ing a program that needs to invoke another program on another machine, SSH may suit
your needs.

IPSEC refers to a set of interoperable standards for packet encryption at the router level.
SWAN (http://www.cygnus.com/~gnu/swan.html), NIST Cerberus
(http://www.antd.nist.gov/cerberus/), and the University of Arizona’s Linux IPSEC
implementation (http://www.cs.arizona.edu/security/hpcc-blue/) are various
implementations available for Linux.

Encryption Vulnerabilities
Many algorithms are vulnerable to known plaintext and chosen plaintext attacks.
Fortunately, most of the strong systems used today are resistant to these attacks.

Even if the underlying cryptographic algorithm is impenetrable, various flaws in the
application of that algorithm can introduce vulnerabilities. The use of weak keys or weak
random number sources (poor algorithm or poor seed) can cause problems. Do not trust
public key cryptography too much on systems that do not have a source of hardware
entropy for the random number generator. Linux has /dev/random, to provide a source of
hardware entropy, derived from the timing of keyboard, mouse, interrupt, and disk access
events. When you disable unnecessary services on a Linux system, do not disable
/etc/rc.d/init.d/random, which saves state between reboots. FreeBSD and OpenBSD
also have random devices but most other operating systems do not. Accidentally giving
away the state of your random number generator by using it in other ways may simplify
attack, particularly with weaker random number generators.

Breaking up data into small blocks encrypted separately can increase vulnerability in
several ways. This often interrupts the block chaining. Padding may need to be used if
data blocks are not an even multiple of the encryption block size. It may be possible for
an attacker to insert blocks in the encrypted data stream. The SSH version 1 protocol
included a cryptographically weak CRC-32 hash (designed to protect against line noise,
not sneaky people) to verify the integrity of each data block.

Special Programming Techniques

PART V
684

4172316072 CH35 7/26/99 2:27 PM Page 684

A buffer overflow in critical portions of the network handling code could provide a way
to compromise both the encrypted data streams and the computer system itself.

Reusing the same key more than once is a problem on many commonly used symmetric
ciphers. This is one reason that most public key systems exchange a unique session key
each session for the faster symmetric algorithm used to encrypt the actual data, instead of
saving the session key for future communications between the two parties. Although
many public key systems will allow you to bypass the asymmetric algorithm and use the
symmetric algorithm using only a fixed secret key (which you have installed on both sys-
tems), this should probably be avoided since many of the symmetric algorithms these
systems use can be compromised by key reuse.

Public key systems can be vulnerable to diverted connections, “man in the middle” and,
to a lesser extent, tcp hijacking attacks. Since many public key systems exchange public
keys when they initiate a connection, there can be problems if you are talking to the
wrong host or if an attacker is intercepting and modifying the data stream as it crosses
the Net; in these cases, the attacker can supply the wrong public key. Using certificates
issued by a trusted authority for the machines at both ends of the connection or keeping a
permanent record of known public keys between sessions can help.

These are just some of the ways in which cryptosystems can be compromised. Rather
than attempt to provide an exhaustive list of vulnerabilities or detailed technical informa-
tion, this section is intended to prompt the reader to think defensively and to conduct fur-
ther research.

Summary
Writing secure programs requires careful attention to detail and thinking defensively.
You should also imagine yourself as an attacker and look for potentially exploitable
vulnerabilities. Using the information discussed in this chapter can help you spot the
areas of your code that can provide the holes that people could exploit. An independent
code review is recommended, as well as extensive testing in a non-mission critical
environment.

Secure Programming

CHAPTER 35
685

35

S
EC

U
R

E
P

R
O

G
R

A
M

M
IN

G

4172316072 CH35 7/26/99 2:27 PM Page 685

686

4172316072 CH35 7/26/99 2:27 PM Page 686

IN THIS CHAPTER

• Compiling for gdb 688

• Using Basic gdb Commands 689

• Advanced gdb Concepts and
Commands 698

36
C

H
A

PT
ER

Debugging: GNU
gdb

by Kurt Wall

4272316072 CH36 7/26/99 2:18 PM Page 687

As much as we all hate to admit it, software will have bugs. This chapter describes one
of the Free Software Foundation’s premier tools, gdb, the GNU DeBugger. While debug-
ging sessions will never be aggravation free, gdb’s advanced features lighten the load and
enable you to be more productive. Time and effort invested in learning gdb is time well
spent if you can track down and fix a serious bug in just a few minutes. gdb can make
this happen.

Compiling for gdb
As you learned in Chapter 3, “GNU cc,” debugging requires that your source code be
compiled with -g in order to create an enhanced symbol table. So, the following com-
mand:

$ gcc -g file1.c file2.c -o prog

will cause prog to be created with debugging symbols in its symbol table. If you want,
you can use gcc’s -ggdb option to generate still more (gdb-specific) debugging informa-
tion. However, to work most effectively, this option requires that you have access to the
source code for every library against which you link. While this can be very useful in
certain situations, it can also be expensive in terms of disk space. In most cases, howev-
er, you should be able to get by with the plain -g option.

As also noted in Chapter 3, it is possible to use both the -g and -O (optimization)
options. However, because optimization changes the resulting program, the relationship
you expect to exist between the code you wrote and the executing binary may not exist.
Variables or lines of code may have disappeared or variable assignments may occur at
times when you do not expect it. My recommendation is that you wait until you have
debugged your code as completely as possible before starting to optimize it. In the long
run, it will make your life, especially the parts of it you spend debugging, much simpler
and less stressful.

Special Programming Techniques

PART V
688

WARNING

Do not strip your binaries if you distribute programs in binary form. It is a mat-
ter of courtesy to your users and may even help you. If you get a bug report
from a user who obtained a binary-only version, she will be unable to provide
helpful information if you used strip to discard all symbols from the binary in
order to make the binary smaller. Although she might be willing to download a
source distribution in order to recompile with debugging enabled, it would be
presumptuous of you to ask.

4272316072 CH36 7/26/99 2:18 PM Page 688

Using Basic gdb Commands
Most of what you will need to accomplish with gdb can be done with a surprisingly
small set of commands. This section shows you just enough gdb commands to get you
going. A later section, “Advanced gdb Concepts and Commands,” will cover a few
advanced features that will come in handy.

Starting gdb
To start a debugging session, simply type gdb progname [corefile], replacing prog-
name with the name of the program you want to debug. Using a core file is optional, but
will enhance gdb’s debugging capabilities. For this chapter, we will use Listing 36.1 to
work through examples.

Listing 36.1 A PROGRAM WITH BUGS

1 /*
2 * Listing 36.1
3 * debugme.c - Poorly written program to debug
4 */
5 #include <stdio.h>
6 #include <stdlib.h>
7
8 #define BIGNUM 5000
9
10 void index_to_the_moon(int ary[]);
11
12 int main(void)
13 {
14 int intary[10];
15
16 index_to_the_moon(intary);
17
18 exit(EXIT_SUCCESS);
19 }
20
21 void index_to_the_moon(int ary[])
22 {
23 int i;
24 for(i = 0; i < BIGNUM; ++i)
25 ary[i] = i;
26 }

I compiled this program using the following command:

$ gcc -g debugme.c -o debugme

Debugging: GNU gdb

CHAPTER 36
689

36

D
EB

U
G

G
IN

G:
G

N
U

 G
D
B

4272316072 CH36 7/26/99 2:18 PM Page 689

I tried to run it by typing ./debugme, and it immediately caused a segmentation fault and
dumped core (on Red Hat 5.2).

The first step is to start gdb, using the program name, debugme, and the core file, core, as
arguments:

$ gdb debugme core

The screen should resemble Figure 36.1 after gdb initializes.

Special Programming Techniques

PART V
690

FIGURE 36.1
The gdb start-up
screen.

If you don’t like the licensing messages (they annoy me), use the -q (or —quiet) option
to suppress them. Another useful command-line option is -d dirname, where dirname is
the name of a directory, to tell gdb where to find source code (it looks in the current
working directory by default). As you can see from the figure, gdb reports the executable
that created the core file and why the program terminated. In this case, the program
caused a signal 11, which is a segmentation fault. It also helpfully displays the function
it was executing and the line it believes caused the fault (line 25).

The first thing you would want to do is run the program in the debugger. The command
to do this is run. You can pass any arguments to the run command that your program
would ordinarily accept. In addition, the program will receive a properly set up shell
environment as determined by the value of the environment variable $SHELL. If you
want, however, you can use gdb commands to set or unset arguments and environment
variables after you have started a debugging session. To do so, type set args arg1
arg2 to set command-line arguments and set environment env1 env2 to set environ-
ment variables.

4272316072 CH36 7/26/99 2:18 PM Page 690

Attempting to run the program in the debugger, it stops after receiving the SIGSEGV
signal:

(gdb) run
Starting program: /home/kwall/projects/lpu/36/src/debugme

Program received signal SIGSEGV, Segmentation fault.
0x804848e in index_to_the_moon (ary=0xbffffa08) at debugme.c:25
25 ary[i] = i;
(gdb)

Inspecting Code in the Debugger
The question, though, is what was happening in the function index_to_the_moon? You
can execute the backtrace command to generate the function tree that led to the seg
fault. The function trace looks like the following:

(gdb) backtrace
#0 0x804848e in index_to_the_moon (ary=0xbffffa08) at debugme.c:25
#1 0x804844f in main () at debugme.c:16
#2 0xb in ?? ()
(gdb)

Debugging: GNU gdb

CHAPTER 36
691

36

D
EB

U
G

G
IN

G:
G

N
U

 G
D
B

TIP

If you forget a gdb command or are not sure of its exact syntax, gdb has a rich
help system. A bare help command typed at the gdb prompt will give a short
listing of available command categories, while help <topic> will print help
information for <topic>. As always, gdb has a complete help system, TeXinfo
documentation, and an excellent manual, Debugging With GDB, which is avail-
able online and by mail order from the FSF.

TIP

It is not necessary to type complete command names while using gdb. Any
abbreviation that is unique will do. For example, back will suffice for backtrace.

So, the problem was, indeed, in index_to_the_moon(), which was called from the
main() function. It would be helpful, however, to have some idea of the context in which

4272316072 CH36 7/26/99 2:18 PM Page 691

the offending line(s) of code exist. For this purpose, use the list command, which takes
the general form, list [m,n]. m and n are the starting and ending line numbers you want
displayed. Just a bare list command will display ten lines of surrounding code, as illus-
trated in the following:

(gdb) list
20
21 void index_to_the_moon(int ary[])
22 {
23 int i;
24 for(i = 0; i < BIGNUM; ++i)
25 ary[i] = i;
26 }
(gdb)

With a clear picture of what is happening in the code, you can then decide what has gone
wrong.

Examining Data
One of gdb’s most useful features is the capability to display both the type and the value
of almost any expression, variable, or array in a program being debugged. It will print
the value of any expression legal in the language in which your program is written. The
command is, predictably enough, print. The following are some print commands and
their results:

(gdb) print i
$1 = 382
(gdb) print ary[i]
Cannot access memory at address 0xc0000000.
(gdb) print ary[i-1]
$2 = 381

Although in this example, the program crashed at i=382, where it crashes on your system
will depend on its memory layout.

The second command, print ary[i], makes it pretty clear that the program does not
have access to the memory location specified, although it does have legal access to the
preceding one. The $1 and $2 refer to entries in the value history. If you want to access
these values in the future, use these aliases rather than retyping the command. For exam-
ple, the command $1-1 produces:

(gdb) print $1-1
$4 = 381

Special Programming Techniques

PART V
692

4272316072 CH36 7/26/99 2:18 PM Page 692

You are not limited to using discrete values, because gdb can display the values of an
arbitrary region of memory. To print the first memory locations associated with ary, use
the following command:

(gdb) print ary@10
$5 = {0xbffffa08, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8

The notation @10 means to print the 10 values that begin at ary. Say, on the other hand,
that you want to print the five values stored in ary beginning with the 71st element. The
command for this would be the following:

(gdb) print ary[71]@5
$6 = {71, 72, 73, 74, 75}

Because each print command creates an entry in gdb’s value history, you can use the
aggregate array values later on.

You might be wondering why the first print command displayed hexadecimal values and
the second one displayed decimal values. First, remember that arrays in C are zero-
based. Remember also that the bare array name is a pointer to the base of the array. So,
gdb looked at ary, saw that it was the address of the array’s base, and displayed it and
the following nine values as memory addresses. Memory addresses are customarily dis-
played in hexadecimal. If you want to display the first ten values stored in ary, use the
indexing operator, [], with the index of the first value, 0, as illustrated:

(gdb) print ary[0]@10
$9 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Debugging: GNU gdb

CHAPTER 36
693

36

D
EB

U
G

G
IN

G:
G

N
U

 G
D
B

NOTE

gdb is usually compiled with support for the GNU readline library, which means
that it supports the command-line editing and history features of the bash shell.
For example, to recall a previous command, use the up arrow key to scroll back
through the command history. See the readline manual page for more details
about command-line editing.

gdb also can tell you the types of variables using the whatis command:

(gdb) whatis i
type = int
(gdb) whatis ary
type = int *
(gdb) whatis index_to_the_moon
type = void (int *)

4272316072 CH36 7/26/99 2:18 PM Page 693

This feature may seem rather useless because, of course, you know the types of all the
variables in your program (yeah, right!). But, you will change your mind the first time
you have to debug someone else’s code or have to fix a multi-file project and have not
looked at one of the source files for a couple of months.

Setting Breakpoints
As you debug problematic code, it is often useful to halt execution at some point. gdb
allows you to set breakpoints on several different kinds of code constructs, including line
numbers and function names, and also enables you to set conditional breakpoints, where
the code only stops if a certain condition is met.

To set a breakpoint on a line number, use the following syntax:

(gdb) break <linenum>

and, to set a breakpoint on a function name, use:

(gdb) break <funcname>

In either case, gdb will halt execution before executing the specified line number or
entering the specified function. You can then use print to display variable values, for
example, or use list to review the code that is about to be executed. If you have a multi-
file project and want to halt execution on a line of code or in a function that is not in the
current source file, use the following forms:

(gdb) break <filename:linenum>
(gdb) break <filename:funcname>

Conditional breakpoints are usually more useful. They allow you temporarily to halt pro-
gram execution if a particular condition is met. The correct syntax for setting conditional
breakpoints is:

(gdb) break <linenum or funcname> if <expr>

expr can be any expression that evaluates to true (non-zero). For example, the following
break command stops execution at line 25 of debugme when the variable i equals 15:

(gdb) break 25 if i == 15
Breakpoint 1 at 0x804847c: file debugme.c, line 24.
(gdb) run
Starting program: /home/kwall/projects/lpu/36/src/debugme

Breakpoint 1, index_to_the_moon (ary=0xbffffa08) at debugme.c:25
25 ary[i] = i;
(gdb)

Special Programming Techniques

PART V
694

4272316072 CH36 7/26/99 2:18 PM Page 694

As you can see, gdb stopped on line 25. A quick print command confirms that it
stopped at the value of i we requested:

(gdb) print i
$14 = 15

If the program is already running when you enter the run command, gdb will say that the
program has already started and ask if you want to restart it from the beginning. Say yes.

To resume executing after hitting a breakpoint, simply type continue. If you have set
many breakpoints and have lost track of what has been set and which ones have been
triggered, you can use the info breakpoints command to refresh your memory. The
delete command allows you to delete breakpoints, or you can merely disable them.
Figure 36.2 illustrates the output of the following commands:

(gdb) info breakpoints
(gdb) delete 3
(gdb) disable 4
(gdb) info breakpoints

Debugging: GNU gdb

CHAPTER 36
695

36

D
EB

U
G

G
IN

G:
G

N
U

 G
D
B

FIGURE 36.2
gdb has sophisti-
cated facilities for
managing break-
points.

In Figure 36.2, I used the info command to obtain a list of available breakpoints, delet-
ed the third breakpoint, disabled the fourth, and then redisplayed breakpoint information.
It probably will not surprise you that the command to re-enable a disabled breakpoint is
enable N, where N is the breakpoint number.

Examining and Changing Running Code
You have already seen the print and whatis commands, so we will not rehash them
here, except to point out that if you use the print command to display the value of an
expression, and that expression modifies variables the program uses, you are changing
values in a running program. This is not necessarily a bad thing, but you do need to
understand that what you are doing has side effects.

4272316072 CH36 7/26/99 2:18 PM Page 695

One of the whatis command’s shortcomings is that it only gives you the type of a vari-
able or function. If you have a structure, such as the following:

struct s {
int index;
char *name;

} *S;

and type

(gdb) whatis S

gdb reports only the name of the structure

type = struct s *

If you want the structure’s definition, use the ptype command as follows:

(gdb) ptype S
type = struct s {

int index;
char *name;

} *

If you want to change the value of a variable (keeping in mind that this change will
affect the running code), the gdb command is:

(gdb) set variable varname = value

where varname is the variable you want to change and value is varname’s new value.
Returning to Listing 36.1, use the delete command to delete all the breakpoints and
watchpoints you may have set, and then set the following breakpoint:

(gdb) break 25 if i == 15

and run the program. It will temporarily halt execution when the variable i equals 15.
After the break, issue this command to gdb:

(gdb) set variable i = 10

This resets i to 10. Execute a print i command to confirm that variable’s value has
been reset, and then issue the step command three times, followed by another print i.
You will see that i’s value has incremented by one after one iteration through the for
loop. Besides demonstrating that you can alter a running program, these steps also illus-
trate how to single-step through a program. The step command executes a program one
statement at a time.

Special Programming Techniques

PART V
696

4272316072 CH36 7/26/99 2:18 PM Page 696

The next command, on the other hand, executes an entire function when it encounters
one, while the step command would only “step” into the function and continue execu-
tion one statement at a time.

The final method for examining a running program I will discuss is calling functions,
using the call, finish, and return commands. Table 36.1 lists the syntax and function
of these commands.

Table 36.1 COMMANDS FOR WORKING WITH FUNCTIONS

Command Description

call name(args) Call and execute the function named name with the
arguments args

finish Finish running the current function and print its return
value, if applicable

return value Stop executing the current function and return value
to the caller

Use the call command in exactly the same way you would call the named function. For
example, the command

(gdb) call index_to_the_moon(intary)

executes the function index_to_the_moon with intary as the argument. You can set
breakpoints and use gdb features as you normally would when you call a function this
way. If you do set a breakpoint inside the function, you can use continue to resume exe-
cution, finish to complete the function call and stop execution when the function
returns, or use the return command to abort the function and return a specified value to
the caller.

Debugging: GNU gdb

CHAPTER 36
697

36

D
EB

U
G

G
IN

G:
G

N
U

 G
D
B

NOTE

It is not necessary to type “step” three times. gdb remembers the last command
executed, so you can simply press the Enter key to re-execute the last command,
a real finger saver. This works for most gdb commands. See the documentation
for more details.

4272316072 CH36 7/26/99 2:18 PM Page 697

Advanced gdb Concepts and
Commands
This section discusses a few complicated concepts and some sophisticated commands
that will make your gdb usage more productive and less frustrating. The concepts include
gdb’s notions of variable scope and variable context. The commands include traversing
the call stack, working with source files, the shell command, and attaching to an exist-
ing process.

Variable Scope and Context
At any given time, gdb considers a variable either active or inactive, which affects the
variables to which you have access and can examine and manipulate. You cannot access
variables that are not “in context” or are inactive. There are a few rules that define what
constitutes an active or in context variable.

• Local variables in any function are active if that function is running or if control
has passed to a function called by the controlling function. Say the function foo()
calls the function bar(); as long as bar() is executing, all variables local to foo()
and bar() are active. Once bar() has returned, only local variables in foo() are
active, and thus accessible.

• Global variables are always active, regardless of whether the program is running.

• Nonglobal variables are inactive unless the program is running.

So much for variable context. What is gdb’s notion of variable context? The complication
arises from the use of static variables, which are file local, that is, you can have identical-
ly named static variables in several files, and they will not conflict because they are not
visible outside the file in which they are defined. Fortunately, gdb has a way to identify
to which variable you are referring. It resembles C++’s scope resolution operator. The
syntax is

file_or_funcname::varname

where varname is the name of the variable to which you want to refer and
file_or_funcname is the name of the file or the function in which it appears. So, for
example, given two source code files, foo.c and bar.c, each containing a variable
named baz, that is declared static, to refer to the one in foo.c you might write the fol-
lowing:

(gdb) print ‘foo.c’::baz

Special Programming Techniques

PART V
698

4272316072 CH36 7/26/99 2:18 PM Page 698

The single quotes around the filename are required so that gdb knows you are referring
to a filename. Similarly, given two functions, blat() and splat(), each with an integer
variable named idx, the following commands would print the addresses of idx in each
function:

(gdb) print &blat::idx
(gdb) print &splat::idx

Traversing the Call Stack
gdb provides two commands for moving up and down the call stack, which is the chain
of function calls that got you to the current location in the code. Imagine a program in
which the main() function calls the function make_key(), which in turn calls the func-
tion get_key_num(). The function get_key_num() in turn calls number(). Listing 36.2
shows a dummy program illustrating this.

Listing 36.2 A CALL CHAIN THREE FUNCTIONS DEEP

1 /*
2 * Listing 36.2
3 * callstk.c - A complicated calling chain to illustrate
4 * traversing the call stack with gdb
5 */
6 #include <stdio.h>
7 #include <stdlib.h>
8
9 int make_key(void);
10 int get_key_num(void);
11 int number(void);
12
13 int main(void)
14 {
15 int ret = make_key();
16 fprintf(stdout, “make_key returns %d\n”, ret);
17 exit(EXIT_SUCCESS);
18 }
19
20 int make_key(void)
21 {
22 int ret = get_key_num();
23 return ret;
24 }
25
26 int get_key_num(void)
27 {
28 int ret = number();
29 return ret;

Debugging: GNU gdb

CHAPTER 36
699

36

D
EB

U
G

G
IN

G:
G

N
U

 G
D
B

continues

4272316072 CH36 7/26/99 2:18 PM Page 699

Listing 36.2 CONTINUED

30 }
31
32 int number(void)
33 {
34 return 10;
35 }

Using the break command, set a breakpoint at line 32:

(gdb) break 32
Breakpoint 1 at 0x80484fc: file callstk.c, line 32.

and then run the program with the run command. It stops at line 32. Next, type the com-
mand where, which prints the following (the hexadecimal addresses will almost certainly
be different):

(gdb) where
#0 number () at callstk.c:33
#1 0x80484cf in make_key () at callstk.c:22
#2 0x804849b in main () at callstk.c:15
(gdb)

The display shows the call chain in reverse order; that is, that number() (#0) was called
by make_key()(#1), which in turn had been called by the main() function. The up com-
mand moves up the call stack one function call, placing you on line 22. The down com-
mand moves control back the number() function. Executing the step command three
times moves you back or up the get_key_num() function, at which point you could print
the value of the variable ret to see its value. Figure 36.3 illustrates the results of the
command sequence just described.

Special Programming Techniques

PART V
700

FIGURE 36.3
Traversing
callstk’s call
chain.

The commands for traversing the call chain, combined with those for examining variable
values, give you low-level insight into the innards of a running program. This level of

4272316072 CH36 7/26/99 2:18 PM Page 700

control will prove invaluable to you as you hone your debugging skills and track down
intractable bugs buried deep inside a chain of function calls.

Working with Source Files
Locating a specific function in a multi-file project is a breeze with gdb, provided you use
the -d switch, mentioned in the section “Starting gdb”, to tell it where to find additional
source code files. This is a particularly helpful option when all of your source code is not
located in your current working directory or in the program’s compilation directory
(which is recorded in its symbol table). To specify one or more additional directories,
start gdb using one or more -d <dirname> options, as illustrated in the following:

$ gdb -d /source/project1 -d /oldsource/project1 -d
➥/home/gomer/src killerapp

To locate the next occurrence of a particular string in the current file, use the search

<string> command. Usereverse-search <string> to find the previous occurrence.
Returning to Listing 36.2 for a moment, suppose the program has stopped at the break-
point you set in the previous example, line 32. If you want to find the previous occur-
rence of the word “return,” use the following command:

(gdb) reverse-search return

gdb obliges and displays the text listed below:

(gdb) reverse-search return
29 return ret;

Using the search and reverse-search commands is especially helpful in large source
files that have dozens or hundreds of lines.

Communicating with the Shell
While running a debugging session, you will often need to execute commands at the
shell’s command prompt. gdb provides the shell command to enable you to do so with-
out leaving gdb. The syntax for this command is

(gdb) shell <command>

where command is the shell command you want to execute. Suppose you have forgotten
what your current working directory is. Simply execute the following command :

(gdb) shell pwd

and gdb will pass the command pwd to the shell, executing it with /bin/sh:

/home/kwall/projects/lpu/36/src

Debugging: GNU gdb

CHAPTER 36
701

36

D
EB

U
G

G
IN

G:
G

N
U

 G
D
B

4272316072 CH36 7/26/99 2:18 PM Page 701

Attaching to a running process automatically halts it so you can inspect its status using
the normal gdb commands. When you are done, simply type quit, which will detach
from the running process and allow it to continue. If gdb is already running, you can use
the attach and file commands to obtain access to the program. First, use the file com-
mand to specify the program running in the process and to load its symbol table, as in
the following:

(gdb) file httpd
Reading symbols from httpd...(no debugging
➥symbols found)...done.
(gdb) attach 386
Attaching to program `/usr/sbin/httpd’, Pid 386
Reading symbols from /lib/libm.so.6...done.
Reading symbols from /lib/libcrypt.so.1...done.
Reading symbols from /lib/libdb.so.2...done.
Reading symbols from /lib/libdl.so.2...done.
Reading symbols from /lib/libc.so.6...done.
Reading symbols from /lib/ld-linux.so.2...done.
...

Special Programming Techniques

PART V
702

FIGURE 36.4
Attaching to the
httpd server dae-
mon.

Attaching to a Running Program
The final advanced procedure I will discuss is how to use gdb to attach to a running
process, such as a system daemon. The procedure to accomplish this is very similar to
starting gdb, except that the second argument to gdb is the PID (process ID) of the exe-
cutable to which you want to attach, rather than the name of the core file. gdb will com-
plain that it cannot find a file named PID, but you can safely ignore this because gdb
always checks for a file first to see if there is a core file available. Figure 36.4 is a trun-
cated display of U’s attempt to attach to the httpd server daemon running on my system.

4272316072 CH36 7/26/99 2:18 PM Page 702

As you can see from this example, attach expects a process ID as its argument, then
proceeds to load symbols from the various libraries against which the attached program
has been linked. Again, when you have completed examining the attached process, issue
the detach command to allow it to continue executing.

Summary
This chapter has only scratched the surface of gdb’s capabilities. A full exposition of
what it can do would require several hundred pages. As stated at the beginning of this
chapter, the more time you invest in learning gdb, the more benefit you will derive from
your debugging sessions. In this chapter, you have learned how to start gdb, have seen
the basic commands required for the simplest usage, and have used some of its more
advanced features. gdb is your friend—learn to exploit it.

Debugging: GNU gdb

CHAPTER 36
703

36

D
EB

U
G

G
IN

G:
G

N
U

 G
D
B

4272316072 CH36 7/26/99 2:18 PM Page 703

704

4272316072 CH36 7/26/99 2:18 PM Page 704

Finishing Touches
PART

VI
IN THIS PART

• Package Management 707

• Documentation 721

• Licensing 735

4372316072 part6 7/26/99 2:15 PM Page 705

4372316072 part6 7/26/99 2:15 PM Page 706

IN THIS CHAPTER

• Understanding tar Files 708

• Understanding the install
Command 711

• Understanding the Red Hat Package
Manager (RPM) 712

37
C

H
A

PT
ER

Package
Management

by Kurt Wall

4472316072 CH37 7/26/99 2:26 PM Page 707

The topic of package management, which is the creation, distribution, installation, and
upgrade of software, particularly source code, usually gets no attention in programming
survey books such as this one. This unfortunate oversight is remedied in this chapter,
which looks at the GNU project’s tar and install utilities and Red Hat’s Red Hat
Package Manager, RPM.

The previous thirty-six chapters focused on hacking code and on tools and utilities that
ease the hacker’s endeavor. However, the fastest, coolest code in the world will become
shelfware if it is extraordinarily difficult to install or renders a user’s system useless after
she installs it. The same applies to upgrading existing software. For many years, the Free
Software Foundation’s tar and install utilities were the de facto standard for distribut-
ing software, either in source or binary form. They worked (and still work) well, if you
understood their limitations, particularly with respect to version and dependency check-
ing. Red Hat’s RPM system addresses these and other warts of tar and install, and,
properly used by hacker and end user alike, make software distribution a breeze.

Understanding tar Files
tar, which stands for Tape ARchiver, creates, manages, and extracts multi-file archives,
known as “tarfiles,” or, more affectionately and idiomatically, “tarballs.” tar is the tradi-
tional utility used to create archives, along with cpio, which is not covered. A complete
description of tar reaches well beyond this book’s scope, so this chapter focuses on typi-
cal and simple usage as related to the creation and management of software distribution.
It is also assumed that the user downloading your code knows how to unpack a tarball
and view a README file that explains the idiosyncrasies of installing your software.
Table 37.1 discusses tar’s command-line options, which the following sections discuss
in more detail.

Table 37.1 tar COMMAND-LINE OPTIONS

Option Description

c Create an archive

f archive_name Name the archive archive_name

r Append files to the archive

u Update existing files in the archive

t List the contents of the archive

v Generate verbose output

z Create or work with a compressed archive (gzip is the
default compression utility)

Finishing Touches

PART VI
708

4472316072 CH37 7/26/99 2:26 PM Page 708

Creating tar Files
In its simplest form, the command to create a tarball is

$ tar cf {archive_name} {file_Spec}

c says to “create” a tarball from the file(s) indicated by file_spec. f says to name the
tarball archive_name. You will generally want to compress the tarball to save disk space
and download time. The easiest way to do so, using GNU’s tar, is to add z to the option
list, which causes tar to invoke another GNU utility, gzip, on the tarball to compress it,
as in the following:

$ tar czf {archive_name} {file_spec}

To illustrate, the CD-ROM that accompanies this book contains the source files used to
build the tar utility itself (version 1.12, to be precise). First, create a tarball (you will
need to copy the contents of the file from the source code directory on the CD-ROM,
/source/37, to your hard disk):

$ tar cf tar.tar *

We use the standard wildcard (*) to request that all files and directories in the current
directory be stored in the tarball. A quick ls command shows that none of the source
files were removed, but that a new file, named, as requested, tar.tar, was created:

total 3683
-rw-r--r-- 1 kwall users 11451 Apr 19 1997 ABOUT-NLS
-rw-r--r-- 1 kwall users 1040 Apr 19 1997 AC-PATCHES
-rw-r--r-- 1 kwall users 9656 Apr 23 1997 AM-PATCHES
-rw-r--r-- 1 kwall users 732 Apr 18 1997 AUTHORS
...
drwxr-xr-x 2 kwall users 1024 Apr 25 1997 src
-rw-r--r-- 1 kwall users 10 Apr 25 1997 stamp-h.in
-rw-r--r-- 1 kwall users 3256320 May 3 22:54 tar.tar
drwxr-xr-x 2 kwall users 1024 Apr 25 1997 tests

As you can see, the tarball is quite large. You can either run gzip on the file separately,
or use tar’s z option to reduce the file size and, thus, the download time:

$ tar czf tar.tar.gz *
$ ls -l tar.tar.gz
-rw-r--r-- 1 kwall users 2590545 May 3 23:42 tar.tar.gz
$ gzip tar.tar
$ ls -l tar.tar.gz
-rw-r--r-- 1 kwall users 1712020 May 3 23:41 tar.tar.gz

The compression option slows down tar’s operation somewhat, but saves typing. On the
other hand, calling gzip directly results in much better compression, but you have to
type an additional command to prepare your package for distribution. Hackers being lazy
critters, Makefiles usually include a target such as dist that creates a gzipped tarball.

Package Management

CHAPTER 37
709

37

P
A

C
K

A
G

E
M

A
N

A
G

EM
EN

T

4472316072 CH37 7/26/99 2:26 PM Page 709

This reduces the amount of typing you’ll have to do and is also a convenience: simply
type make dist and your package is ready to upload for the rest of the world to down-
load.

Updating tar Files
So, now you have a nicely packaged and compressed tarball. But, suddenly, you realize
you neglected to include the documentation. You did write documentation, didn’t you?
Never fear, you can easily add new files to (or update existing files in) the tarball using
tar’s append or update options.

To append your newly written documentation to the compressed tarball we created a few
sentences ago, execute

$ tar rfz tar.tar.gz *.doc

(which assumes that the files you want to append all have a .doc extension). The r
instructs tar to append the specified files to the end of the tarball. If, similarly, you mod-
ified some files already present in the archive and want to update the tarball with the
modified files, use tar’s update option (u):

$ tar uzf tar.tar.gz {updated_file_spec}

where updated_file_spec indicates the files that have changed.

Listing the Contents of tar Files
Finally, if you lose track of what files your tarball contains, or their dates, you can list
the files in an archive using, predictably, the list option (t):

$ tar tzvf tar.tar.gz

We have added GNU’s standard option for verbose output, v. Executing this command
produces the following listing (truncated for brevity’s sake):

-rw-r--r-- kwall/users 3246080 1999-05-03 23:48 ABOUT-NLS
-rw-r--r-- kwall/users 1040 1997-04-19 13:35 AC-PATCHES
-rw-r--r-- kwall/users 9656 1997-04-23 07:15 AM-PATCHES
-rw-r--r-- kwall/users 732 1997-04-18 13:32 AUTHORS
-rw-r--r-- kwall/users 85570 1997-04-25 18:21 BACKLOG
-rw-r--r-- kwall/users 2545 1997-04-24 06:16 BI-PATCHES
-rw-r--r-- kwall/users 17996 1996-03-24 11:49 COPYING
...
-rw-r--r-- kwall/users 63 1997-04-25 14:05 doc/version.texi
-rw-r--r-- kwall/users 354244 1997-04-24 07:19 doc/tar.texi
-rwxr-xr-x kwall/users 1961 1997-03-18 13:14 doc/convtexi.pl
-rw-r--r-- kwall/users 18106 1997-02-02 09:55 doc/getdate.texi
-rw-r--r-- kwall/users 9241 1997-04-15 16:28 doc/header.texi
...

Finishing Touches

PART VI
710

4472316072 CH37 7/26/99 2:26 PM Page 710

Understanding the install
Command
Consider install a cp command on steroids. In addition to copying files, it sets their
permissions and, if possible, their owner and group. It can also create destination directo-
ries if they do not already exist. install is usually used in Makefiles as part of a rule
for a target named (something like) “install.” It can also be used in shell scripts.

install’s general syntax is

$ install [option[...]] source[...] dest

where source is one or more files to copy and dest is either the name of the target file
or, if multiple files are specified in source, a directory. option can be one or more val-
ues listed in Table 37.2.

Table 37.2 install COMMAND-LINE OPTIONS

Option Argument Description

-g group Set the group ownership on file(s) to the GID or group
name specified in group. The default GID is that of the par-
ent process calling install.

-o owner Set the ownership of file(s) to the UID or user name speci-
fied in owner. The default owner is root.

-m mode Set the file mode (permissions) to the octal or symbolic
value specified in mode. The default file mode is 755, or
read/write/execute for owner and read/execute for group
and other.

To specify dest as a directory, use the following syntax:

$ install -d [option [...]] dir[...]

The -d switch instructs install to create the directory dir, including any parent directo-
ries necessary, using any of the attributes listed in Table 37.2 or the default attributes.

In our first example, taken from the Makefile for gdbm, the GNU database library, after
expanding some of the make variables, the “install” target is:

1 install: libgdbm.a gdbm.h gdbm.info
2 install -c -m 644 libgdbm.a $(libdir)/libgdbm.a
3 install -c -m 644 gdbm.h $(includedir)/gdbm.h
4 install -c -m 644 $(srcdir)/gdbm.info $(infodir)/gdbm.info

Package Management

CHAPTER 37
711

37

P
A

C
K

A
G

E
M

A
N

A
G

EM
EN

T

4472316072 CH37 7/26/99 2:26 PM Page 711

The make variables libdir, includedir, srcdir, and infodir are, respectively,
/usr/lib, /usr/include, /usr/src/build/info, and /usr/info. So, libgdbm.a and
gdbm.h will be read/write for the root user and read-only for everyone else. The file
libgdbm.a gets copied to /usr/lib; gdbm.h, the header, winds up in /usr/include. The
Texinfo file, gdbm.info, gets copied from /usr/src/build/info to
/usr/info/gdbm.info. install overwrites existing files of the same name. The -c
option is included for compatibility with older versions of install on other UNIX ver-
sions. You should include this, but, in most cases, it will be ignored.

Finishing Touches

PART VI
712

NOTE

Under Linux, install silently ignores -c; it has no effect.

Our second and final example, Listing 37.1, creates a set of directories under /tmp and
sets some odd file modes on the files installed to demonstrate install features the first
example did not cover. It is available as a shell script on the CD-ROM. Unless you have
peculiar permissions on /tmp, it should execute without incident. The script uses some of
the files from the tar source distribution on the CD-ROM. Feel free to delete the entire
/tmp/lpu-install directory after it completes and you have inspected its contents.

Listing 37.1 lpu-install.sh

1 #!/bin/sh
2 # Listing 38.1
3 # lpu-install.sh - Demonstrate (perverse) `install’ usage
4 # ###
5
6 INSTALL=$(which install)
7 LPU=/tmp/lpu-install
8 SRC=./src
9
10 for DIR in 10 20 30
11 do
12 $INSTALL -c -d -o $USER $LPU/$DIR
13 $INSTALL -c -m 111 -o $USER $SRC/*.c $LPU/$DIR
14 done
15
16 if [$USER = root]; then
17 for GRP in $(cut -f1 -d: /etc/group)
18 do
19 $INSTALL -c -d -o $USER -g $GRP $LPU/$GRP
20 $INSTALL -c -m 400 -g $GRP *.el $LPU/$GRP
21 done
22 fi

4472316072 CH37 7/26/99 2:26 PM Page 712

If the syntax of the shell script confuses you, re-read Chapter 34, “Shell Programming
with GNU bash.” Or, skip it, since our interest here is install’s behavior (lines 12 and
13 and 19 and 20). Note, however, that the second code block (lines 16[nd]21) will fail if
not run by the root user. Line 12 creates three directories rooted in /tmp:
/tmp/lpu-install/10, /tmp/lpu-install/20, and /tmp/lpu-install/30. Line 13
copies all of the C code files from the ./src subdirectory of the current working directo-
ry to each of these three subdirectories. We use the -o option to set user ownership,
repetitive in this case because the default owner would be that of the user executing the
script.

The second code block creates a set of directories named after each of the groups defined
on your system. Each directory is owned by the default user, but the group name is the
same as the directory name (line 19). Line 20 copies any elisp files in the current work-
ing directory to the appropriate directory, again setting the group ownership to the direc-
tory name and making the files read-only for the owner/user. No other users or groups
have any privileges to the file. This usage of install is strange, but nevertheless illus-
trates why we consider install “a better cp” command.

Understanding the Red Hat
Package Manager (RPM)
The Red Hat Package Manager, although it bears Red Hat’s name, is a powerful, general,
and open software packaging system used in Caldera’s OpenLinux, S.u.S.E.’s distribu-
tion, and, of course, Red Hat Linux. It is most frequently used for Linux, but versions of
it are available for many UNIX versions, including Solaris, SunOS, HP-UX, SCO, AIX,
and Digital UNIX. The discussion of RPM in this book focuses on creating source code
packages; Ed Bailey’s excellent book, Maximum RPM, covers mundane issues such as
installing, upgrading, and removing RPMs, as well as its uses by package creators and
maintainers. Point your browser at http://www.rpm.org/ for the latest version, complete
documentation, FAQs and HOWTOs, and a downloadable version of the book (but,
regarding the book, you are strongly encouraged to purchase it and reward both author
and publisher for making it freely available).

Minimum Requirements
To create RPMs, you need RPM itself, the source code you want to compile, an rpmrc
file to set some RPM defaults and control its behavior, and a spec file to control the
package build process. It is assumed you have an otherwise functional development envi-
ronment (compilers, tools, editors, cold pizza, Jolt cola, coffee, and such) and that your
source code compiles successfully.

Package Management

CHAPTER 37
713

37

P
A

C
K

A
G

E
M

A
N

A
G

EM
EN

T

4472316072 CH37 7/26/99 2:26 PM Page 713

Before we proceed, however, it is essential to convey the mindset motivating RPM. RPM
always begins with pristine sources. “Pristine,” in this context, means original or
unpatched code as it came from the developer (in most cases, this is you). RPM allows
you, or someone else, to apply one or more patch sets, either to modify the software to
build on a particular system, create system specific configuration files, or to apply (or
back out) bug fixes before (re)compiling. The emphasis on unmodified sources allows
you or your users always to begin a build from a known base and to customize it to fit
particular circumstances. As a developer, this gives you considerable flexibility with
respect to creating useful and reliable software and also a valuable level of control over
how your software gets compiled and installed.

So, to boil it to two simple rules:

1. Always start creating an RPM with unmodified sources.

2. Apply patches as necessary to fit the build environment.

Configuring RPM
The rpmrc file controls almost every element of RPM’s behavior. Your system adminis-
trator may have a global rpmrc file in /etc. If you would like to override one or more of
the global settings, create a ~/.rpmrc that contains your preferred settings. Before you
begin, however, you may want see RPM’s current configuration. Use the --showrc
option to accomplish this, as shown in the following:

$rpm --showrc
ARCHITECTURE AND OS:
build arch : i386
compatible build archs: i686 i586 i486 i386 noarch
build os : Linux
compatible build os’s : Linux
install arch : i686
install os : Linux
compatible archs : i686 i586 i486 i386 noarch
compatible os’s : Linux
RPMRC VALUES:
builddir : /usr/src/OpenLinux/BUILD
buildroot : (not set)
buildshell : /bin/sh
bzip2bin : /bin/bzip2
dbpath : /var/lib/rpm
...

The values in this abbreviated listing are the defaults on one of the authors’ OpenLinux
1.3 systems; your system may have slightly different settings. As you can see, the output
is divided into two sections: architecture and operating system settings, which define the
build and install environment; and rpmrc values, which control RPM’s behavior. The

Finishing Touches

PART VI
714

4472316072 CH37 7/26/99 2:26 PM Page 714

global configuration file, /etc/rpmrc, should be used for settings of a system-wide sort,
such as vendor, require_vendor, distribution, and require_distribution. The local
file, $HOME/.rpmrc, contains values specific to the user building an RPM, such as
pgp_name, pgp_path, packager, and signature.

We created a short rpmrc file for the purposes of this chapter:

distribution : Linux Programming Unleashed
require_distribution : 1
vendor : Gomer’s Software Hut and Lounge
topdir : /usr/src/krw
packager : Anyone Brave Enough to Claim It
optflags : -O2 -m486 -fno-strength-reduce
tmppath : /usr/tmp

In most cases, few settings in the rpmrc file require changing.

Controlling the Build: Using a spec File
The spec file, after the source code itself, is the most important element of an RPM,
because it defines what to build, how to build it, where to install it, and the files that it
contains. Each spec file you create should be named according to the standard naming
convention, pkgname-version-release.spec, where pkgname is the name of the pack-
age, version is the version number, typically in x.y.z format, and release is the release
number of the current version. For example, the name xosview-1.4.1-4.spec breaks
down to version 1.4.1, release number 4, indicating that this is the fourth “version” (don’t
get confused by the diction) of version 1.4.1 of xosview. Xearth-1.0-4.spec is release 4
of version 1.0. Each spec file has eight sections, which the following sections describe.

Header
The header section contains information returned by RPM queries, such as a description,
version, source location, patch names and locations, and the name of an icon file.

Prep
The prep section consists of whatever preparation must take place before the actual build
process can begin. Generally this is limited to unpacking the source and applying any
patches.

Build
As you might expect, the build section lists the commands necessary to compile the soft-
ware. In most cases, this will be a single make command, but it can be as complex and
obtuse as you desire.

Package Management

CHAPTER 37
715

37

P
A

C
K

A
G

E
M

A
N

A
G

EM
EN

T

4472316072 CH37 7/26/99 2:26 PM Page 715

Install
Again, the name is self-explanatory. The install section is the name of command, such as
make install, or a shell script that performs the software installation after the build suc-
cessfully completes.

Install/Uninstall Scripts
These scripts, which are optional, are run on the user’s system when the package is
removed or installed.

Verify Script
Usually, RPM’s verification routines are sufficient, but if they fall short of your needs,
this section lists any commands or shell scripts to execute that make up for RPM’s short-
comings.

Clean
This section handles any post-build clean up, but is rarely necessary since RPM does an
excellent job cleaning up after itself.

File List
An essential component (an RPM will not build without it), this section contains a list of
files that make up your package, set their file attributes, and identify documentation and
configuration files.

Analyzing a spec File
The following spec file is taken from the xearth package shipped with Caldera
OpenLinux 1.3, /usr/src/OpenLinux/SPECS/xearth-1.0.spec. This section of the
chapter analyzes each section. The first part of the spec file is the header:

Summary: Displays a lit globe
Name: xearth
Version: 1.0
Release: 4
Group: System/Desktop
Copyright: MIT
Packager: rwp@lst.de (Roger Pook)
Icon: xearth.xpm
URL: http://cag-www.lcs.mit.edu/~tuna/xearth/index.html
Source0: ftp://cag.lcs.mit.edu/pub/tuna/xearth-1.0.tar.gz
Patch0: xearth-1.0-caldera.patch
Provides: - optional -
Requires: - optional -
Conflicts: - optional -
BuildRoot: /tmp/xearth-1.0

Finishing Touches

PART VI
716

4472316072 CH37 7/26/99 2:26 PM Page 716

%Description
Xearth sets the X root window to an image of the Earth,
as seen from your favorite vantage point in space,
correctly shaded for the current position of the Sun.
By default, xearth updates the displayed image every
five minutes. The time between updates can be changed
with the -wait option (see below); updates can be disabled
completely by using the -once option (see below). Xearth
can also render directly into PPM and GIF files instead
of drawing in the root window.

This is the end of the header section. As you can see, there is a ton of information pro-
vided, which can be retrieved from RPM’s database using RPM’s powerful query capa-
bilities. The name, version, and release information bears directly on the build process,
but the balance of the information is strictly informational.

The next section of a spec file is the prep section. It defines the steps necessary to pre-
pare the package to be built.

%Prep
%setup
%patch0 -p1

The prep section is pretty simple: it applies a patch, in this case,
/usr/src/OpenLinux/SOURCES/xearth-1.0-caldera.patch, to the pristine sources.
That’s it. Badda bing, badda boom.

Well, the situation is a bit more complex. The line %setup is an RPM macro. It accom-
plishes a number of tasks, in this case, cding into the BUILD directory, deleting the rem-
nants of previous build attempts (if any), uncompressing and extracting the source code,
a gzipped tarball, /usr/src/OpenLinux/SOURCES/xearth-1.0.tar.gz, cding into the
extracted directory, and recursively changing ownership and permission on the extracted
directory and its files. This is the simplest way the %setup macro can be used. It takes a
variety of arguments that modify its behavior, but in most cases, the default behavior is
what you want and all you will need. We refer the curious reader to Maximum RPM for
all of the details.

After the prep section comes the build section. It details how to build the package.

%Build
xmkmf
make CXXDEBUGFLAGS=”$RPM_OPT_FLAGS” CDEBUGFLAGS=”$RPM_OPT_FLAGS”

Again, the build section is straightforward. In effect, the two commands are a script
passed to /bin/sh to build the package. RPM checks the return codes for each step,
aborting the build with a useful message if an error occurred.

Package Management

CHAPTER 37
717

37

P
A

C
K

A
G

E
M

A
N

A
G

EM
EN

T

4472316072 CH37 7/26/99 2:26 PM Page 717

Once the package is built, you will probably want it installed. The install section pro-
vides the information required to do so.

%Install
DESTDIR=$RPM_BUILD_ROOT; export DESTDIR
[-n “`echo $DESTDIR | sed -n ‘s:^/tmp/[^.].*$:OK:p’`”] &&
➥rm -rf $DESTDIR ||
(echo “Invalid BuildRoot: ‘$DESTDIR’! Check this .spec ...”;
➥exit 1) || exit 1

make install
make install.man

gzip man pages and fix sym-links
MANPATHS=`find $DESTDIR -type d -name “man[1-9n]” -print`
if [-n “$MANPATHS”]; then
chown -Rvc root.root $MANPATHS
find $MANPATHS -type l -print |
perl -lne ‘($f=readlink($_))&&unlink($_)&&symlink(“$f.gz”,

➥“$_.gz”)||die;’
find $MANPATHS -type f -print |
xargs -r gzip -v9nf

fi

Just like the prep and build sections, RPM executes lines in the install section as a
/bin/sh script. Caldera’s xearth package contains both standard make targets, install
and install.man, and custom shell code to fine-tune the installation.

After a package builds and installs successfully, RPM will remove the detritus left over
from the build and install process. The clean section of the spec file manages this.

%Clean
DESTDIR=$RPM_BUILD_ROOT; export DESTDIR
[-n “`echo $DESTDIR | sed -n ‘s:^/tmp/[^.].*$:OK:p’`”] && rm -rf
$DESTDIR ||
(echo “Invalid BuildRoot: ‘$DESTDIR’! Check this .spec ...”; exit 1) ||
exit 1
Caldera’s clean section simply makes sure that the xearth build
➥directory is completely removed, unsubtly suggesting a problem with
➥spec file (its commands, actually) if problems arise. You will
➥usually not require this section, if you stick with RPM’s default
➥build tree.
%Files
%doc README BUILT-IN GAMMA-TEST HISTORY
/usr/X11R6/bin/xearth
/usr/X11R6/man/man1/xearth.1x.gz

As noted previously, the file section consists of a list of files that make up the package. If
the file does not exist in this list, it will not be included in the package. The %doc token
expands to the value of defaultdocdir that rpm --showrc reported earlier, /usr/doc,

Finishing Touches

PART VI
718

4472316072 CH37 7/26/99 2:26 PM Page 718

plus the standard package name, xearth-1.0-4 (thus, to /usr/doc/xearth-1.0-4). You
can also use %doc to mark other files as documentation and cause them to be installed in
other directories. Again, in most cases, the default behavior will prove sufficient.

However, you must still create the file list yourself. Despite RPM’s power, it cannot read
your mind and create the file list. Probably the easiest way to create the list is to use the
files your makefile generates and add to that list any documentation or configuration files
required.

Building the Package
With the spec file created, we are ready to build the package. If you are confident the
spec file is correct, just change to the directory holding the spec file

$ cd /usr/src/OpenLinux/SPECS

and issue the “build everything in sight” command:

$ rpm -ba xearth-1.0-4.spec

If everything works correctly, you will wind up with a binary package,
/usr/src/OpenLinux/RPMS/i386/xearth-1.0-4.i386.rpm, and a new source rpm,
/usr/src/OpenLinux/RPMS/i386/xearth-1.0-4.src.rpm. At this point, arrange to copy
the binary package to a new machine, install it, and test it. If it installs and runs properly,
upload your source RPM to your favorite software repository, and you are finished.

If, regrettably, you run into problems, RPM’s build command accepts a number of
options that enable you to step through the build process to identify and, hopefully, fix
problems. The following is a brief description of the options:

• -bp—Validate the spec file’s prep section

• -bl—Validate the file list in %files

• -bc—Perform a prep and compile

• -bi—Perform a prep, compile, and install

• -bb—Perform a prep, compile, install, and build only a binary package

• --short-circuit—Add this argument to skip straight to the specified build step
(p,l,c,I,b)

• --keep-temps—Preserve the temporary files and scripts created during the build
process

• --test—A mock build to see what would be done (also performs --keep-temps)

Once you resolve the errors, rebuild using -ba, upload your masterpiece, and wait for the
kudos to roll in.

Package Management

CHAPTER 37
719

37

P
A

C
K

A
G

E
M

A
N

A
G

EM
EN

T

4472316072 CH37 7/26/99 2:26 PM Page 719

Summary
Compared to tarballs and GNU install, from a developer’s perspective, RPM can seem
like a great deal of work. Indeed, using it requires a few extra steps. Over the long haul,
RPM pays dividends in terms of package maintenance and convenience. We are not in a
position to dictate which to use. Let the market decide—and the market is clearly heavily
in favor of RPM.

Finishing Touches

PART VI
720

4472316072 CH37 7/26/99 2:26 PM Page 720

IN THIS CHAPTER

• man Pages 722

• Creating SGML Documents Using
SGML-tools 727

38
C

H
A

PT
ER

Documentation

by Kurt Wall

4572316072 CH38 7/26/99 2:26 PM Page 721

This chapter shows you how to create documentation for your programs. It initially cov-
ers the ubiquitous manual page, or man page (the term man page is used throughout this
chapter). Then, it examines an SGML-based tool, SGML-tools, which allows you to cre-
ate documentation in many formats from a single master document.

man Pages
If you’ve ever worked on any sort of UNIX system, you have doubtless used the man(1)
facilities to access online documentation. Although they seem archaic in this day and
age, when everything you need to know is a few clicks away on the World Wide Web,
man pages are, nevertheless, quintessential UNIX. Linux is no different, and in this sec-
tion you will learn how to create man pages of your own.

Finishing Touches

PART VI
722

Tip

You will frequently see numbers in parentheses after a command, such as
man(1). These numbers refer to the section of the manual where the command
is covered. Manual sections are covered later in this chapter.

Components of a man Page
The first thing you need to know is the typical layout of a man page, which Table 38.1
describes.

Table 38.1 MAN PAGE LAYOUT

Section Description

NAME The program or command name, the man section number, and the release
date

SYNOPSIS How to invoke the command, with a complete list of all options and
arguments

DESCRIPTION A brief summary of the command and its usage

OPTIONS An alphabetical list of options and arguments, if any

FILES A list of the files the command uses or can use

ENVIRONMENT A list of the environment variables the command uses or can use

DIAGNOSTICS A list of the error messages the command generates and possible solutions

4572316072 CH38 7/26/99 2:26 PM Page 722

BUGS Indicates the known bugs and misfeatures and, optionally, how to contact
the program author to correct them

AUTHOR The name of the command’s author and/or maintainer, preferably with an
email address or URL

SEE ALSO Cross-references to related commands and information

You can add other sections if necessary. The layout described in Table 38.1 is only sug-
gested; this is Linux, after all. The only required section is NAME because some of the
related documentation commands, such as makewhatis(8) and appropos(1) rely on the
NAME section.

Sample man Page and Explanation
Listing 38.1 contains the complete source of a rather whimsical man page documenting
the coffee command.

Listing 38.1 SAMPLE MAN PAGE

.\” Process using

.\” groff -man -Tascii coffee.1

.\” These four lines show you how to insert a comment into a groff source

.\” file. They will not be visible to the groff processor.

.TH COFFEE 1 “16 January 1999”

.SH NAME
coffee \- Control the networked coffee machine
.SH SYNOPSIS
.B coffee [-s] [-b
.I blend
.B] [—scorch] [—blend
.I blend
.B]
.I num_cups
.SH DESCRIPTION
.B coffee
sends a request to the remote coffee machine (usually the device
.B /dev/cfpt0(4)
to initiate a brew cycle to create
.I num_cups

Documentation

CHAPTER 38
723

38

D
O

C
U

M
EN

TA
TIO

N

Section Description

continues

4572316072 CH38 7/26/99 2:26 PM Page 723

of coffee. It assumes the device is turned on and that the water and bean
reservoirs have sufficient stocks actually to complete the brew cycle.For
those who prefer GNU’s long options, they are supplied.
.SH OPTIONS
.TP
.B -s, --scorch
Scorch the coffee. Rather than waiting for the brewed coffee to
age and oxidize on the warming plate, the freshly brewed coffee
is piped through a super-heating device, effectively simulating
the flavor of 6 oz. of liquid coffee that has been left on the
burner for 2 hours.
.TP
.B -b, --blend
Specify the blend of coffee to be brewed.
.I blend
is one of
.I costarican, java,
or
.I decaf.
If
.B -b
.I blend
is not specified, the default
.I regular
(blech) is assumed.
.SH FILES
.TP
.B /dev/cfpt0(4)
The default coffee machine. Large installations may have multiple coffee
machines, specified as
.B /dev/cfpt[0-15].
.TP
.B /dev/expr0(4)
The espresso machine. Usually only in the boss’s office.
.SH ENVIRONMENT
.TP
.B CF_BLEND
Set this variable to your preferred
.I blend.
Equivalent to
.B coffee -b $CF_BLEND.
.SH DIAGNOSTICS
None. This section is here for illustration purposes only.
.SH “SEE ALSO”
.BR creamer (1),
.BR grind (1)
.BR sweetener (1),
.SH NOTES
If there were any notes, they would go here.

Finishing Touches

PART VI
724

Listing 38.1 CONTINUED

4572316072 CH38 7/26/99 2:26 PM Page 724

.SH AUTHOR
Kurt Wall <kwall@xmission.com>
.SH BUGS
You may have to get up out of your chair if the whole bean repository is
empty. Multiple successive requests queued to the same device can cause
overflow.

To view this as a nicely formatted man page, use the command

$ groff -Tascii -man coffee.man | less

If everything worked correctly, the output should look like Figure 38.1.

Documentation

CHAPTER 38
725

38

D
O

C
U

M
EN

TA
TIO

N

FIGURE 38.1
Viewing a man
page.

Using the groff Command
Don’t be put off by the apparent obscurity of the raw groff code. It is quite easy to
understand. Groff requests are preceded by a “.” and are, obviously, quite succinct. .TH,
used once per man page, sets the page title, the section number, and the version date. The
format shown for the NAME section is very important. Following .SH NAME, place the
command name followed by a backslash and dash (\-)followed by a short (one-line)
description of the command’s purpose. The \- is critical because makewhatis(8),
apropos(1), and man -k rely on this format when searching for man pages.

Each .SH command introduces a section; introduce subsections with the .SS directive
(Listing 38.1 lacks subsections). The .TP directive creates a new paragraph with a hang-
ing tag; that is, indent the second and subsequent lines relative to the first line. The other
groff commands specify font types or weights, as Table 38.2 describes.

4572316072 CH38 7/26/99 2:26 PM Page 725

Table 38.2 groff COMMANDS

Command Description

.B Bold

.BI Bold alternating with italic

.BR Bold alternating with roman

.I Italic

.IB Italic alternating with bold

.IR Italic alternating with roman

.R Roman

.RI Roman alternating with italic

.RB Roman alternating with bold

Requests for specific fonts affect an entire line, so, if you need to embed bold or italic
fonts in an otherwise normal text line, start a new line in your source file, specify the
font, type the appropriate text, then, on the next line, continue with the normal text. This
technique was used in the SYNOPSIS section of Listing 38.1.

Linux Conventions
Linux man pages use a few conventions; if you follow these, your man pages will be con-
sistent with other man pages. Function names and function arguments always appear in
italics. Filenames should appear in italics, too. In the SYNOPSIS section, however, a file that
is #included should appear in bold. Special macros (normally in uppercase) and #defined
variables should also be bold. Enumerated lists, like the OPTIONS section on our sample
page, should be bold and use the .TP command for indentation. References to other man
pages, as in the SEE ALSO section, should include the section number in parentheses, and
the entire reference should appear in bold with roman type, using the .BR command.

Finishing Touches

PART VI
726

Tip

To insert comments into your groff source, start each comment line with .\”
and type your comment. Lines 1–4 of our sample page illustrate this trick.

You can use Listing 38.1 as a template for your own man pages. Once you have completed
writing your man page, create a preprocessed version and install it in the appropriate sec-
tion under /usr/man/manN, where N is 1–9. Table 38.3 lists the “standard” division of
UNIX man pages:

4572316072 CH38 7/26/99 2:26 PM Page 726

Table 38.3 STANDARD LINUX MAN PAGES

Section Description

1 User commands and programs

2 System calls provided by the kernel

3 Library calls provided by program libraries

4 Devices and special files

5 File formats and conventions

6 Games

7 Macro packages and conventions

8 System administration commands

9 Additional kernel routines (Linux-specific section)

Your installation program should install a preformatted, gzipped man page into the appro-
priate subdirectory of /usr/man. Hopefully, you will take pains not only to create ade-
quate documentation, but also make sure that your documentation is correct and that it is
accessible. The only thing more frustrating than documentation buried seven layers deep
in a directory is a man page that fails to accurately describe what the program really does.

See, creating a man page wasn’t difficult at all! Should you feel really inspired to learn
all about groff and man pages, check out these resources:

• Troff User’s Manual, Joseph T. Ossanna and Brian W. Kernighan

• Troff Resources Page at http://www.kohala.com/~rstevens/troff/troff.html

• The Man Page mini-HOWTO

• The man(7) man page

Creating SGML Documents Using
SGML-tools
Even though creating a man page is a relatively trivial undertaking, the effort is partially
wasted because the man page format does not travel well. SGML, the Standardized
General Markup Language, is a much more portable format because, from a single
source file, you can output files in multiple formats, such as the following:

• Postscript

• HTML

• Plain text

Documentation

CHAPTER 38
727

38

D
O

C
U

M
EN

TA
TIO

N

4572316072 CH38 7/26/99 2:26 PM Page 727

• DVI

• TeX

• LyX

• man pages

This section will look at the SGML-tools package, a suite of programs used throughout
the Linux community to create documentation of all sorts.

SGML-tools
Writing an SGML document is quite similar to creating a Web page using HTML. Tags,
SGML directives enclosed in angle brackets (<tag_name>) tell the SGML parser to apply
special formatting to the text enclosed between a <tag_name>...</end_tag_name> pair.
We will use the coffee man page example re-worked as an SGML document to illustrate
the format of an SGML document. The line numbers are an explanatory convenience;
they do not appear in the SGML source file. All of the listings in this section examine
this document in detail.

Each SGML-tools document contains a “preamble” section that specifies the document
type, title information, and the like.

1 <!doctype linuxdoc system>
2 <article>
3
4 <title>The Linux Coffee Device-HOWTO
5 <author>Kurt Wall <tt><kwall@xmisson.com></tt>
6 <date>v1.0, January 16, 1999
7 <abstract>
8 This document is a whimsical description of the Linux Coffee

➥Device.
9 </abstract>
10
11 <toc>
12

The document preamble defines the document type, its title, and other preparatory or
identifying information. Line 1 tells the SGML parser to use the linuxdoc document
type definition. Line 2 indicates to the parser that this will be an article. Lines 4–6 add
identifying information; and lines 7–9 will put a short summary in italics at the top of the
article. The <toc> tag on line 11 will be replaced by a table of contents automatically
built from <sectN> headings used in the document. The elements in the preamble should
follow this order.

13 <sect>NAME
14 <p>
15 coffee - Control the networked coffee machine
16

Finishing Touches

PART VI
728

4572316072 CH38 7/26/99 2:26 PM Page 728

Line 13 starts a section, titled NAME, followed by a <p> element, which forces a new para-
graph. The <p> is only required after a <sect> tag. The body text begins on line 15. If
you need to start a new paragraph in the regular text, simply insert a blank line between
the final sentence of one paragraph and the first sentence of the next. Sections can be
nested five levels deep:

<sect> Specifies a top-level section, such as 1, 2, and so forth

<sect1> Specifies a subsection, such 1.1 or 1.2

<sect2> Specifies a third-level subsubsection

<sect3> Specifies a fourth-level subsubsubsection

<sect4> Specifies a fifth-level subsubsubsubsection

Lines 17–28 illustrate the use of tags that specify certain kinds of formatting, such as
bold face, italic, and emphasized text.

17 <sect>SYNOPSIS
18 <p>
19 <bf>coffee</bf> [<bf>-s</bf>|<bf>—scorch</bf>] [<bf>

➥b</bf>|
➥<bf>--blend</bf> blend] num_cups

20
21 <sect>DESCRIPTION
22 <p>
23 coffee sends a request to the remote coffee machine (usually the

➥device
24 <bf>/dev/cfpt0(4)</bf> to initiate a brew cycle to create

➥num_cups
25 of coffee. It assumes the device is turned on and that the water
26 and bean reservoirs have sufficient stocks actually to complete
27 the brew cycle. For those who prefer GNU’s long options,
28 they are supplied.

The salient points from these two sections are, first, that items you want in boldface text
should be enclosed with <bf>...</bf> tags; italic elements go between ...
tags; and special characters, such as “<” or “/”, which have special meanings to either
the SGML parser or one of the underlying formatters, such as LaTeX, have to be speci-
fied using a special notation of the format &symbol;. Because SGML uses < and > to
delimit tags, if you want a literal < in your text, you would type <. Use > to obtain
a literal >. Other special characters include the following:

& for the ampersand (&)

$ for a dollar sign ($)

Documentation

CHAPTER 38
729

38

D
O

C
U

M
EN

TA
TIO

N

4572316072 CH38 7/26/99 2:26 PM Page 729

for a hash symbol (#)

% for a percent sign (%)

˜ for a tilde (~)

The SGML-tools documentation contains a complete list of all the special characters.
Lines 29–46 in the following listing show the use of some of the special characters listed
above.

29 <sect>OPTIONS
30 <p>
31
32 <sect1>-b
33 <p>
34 <bf>-b</bf>, <bf>—blend</bf> blend -
35 Specify the blend of coffee to be brewed. blend is one
of
36 costarican, java, or decaf. If

➥blend
37 is not specified, the default regular (blech) is

➥assumed.
38
39 <sect1>-s
40 <p>
41 <bf>-s</bf>, <bf>--scorch</bf> -
42 Scorch the coffee. Rather than waiting for the brewed coffee to

age and
43 oxidize on the warming plate, the freshly-brewed coffee is piped

through
44 a super-heating device, effectively simulating the flavor of

6 oz. Of liquid
45 coffee that has been left on the burner for 2 hours.
46

In this excerpt, we used a couple of <sect1> tags. In the final output, these will create
X.1 and X.2 subsections and, since we are using the <toc> tag to create a table of con-
tents, the table of contents will have two subentries for these subsections.

Lines 47–81, finally, complete the SGML source code for the document.

47 <sect>FILES
48 <p>
49 <bf>/dev/cfpt0(4)</bf> - The default coffee machine.

Large installations may have multiple
50 coffee machines, specified as <bf>/dev/cfpt[0-15]

</bf>.
51
52 <bf>/dev/expr0(4)</bf> - The espresso machine. Usually

only in the boss’s
53 office.
54

Finishing Touches

PART VI
730

4572316072 CH38 7/26/99 2:26 PM Page 730

55 <sect>ENVIRONMENT
56 <p>
57 <bf>$CF_BLEND</bf>

Set this variable to your preferred blend.
58 Equivalent to <bf>coffee -b $CF_BLEND</bf>.
59
60 <sect>DIAGNOSTICS
61 <p>
62 None. This section is here for illustration purposes only.
63
64 <sect>SEE ALSO
65 <p>
66 <bf>creamer(1)</bf>, <bf>grind(1)</bf>, <bf>sweetener(1)</bf>
67
68 <sect>NOTES
69 <p>
70 If there were any notes, they would go here.
71
72 <sect>AUTHOR
73 <p>
74 Kurt Wall <kwall@xmission.com>
75
76 <sect>BUGS
77 <p>
78 You may have to get up out of your chair if the whole bean

repository is empty.
79 Multiple successive requests queued to the same device can
80 cause overflow.
81 </article>

In the final excerpt, we used the </article> tag to tell the SGML parser that this is the
end of the document. The CD-ROM contains the complete SGML source file,
coffee.sgml, and several output versions: HTML, GNU info, LaTeX, LyX, and RTF
(Rich Text Format).

SGML-tools Tags
SGML-tools is not limited to the tags shown in the previous example. Internal cross-ref-
erences, URL references, two types of lists, and index generation are described in this
section.

Internal cross-references that refer readers to another section of your document are a
breeze to create. Suppose you have a section titled “Frobnication.” To create a cross-
reference, add a label to that section:

<sect1>Frobnication<label id=”frobnication”>

Documentation

CHAPTER 38
731

38

D
O

C
U

M
EN

TA
TIO

N

4572316072 CH38 7/26/99 2:26 PM Page 731

When you need to refer to this section, use the <ref>tag:

See also <ref id=”frobnication” name=”Frobnication”> for more information.

In documents that support hypertext-style linking (such as HTML), the reader would
activate the link to jump to the labeled section. The name element inserts the section
name, and exists for document formats that do not support hypertext links.

Naturally, you can also insert URL elements, using the <url> tag. This feature is specifi-
cally aimed at the World Wide Web and supports normal HTML documents, files obtain-
able via FTP, mailto: and news: URLs, and so on. The format is

You can find out more about frobnication in the
<url url=”www.somedomain.com/frobnication.html”

name=”Frobnication HOWTO”>

The name element in this example would be rendered as an HTML hypertext link to the
URL specified on the first line. To support documents that do not speak HTML, use the
<htmlurl>element because it will suppress generation of the URL in all formats except
HTML:

You can find out more about frobnication in the
<htmlurl url=”www.somedomain.com/frobnication.html”

name=”Frobnication HOWTO”>

In non-HTML formats, the HTML is replaced by the name element.

To create bulleted or numbered lists, use the <itemize>...</itemize> and
<enum>...</enum>tags, respectively, and tag each list item with an <item> tag. For
example:

<itemize>
<item>This is the first item in a bulleted list
<item>This is the second item in a bulleted list.
</itemize>

<enum>
<item>This is the first item in a numbered (enumerated) list.
<item>This is the second item in a numbered (enumerated) list.
</enum>

Finally, enclosing document text between <idx>...</idx> or <cdx>...</cdx> tags, you
can force the generation of index entries. After processing the SGML source file, you
will also have a file named with a .ind extension that contains the specified index words
with page references to the formatted document. Unfortunately, this tag only works for
LaTeX. All of the other SGML processors ignore it.

Finishing Touches

PART VI
732

4572316072 CH38 7/26/99 2:26 PM Page 732

Formatting SGML Documents
Once you have an SGML source document, you are ready to create the output. Suppose
your source document is named colonel_panic.sgml. If you want to check your syntax,
the command is

$ sgmlcheck colonel_panic.sgml

The only output you should see is a series of “Processing…” messages. Once you’ve ver-
ified the syntax,

$ sgml2txt colonel_panic.sgml

creates a nicely formatted plain text document, colonel_panic.txt. The command lines
to create similarly named man pages, LaTeX, DVI, PostScript, and HTML files are

$ sgml2txt —man colonel_panic.sgml

$ sgml2latex colonel_panic.sgml

$ sgml2latex —ouput=dvi colonel_panic.sgml

$ sgml2latex —ouput=ps colonel_panic.sgml

$ sgml2html colonel_panic.sgml

See the man pages for all the possible options and arguments.

Summary
In this chapter, you learned how to create man pages using groff and how to use the
more powerful and flexible SGML-tools. Because Linux uses a highly decentralized
development process, thorough, accurate, and easily accessible documentation is a must.
Using the tools discussed in this chapter will make formatting and maintaining documen-
tation simple. Actually writing the documentation, of course, is still up to you.

Documentation

CHAPTER 38
733

38

D
O

C
U

M
EN

TA
TIO

N

4572316072 CH38 7/26/99 2:26 PM Page 733

734

4572316072 CH38 7/26/99 2:26 PM Page 734

IN THIS CHAPTER

• The MIT/X-style License 736

• The BSD-style License 737

• The Artistic License 738

• The GNU General Public Licenses 739

• The Open Source Definition 741

• Choosing the Right License 744

39
C

H
A

PT
ER

Licensing

by Kurt Wall

4672316072 CH39 7/26/99 2:25 PM Page 735

This chapter looks at the thorny, lawyer-infested issue of software licensing. We are not
lawyers, of course, so we will not presume to give legal advice on how you should
license your applications. The material in this chapter reflects our understanding of the
available licenses for free software. If you have questions, we strongly recommend that
you consult an attorney specializing in intellectual property law.

You will not long use Linux or write and distribute software for Linux before running
directly into licensing and copyright questions. There exists an ever-growing variety of
licenses used with “free software.” The most common licenses are the MIT license, the
BSD license, the Artistic license, the two GNU licenses, and the Open Source Definition.
The following sections discuss each of these licenses.

The MIT/X-style License
MIT-style licenses, created at the Massachusetts Institute of Technology, are the least
restrictive of free software licenses. Using, obtaining, and distributing software licensed
under an MIT-style license allows the licensee to “use, copy, modify, and distribute” soft-
ware and its documentation for any purpose without fees or royalties. MIT licenses
(indeed, all of the licenses we discuss in this chapter) also include a disclaimer that the
software is provided “as is” without warranty, so if your use of or modifications to the
software ignite global, thermonuclear war, it’s your problem.

The only conditions placed on software covered under an MIT-style license are that the
copyright notices and disclaimers may not be altered or removed and that they must
appear on all copies of the software. Creators of derived works (works based, in part, on
another application covered under the MIT license) may not use the name of the original
author to promote derived work without the author’s prior written permission.

A template form of the MIT/X-style license is reproduced below. To use this template in
your own projects, replace <year> and <copyright holders> with appropriate text.

MIT License

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files(the “Software”), to deal in the Software without,
restriction, including without limitation the rights to,
use,copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software and to permit
persons to whom the Software is furnished to do so
subject to the following conditions:

Finishing Touches

PART VI
736

4672316072 CH39 7/26/99 2:25 PM Page 736

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

The BSD-style License
BSD-derived licenses are only slightly more restrictive than the MIT class of licenses.
Software, in binary or source form, may be used and redistributed without restriction,
provided that the following conditions are met:

• The original copyright and disclaimer statements are neither modified nor
removed.

• The original authors’ names may not be used to promote derived works without
prior written permission.

• Any advertising material for derived work must include an acknowledgment of the
original author.

A copy of the BSD-style license is included below in template form. To generate your
own license from this template, replace <owner>, <organization>, and <year> with
appropriate values.

The BSD License

<owner>
<organization>
<year>

Copyright (c) <year>, <owner>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

Licensing

CHAPTER 39
737

39

L
IC

EN
SIN

G

4672316072 CH39 7/26/99 2:25 PM Page 737

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* All advertising materials mentioning features or use of this
software must display the following acknowledgement:
This product includes software developed by <organization>
and its contributors.

* Neither name of the University nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The Artistic License
Larry Wall, creator of Perl, also created the Artistic License. This license states the
conditions under which software may be copied so that, in the words of the license pre-
amble, “the Copyright Holder maintains some semblance of artistic control over the
development of the package, while giving the users of the package the right to use and
distribute the Package in a more-or-less customary fashion, plus the right to make rea-
sonable modifications.”

Simply stated, the Artistic License permits anyone to use, modify, and redistribute soft-
ware without restriction, either for free or for a nominal fee. Any original copyright
notices and disclaimers must be preserved. Significant modifications to the original soft-
ware must be prominently noted, and a modified version cannot be masqueraded as the
original version. Modifications, like the original software, should also be made “freely
available.” Finally, the standard disclaimer of no warranty applies, and the name(s) of the
original author(s) may not be used to promote derived works without specific written
permission.

Finishing Touches

PART VI
738

4672316072 CH39 7/26/99 2:25 PM Page 738

The GNU General Public Licenses
The Free Software Foundation, founded by Richard M. Stallman, publishes two software
licenses: the GNU General Public License (GPL) and the GNU Library General Public
License (LGPL). Most of the GNU project’s software and documentation is released
under the terms of the GPL, but certain libraries are covered under the LGPL. This sec-
tion discusses both licenses in detail, since most of the free software available is covered
under the GPL or similar terms, including the Linux kernel itself.

The GNU General Public License
The GPL is one of the most restrictive free software licenses you will encounter. It is
also one of the longest. If using the words “restrictive” and “free” in the same sentences
confuses you, consider what the GPL and LGPL have to accomplish: create a legally
binding document keeping free software free and protected from proprietary patents.
“Free software” in the GPL and LGPL refers to freedom, not money. Or, as Richard
Stallman explains, think free speech, not free beer.

This paragraph, from the GPL’s preamble, succinctly summarizes what the GPL is and
does:

“When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service, if you wish); that you receive source code
or can get it if you want it; that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.”

The balance of the GPL is largely devoted to elaborating this paragraph. Additional sec-
tions explain that free software comes without warranty and that modifications to free
software should be clearly marked. Although burdened by legalese, the GPL and LGPL
are much easier to comprehend and much shorter than the licenses one generally encoun-
ters with non-free or commercial software. The GPL’s salient points are as follows:

• Software covered by the GPL may be distributed verbatim, provided that all copy-
rights and disclaimers are left intact. The act of distribution may be performed for
a fee, but the software itself remains free.

• New software using or derived from software licensed under the GPL is itself
licensed under the GPL.

• Modified versions of the software may be distributed under the same terms as item
(1) above, provided that modifications are clearly marked and dated and the modi-
fied program itself is distributed under the GPL.

Licensing

CHAPTER 39
739

39

L
IC

EN
SIN

G

4672316072 CH39 7/26/99 2:25 PM Page 739

• The source code to a modified GPL’d program must be made available and be
obtainable without cost beyond the cost of performing a source distribution.

• Modification or distribution of a GPL’s program constitutes acceptance of the
license.

• If any condition is imposed upon you, with respect to a GPL’s program, that con-
tradicts the terms of the GPL and makes adhering to both the GPL and the other
obligations impossible, the only alternative is to cease distributing the program
entirely.

• No warranty exists for the software, except where and when explicitly stated in
writing.

To apply the GPL to a new program you create, apply the standard copyright notice,

<one line program name and description of what it does>
Copyright <ccyy> <name of author>

and include the following abbreviated GPL license statement in your source code or
other documentation,

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Finally, add instructions on how you can be contacted.

The GNU Library General Public License
The GNU LGPL addresses a severe deficiency of the GPL—namely, item (2) in the pre-
ceding section, which states that any software that includes GPL’d software itself falls
under the GPL. As the LGPL preamble notes:

“Linking a program with a library without changing the library is, in some sense, simply
using the library and is analogous to running a utility program or application program.
However, in a textural and legal sense, the linked executable is a combined work, a deriv-
ative of the original library, and the ordinary General Public License treats it as such.”

Finishing Touches

PART VI
740

4672316072 CH39 7/26/99 2:25 PM Page 740

As a result, many developers would not use GNU libraries because the act of linking a
GPL’d library to an application program turned the application into a GPL’d program, a
situation many individuals and companies found unacceptable. Concluding that a modi-
fied GPL would encourage greater usage of GNU libraries (or, more “effectively promote
software sharing,” one of the GNU project’s primary goals), the GNU project created a
special license—the LGPL—to cover a certain number of its own libraries and any other
library a developer or company would see fit to release under the LGPL.

Without rehashing the entire license, the LGPL places no restrictions on programs that
link against shared library versions of libraries covered by the LGPL. If an application is
not linked against a shared library licensed under the LGPL, you must provide object
files for your application that enable it to be relinked with new or altered versions of the
library. So, you are not required to make your source code available or to make your
application freely redistributable.

The Open Source Definition
The Open Source Definition, published by the Open Source Organization, is not a
license. Rather, it establishes a set of conditions that software must meet before it can be
legitimately labeled “Open Source” software. “Open Source” has been registered as a
certification mark, meaning that the Open Source Organization can set conditions for the
usage of the phrase. For more information about the Open Source Organization, visit
their Web site at http://www.opensource.org.

Licensing

CHAPTER 39
741

39

L
IC

EN
SIN

G

NOTE

Software in the Public Interest (SPI) and the Open Source Organization currently
both claim rights to the Open Source certification mark. The dispute is unfortu-
nate, but until it is resolved, it might be best to avoid using the mark; the con-
ditions for its use may change. For more information on the dispute, visit SPI’s
Web site at http://www.spi-inc.org.

The Open Source Definition lists 10 conditions that define open source software. The
definition begins with the observation that “Open source doesn’t just mean access to the
source code.” The complete text of the Open Source Definition is reproduced below.

The Open Source Definition

(Version 1.4)

4672316072 CH39 7/26/99 2:25 PM Page 741

Open source doesn’t just mean access to the source code. The
distribution terms of an open-source program must comply with the
following criteria:

1. Free Redistribution

The license may not restrict any party from selling or giving away
the software as a component of an aggregate software distribution
containing programs from several different sources. The license may
not require a royalty or other fee for such sale. (rationale)

2. Source Code

The program must include source code, and must allow distribution in
source code as well as compiled form. Where some form of a product
is not distributed with source code, there must be a well-publicized
means of obtaining the source code for no more than a reasonable
reproduction cost — preferably, downloading via the Internet
without charge. The source code must be the preferred form in which
a programmer would modify the program. Deliberately obfuscated
source code is not allowed. Intermediate forms such as the output of
a preprocessor or translator are not allowed. (rationale)

3. Derived Works

The license must allow modifications and derived works, and must
allow them to be distributed under the same terms as the license of
the original software. (rationale)

4. Integrity of The Author’s Source Code.

The license may restrict source-code from being distributed in
modified form only if the license allows the distribution of “patch
files” with the source code for the purpose of modifying the program
at build time. The license must explicitly permit distribution of
software built from modified source code. The license may require
derived works to carry a different name or version number from the
original software. (rationale)

5. No Discrimination Against Persons or Groups.

The license must not discriminate against any person or group of
persons. (rationale)

6. No Discrimination Against Fields of Endeavor.

Finishing Touches

PART VI
742

4672316072 CH39 7/26/99 2:25 PM Page 742

The license must not restrict anyone from making use of the program
in a specific field of endeavor. For example, it may not restrict
the program from being used in a business, or from being used for
genetic research. (rationale)

7. Distribution of License.

The rights attached to the program must apply to all to whom the
program is redistributed without the need for execution of an
additional license by those parties. (rationale)

8. License Must Not Be Specific to a Product.

The rights attached to the program must not depend on the program’s
being part of a particular software distribution. If the program is
extracted from that distribution and used or distributed within the
terms of the program’s license, all parties to whom the program is
redistributed should have the same rights as those that are granted
in conjunction with the original software distribution. (rationale)

9. License Must Not Contaminate Other Software.

The license must not place restrictions on other software that is
distributed along with the licensed software. For example, the
license must not insist that all other programs distributed on the
same medium must be open-source software. (rationale)

10. Conforming Licenses and Certification.

Any software that uses licenses that are certified conformant to the
Open Source Definition may use the Open Source trademark, as may
source code explicitly placed in the public domain. No other license
or software is certified to use the Open Source trademark.

(The following information is not part of the Open Source
Definition, and it may change from time to time.)

The GNU GPL, the LGPL, the BSD license, the X Consortium license,
the Artistic, the MPL the QPL the libpng license, the zlib license,
and the IJG JPEG library license are examples of licenses that we
consider conformant to the Open Source Definition.

To have a license reviewed for certification, write
certification@opensource.org. We strongly encourage use of
already-certified licenses from the above list, since this allows
use of the Open Source mark without the need for review. Please
report misuse of the Open Source mark to mark-misuse@opensource.org.

To view the complete Open Source Definition and its accompanying rationale, see
http://www.opensource.org/osd.html.

Licensing

CHAPTER 39
743

39

L
IC

EN
SIN

G

4672316072 CH39 7/26/99 2:25 PM Page 743

Choosing the Right License
We stated at the beginning of this chapter that we are not lawyers, so we cannot give
legal advice. We merely observe that much of the free software available is licensed
under the terms of the GPL. On the other hand, the GPL’s license is restrictive and, in
general, software derived from GPL-licensed software becomes GPL software, too. Some
find this unacceptable and choose one of the license styles, or simply create their own.
The choice you make depends on your personal preferences, valid legal advice, and, per-
haps, your own philosophical commitments.

Finishing Touches

PART VI
744

4672316072 CH39 7/26/99 2:25 PM Page 744

IN THIS APPENDIX

• Available Documentation 746

A
A

PP
EN

D
IX

A Symbol Table
Library

by Mark Whitis

4772316072 App A 7/26/99 2:15 PM Page 745

This appendix describes a symbol table library. Symbol tables add a simple but useful
object-oriented paradigm to the C language. This library is not currently included in any
Linux distribution but might be incorporated in future distributions. The software is
included on the CD-ROM accompanying this book and can also be downloaded from the
author’s Web site (which might have a more recent version) at
http://www.freelabs.com/~whitis/software/symbol/.

In most programming environments, the compiler or interpreter uses a symbol table to
keep track of identifiers and the properties of the objects they refer to, but the environ-
ment does not give the programmer much, if any, access to the symbol table from a run-
ning program. This library is intended to allow running C programs to use a symbol table
to simplify operations such as parsing command-line arguments, reading configuration
files, reading and writing data files, and communicating with other processes (running on
the same or a different computer).

The library currently emphasizes reading and writing data in text form using
“name=value” pairs, which are both machine- and human-readable. The library is also
useful for debugging because it makes it easy to dump internal program data. In the
future, GUI interfaces to the symbol table library may make it easy to present data struc-
tures to interactive users for modification. Many programs have been written that allow
configuration by editing a text file or via a GUI but not both; I think that programs
should support both modes of operation and the symbol table, with GUI extensions, will
permit that while reducing code size.

The symbol table library has been used in the past to read HTML form data; to provide a
remote procedure call mechanism that is very flexible, easy to debug and log, and is
insensitive to version differences or differences in byte order; and to access database
management systems. The code is not available for distribution, although I expect to
incorporate many of these features into future versions.

The symbol tables used by this package are defined at program compile time using a
number of macros. Rather than a simple table structure, the table is stored as a list of
{token,value} pairs. This allows the library to support more complicated features and for
new features to be added without needing to change existing tables.

Available Documentation
In addition to what is provided in this chapter, there are a number of other sources. I
have a Web page with general information on the package; a copy of this page, corre-
sponding to a particular version, is included in the tarball on the CD-ROM accompany-
ing this book. The program sttest.c, which is used to test the proper operation of the

Linux Programming

UNLEASHED
746

4772316072 App A 7/26/99 2:15 PM Page 746

library, illustrates the use of many of the functions. And the userchange example pro-
gram, excerpts of which are included in this chapter, provides further illustration.

Programs that use the symbol table library should include the header files

#include <symbol.h>
#include <basetype.h>

and link with the share library libsymtab.so. You may need to modify the search path
used on your system to find include files and shared libraries if it does not already
include /usr/local/include and /usr/local/lib.

Sample Program: userchange
The userchange program is a program that can update password (/etc/passwd) file
entries on the local or a remote host. It is not really intended for serious system adminis-
tration use in its current form since it does not support password encryption, shadow
passwords, or NIS (Network Information System—once called Yellow Pages but that
turned out to cause trademark problems). userchange is capable of updating all of the
fields in the /etc/passwd file but it does not update the shadow password file. Like the
useradd, userdel, and usermod programs, changepassword is only intended for use by
trusted system administrators and does not encrypt passwords for the user. This can be
done separately using the passwd program.

userchange illustrates how to use the symbol table library to do a number of things:

• Read a configuration file (./userchange.rc).

• Parse command line parameters. Any parameters specified on the command line
will override those in the configuration file.

• Display a collection of variables for information or debugging.

• Communicate data structures between programs.

Almost all of the code for the userchange program, with the exception of the routine
that actually modifies the password file, will be included in the various listings for this
chapter.

basetypes
A number of predefined types are defined in basetype.h. The unsigned 8-, 16-, and 32-
bit integers are defined by integer8u_t_st, integer16u_t_st, and integer32u_t_st,
respectively. The signed integers are similarly described by the tables integer8s_t_st,
integer16s_t_st, and integer32s_t_st. Integers used to store boolean values are
described by cboolean_t_st. Normal null terminated C strings are defined by

A Symbol Table Library

APPENDIX A
747

A

A
 S

Y
M

B
O

L
T

A
B

LE
L

IB
R

A
RY

4772316072 App A 7/26/99 2:15 PM Page 747

asciiz_t_st. And there is some support for a list of non-zero length strings separated by
null characters and terminated by an additional null that is described in asciizz_t_st
(note the extra “z”). Floating point types are not currently defined but can easily be
added using the existing types as an example (or check the Web page to see if they have
already been added).

Defining a Symbol Table to Describe a
Structure Type
I normally try to name all types using an identifier that ends in _t to help avoid confu-
sion. I add _st to the type name to get the name of the symbol table. The symbol table
describing the passwd_t type will be named passwd_t_st.

Although the C compiler can handle expressions like sizeof(int), it cannot calculate
the size of member b of struct a using sizeof(a.b) or calculate the offset of a within b;
we must have an actual variable to perform the calculations. I define a dummy variable
with a name that is simply dummy_ prepended to the type name (that is, passwd_t
dummy_passwd_t;); the SIZEOF() and OFFSET_OF() helper macros depend on this nam-
ing convention at the expense of a little wasted space. Note that the dummy_ variables are
variables, not types, even though their names end in _t; this little bit of confusion is nec-
essary because the compiler will let us append two strings to make a new variable name
but not trim off the suffix.

A symbol table is usually declared as an initialized array of type st_t; usually the size is
left blank for the compiler to fill in. Various macros are used to define the {token, value}
pairs. A table should always begin with ST_BEGIN_TABLE() and end with
ST_END_TABLE() and may have an optional identifier specified with ST_IDENTIFIER().

Each member of the structure is defined using ST_BEGIN() and ST_END() pairs. A num-
ber of variables are used to describe the properties of each member:

• ST_IDENTIFIER() Defines the identifier used to refer to this member. This is nor-
mally the same as the member name used in the C definition, although it can be
different if you want to define more user friendly names.

• ST_DESCRIPTION() Gives a short description that could be used for user interac-
tion or to generate comments in a file.

• ST_OFFSET() This defines the offset, in bytes, from the beginning of the structure
and normally calculated by the compiler, typically with help from the OFFSET
helper macro. If you have a structure type named passwd_t that has a member

Linux Programming

UNLEASHED
748

4772316072 App A 7/26/99 2:15 PM Page 748

username, the OFFSET(passwd_t, username) will calculate the offset of
passwd_t.username. It is equivalent to the expression (&dummy_passwd_t.user-
name - &dummy_passwd_t).

• ST_SIZEOF() This specifies the size of a member in For structures, the helper
macro SIZEOF is normally used. SIZEOF(passwd_t, username) will return the size
of passwd_t.username. It is equivalent to the expression
sizeof(dummy_passwd_t.username).

• ST_TYPE() This is a reference to the symbol table that describes the type of the
member.

Listing A.1 shows the definition of the structure passwd_t, the dummy variable
dummy_passwd_t, a real variable passwd, and the corresponding symbol table
passwd_t_st used in the sample program.

LISTING A.1 userchange Password Structure and Symbol Table

typedef struct {
char username[128]; /* user name */
char pwcrypt[128]; /* encrypted password */
uid_t uid; /* numeric user id */
gid_t gid; /* numer group id */
char gecos[128]; /* real name */
char homedir[128]; /* home directory */
char shell[128]; /* shell program */

} passwd_t;

passwd_t dummy_passwd_t;
passwd_t passwd;

st_t passwd_t_st[]= {
ST_BEGIN_TABLE(),

ST_IDENTIFIER(“passwd_t”),

ST_BEGIN(),
ST_IDENTIFIER(“username”),
ST_DESCRIPTION(“User name”),
ST_OFFSET(OFFSET(passwd_t, username)),
ST_SIZEOF(SIZEOF(passwd_t, username)),
ST_TYPE(asciiz_t_st),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“pwcrypt”),
ST_DESCRIPTION(“Encrypted Password”),
ST_OFFSET(OFFSET(passwd_t, pwcrypt)),

A Symbol Table Library

APPENDIX A
749

A

A
 S

Y
M

B
O

L
T

A
B

LE
L

IB
R

A
RY

continues

4772316072 App A 7/26/99 2:15 PM Page 749

ST_SIZEOF(SIZEOF(passwd_t, pwcrypt)),
ST_TYPE(asciiz_t_st),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“uid”),
ST_DESCRIPTION(“Numeric user id”),
ST_OFFSET(OFFSET(passwd_t, uid)),
ST_SIZEOF(SIZEOF(passwd_t, uid)),
ST_TYPE(integer32u_t_st),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“gid”),
ST_DESCRIPTION(“Numeric group id”),
ST_OFFSET(OFFSET(passwd_t, gid)),
ST_SIZEOF(SIZEOF(passwd_t, gid)),
ST_TYPE(integer32u_t_st),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“gecos”),
ST_DESCRIPTION(“Gecos (real name)”),
ST_OFFSET(OFFSET(passwd_t, gecos)),
ST_SIZEOF(SIZEOF(passwd_t, gecos)),
ST_TYPE(asciiz_t_st),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“homedir”),
ST_DESCRIPTION(“Home directory”),
ST_OFFSET(OFFSET(passwd_t, homedir)),
ST_SIZEOF(SIZEOF(passwd_t, homedir)),
ST_TYPE(asciiz_t_st),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“shell”),
ST_DESCRIPTION(“user’s shell program”),
ST_OFFSET(OFFSET(passwd_t, shell)),
ST_SIZEOF(SIZEOF(passwd_t, shell)),
ST_TYPE(asciiz_t_st),

ST_END(),

ST_END_TABLE()
};
++end listing

Linux Programming

UNLEASHED
750

LISTING A.1 continued

4772316072 App A 7/26/99 2:15 PM Page 750

Defining a Random Collection of Variables
Defining a random collection of variables is similar to defining a structure type. The pri-
mary difference for scalar variables is that we use the ST_AT() macro to define the
absolute address of a variable instead of ST_OFFSET() to define the relative address
(offset). Don’t forget the usual C idiosyncrasies: & (the “address of” operator) is needed
for simple variables and structs but is not required for arrays (including strings); make
sure you use & where required. The OFFSET() and SIZEOF() helper macros are not used
for random variables.

To include a structure type variable, first define the type in a separate symbol table if that
hasn’t already been done. Then include a reference to it between
ST_BEGIN_STRUCT_REF() and ST_END_STRUCT_REF(). We use the same attribute macros
we use with any other variable: ST_IDENTIFIER(), ST_AT(), ST_SIZEOF(), ST_TYPE(),
and ST_DESCRIPTION(). The identifier specified will be prepended with a period to the
member name to get the full name. If you specify “” (null string, not NULL) as the
identifier, it will be treated as an anonymous structure effectively promoting all of the
members into the same namespace as the parent structure. This hides the structure repre-
sentation from the user. The example program will use an anonymous structure to allow
users to refer to members of the passwd_t structure by using, for example, “username”
instead of “passwd.username”. In that case, the structure members are mixed in with var-
ious other random variables.

The user accessible options for the userchange program, including an anonymous struc-
ture reference, are defined in Listing A.2. These values can be set in either the configura-
tion file for the program or as command-line arguments.

LISTING A.2 Program Options Symbol Table

char hostname[128] = “”; /* name of host to operate on */
int read_stdin = 0;
char operation[16] = “view”;
char passwd_file[128]=”./passwd”;
int show_args = 0;
#ifdef USE_SSH

char remote_command[256] =
“ssh %s -l root userchange read_stdin=1”;

#else
char remote_command[256] = “./userchange read_stdin=1”;

#endif

A Symbol Table Library

APPENDIX A
751

A

A
 S

Y
M

B
O

L
T

A
B

LE
L

IB
R

A
RY

continues

4772316072 App A 7/26/99 2:15 PM Page 751

st_t options_st[]= {
ST_BEGIN_TABLE(),

ST_BEGIN_STRUCT_REF(),
ST_IDENTIFIER(“”),
ST_TYPE(passwd_t_st),
ST_AT(&passwd),
ST_SIZEOF(sizeof(passwd)),
ST_DESCRIPTION(“Password structure”),

ST_END_STRUCT_REF(),

ST_BEGIN(),
ST_IDENTIFIER(“hostname”),
ST_AT(hostname),
ST_SIZEOF(sizeof(hostname)),
ST_TYPE(asciiz_t_st),
ST_DESCRIPTION(“host to view/modify password on”),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“operation”),
ST_AT(operation),
ST_SIZEOF(sizeof(operation)),
ST_TYPE(asciiz_t_st),
ST_DESCRIPTION(“view,add,modify,delete”),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“remote_command”),
ST_AT(remote_command),
ST_SIZEOF(sizeof(remote_command)),
ST_TYPE(asciiz_t_st),
ST_DESCRIPTION(“Command for remote updates”),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“read_stdin”),
ST_AT(&read_stdin),
ST_SIZEOF(sizeof(read_stdin)),
ST_TYPE(cboolean_t_st),
ST_DESCRIPTION(“nonzero=read args from standard in”),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“passwd_file”),
ST_AT(passwd_file),
ST_SIZEOF(sizeof(passwd_file)),
ST_TYPE(asciiz_t_st),
ST_DESCRIPTION(“passwd file to modify”),

ST_END(),

Linux Programming

UNLEASHED
752

LISTING A.2 continued

4772316072 App A 7/26/99 2:15 PM Page 752

ST_BEGIN(),
ST_IDENTIFIER(“st_debug”),
ST_AT(&st_debug),
ST_SIZEOF(sizeof(st_debug)),
ST_TYPE(cboolean_t_st),
ST_DESCRIPTION(“Debugging level for symtab lib”),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“show_args”),
ST_AT(&show_args),
ST_SIZEOF(sizeof(show_args)),
ST_TYPE(cboolean_t_st),
ST_DESCRIPTION(“Show all arguments”),

ST_END(),

ST_END_TABLE()
};
++end listing

Including Another Symbol Table
One symbol table can be included in another using ST_INCLUDE(). This causes the sym-
bol table parsing routines to recurse into the other symbol table. The results should be
similar to cutting and pasting the other table into the current table without
ST_BEGIN_TABLE() and ST_END_TABLE().

You can use this to create multiple symbol tables that define different, but overlapping,
subsets of the overall namespace. You could define two symbol tables,
newbie_options_st and wizard_options_st, and use an include to incorporate all of
the newbie options into the wizard options. Then, by simply choosing which of the two
tables you refer to, you can control which options a given user can see or modify without
duplicating a lot of symbol table entries.

If your program consists of a number of relatively independent modules, you can use the
include feature to keep your symbol tables modular as well. Each module can have an
options symbol table that describes options used by that module. The main program can
then define a symbol table that uses an include to reference all of the individual module
option symbol tables.

Includes are different from structure references. A structure reference allows you to spec-
ify an identifier that is prepended to each member name, but includes do not. A structure
reference allows you to specify the address of the variable described in a structure, but an
include does not; normally you include symbol tables that already have ST_AT() defini-
tions for the individual members.

A Symbol Table Library

APPENDIX A
753

A

A
 S

Y
M

B
O

L
T

A
B

LE
L

IB
R

A
RY

4772316072 App A 7/26/99 2:15 PM Page 753

Error Reporting
The userchange program uses a simple structure, error_t, to report errors. In addition
to an error number, it includes two text fields—a text error message and a field name.
The error number is useful for interpretation by another program. The text is a human-
readable message. The fieldname makes it easy for humans or programs to associate the
error with the particular variable that caused it. You might, for example, have a generic
error number EEXIST (a constant defined in the system include file errno.h), a text mes-
sage “Already Exists”, and a field “username”.

The userchange program uses the same error numbers as the standard library, but you
could use a different scheme. You might, for example, use the three digit scheme used by
SMTP, FTP, and many other protocols. In that scheme, each digit successively refines
things. Even if the program does not understand the exact error described by the error
number, it can make an intelligent guess about how to handle it. The first digit gives the
program an idea of whether the problem response describes success, a permanent error
(unknown user), or a temporary error (out of disk space).

This error reporting scheme is specific to the userchange program (and some other pro-
grams I have written) and not the symbol table library. Future additions to the library
might incorporate a similar approach.

The error_t structure and the symbol table that describes it are shown in Listing A.3.

LISTING A.3 userchange error_t

typedef struct {
int number; /* error number */
char text[256]; /* error text */
char field[256]; /* field, if any, where error occured*/

} error_t;

/* dummy value used to calculate offsets in symtab */
error_t dummy_error_t;

error_t error = {0,”Operation presumed successful”,””};

st_t error_t_st[]= {
ST_BEGIN_TABLE(),

ST_BEGIN(),
ST_IDENTIFIER(“number”),
ST_SIZEOF(SIZEOF(error_t,number)),
ST_TYPE(integer32s_t_st),
ST_OFFSET(OFFSET(error_t, number)),
ST_DESCRIPTION(“Error number”),

ST_END(),

Linux Programming

UNLEASHED
754

4772316072 App A 7/26/99 2:15 PM Page 754

ST_BEGIN(),
ST_IDENTIFIER(“text”),
ST_SIZEOF(SIZEOF(error_t,text)),
ST_TYPE(asciiz_t_st),
ST_OFFSET(OFFSET(error_t, text)),
ST_DESCRIPTION(“Error text”),

ST_END(),

ST_BEGIN(),
ST_IDENTIFIER(“field”),
ST_SIZEOF(SIZEOF(error_t,field)),
ST_TYPE(asciiz_t_st),
ST_OFFSET(OFFSET(error_t, field)),
ST_DESCRIPTION(“Error field”),

ST_END(),

ST_END_TABLE()
};
++end listing

Smart Pointers
Smart pointers are one of the most important data structures used by the symbol table
library. A smart pointer is a struct with two members. The member table is a pointer to
the symbol table that describes an object. The member object is a pointer to the object
described by the symbol table. Either may be NULL, if unknown; however, the library
will normally expect at least the table member to have a value. Smart pointers are
declared using the type smart_pointer_t. The constructor function
st_smart_pointer() may be used to make a smart pointer from two arguments; the first
is the table pointer and the second is the object pointer. Often, when calling a library
function, you can simply use this constructor to build on-the-fly without having to define
a smart pointer variable.

Normally, the smart pointer will point to a structure and the symbol table that describes it
or the smart pointer may point to NULL and a symbol table describing a random collec-
tion of variables scattered throughout memory. Some of the internal functions use more
arcane combinations.

Symbol Table Library Functions
The symbol table library includes a number of routines that are used to process symbol
tables and the objects they describe. These are declared in symbol.h and defined in
symbol.c.

A Symbol Table Library

APPENDIX A
755

A

A
 S

Y
M

B
O

L
T

A
B

LE
L

IB
R

A
RY

4772316072 App A 7/26/99 2:15 PM Page 755

Many of the functions have one parameter that takes an option structure specific to that
function. This structure defines various options which are used to vary the behavior of
the function. The options for a couple functions include a member named prefix, for
example, which will be prepended to each line or variable name; this is frequently used
for indentation by assigning a string value with some number of spaces. For each of
these option structures, there is a corresponding default structure that is initialized to the
default values. Often, simply passing the default structure as an argument is sufficient. If
you want different options, declare a variable of the corresponding type and initialize it
by copying the default structure to it before setting any of the members. This is good
programming practice when dealing with structures in general; this way, your program
will be unlikely to break due to uninitialized members when additional members are
added to the structure.

Only three functions will be used by a typical program besides the smart pointer con-
structor described previously; these three are very flexible. The following sections
describe these functions. There are some other functions, used less frequently, which will
be briefly mentioned.

The st_show() Function
#include <symbol.h>
extern void st_show(

FILE *stream,
smart_pointer_t sp,
st_show_opt_t *options

);
extern st_show_opt_t st_show_defaults;

This function will print out all the variables (or structure members) pointed to by the
smart pointer sp. Output will be to the stream stream, which may be stdout, stderr, an
open file, a pipe, a serial port, a TCP/IP network connection, or just about any valid
UNIX stream; stdout and stderr will typically print to the user’s tty if they haven’t
been redirected. If you want to read a file, it is up to you to open the file before calling
this function.

Each line of output will be preceded by the contents of the string member options.pre-
fix. This will typically be “” (null string) but can also be a number of spaces (that is,
“ “) for indentation or a value like errror. to augment the name. Note that at some
point in the future I will probably define two separate prefixes, one for lines and the
other for variable names.

Linux Programming

UNLEASHED
756

4772316072 App A 7/26/99 2:15 PM Page 756

Output will be one line per variable or structure member and will look something like
this (using the error struct as an example).

error.number=10
error.text=”The sky is falling”
error.field=”chicken.little”

The st_read_stream() Function
#include <symbol.h>
extern int st_read_stream(

FILE *stream,
smart_pointer_t sp,
st_read_stream_opt_t options

);
extern st_read_stream_opt_t st_read_stream_defaults;

This function is the opposite of st_show(). It reads a number of values from a stream, in
the same “name=value” (one per line) format output by st_show().

It is pretty lax about quotation marks; double quotes may be used or in many cases omit-
ted. Lines beginning with “#” or “/” will be treated as comments and ignored and blank
lines should also be ignored. Leading whitespace will be ignored at the beginning of
each line. Input will continue until an end of file condition is sensed or a line consisting
of one of the termination strings defined in the options is read. The default termination
strings are END and DATA. You can also define another stream, options.echo; this will
cause all data read to be copied to that stream. This is helpful for creating a log of all
transactions, for example.

The st_parse_args() Function
#include <symbol.h>
extern void st_parse_args(smart_pointer_t table,

int argc,
char **argv);

This function is used to parse command-line arguments. The smart pointer will
refer to a structure or collection of variables. The parameters argc and argv are
usually just copies of the parameters to the function main() in your program.
Command-line parameters are expressed in simple name=value form with no leading
switch characters:

userchange operation=view username=root

A Symbol Table Library

APPENDIX A
757

A

A
 S

Y
M

B
O

L
T

A
B

LE
L

IB
R

A
RY

4772316072 App A 7/26/99 2:15 PM Page 757

Other Functions
Some other functions will be used by programs or symbol table extensions that want to
add additional forms of interaction (such as a GUI or database access). Table A.1
describes these functions.

TABLE A.1 Other Symbol Table Functions

Function Description

st_set() This function takes a smart pointer, two strings, a variable name, and a
value, and assigns the value to the variable after looking up the variable in
the symbol table pointed to by the smart pointer.

st_walk() These two functions are used to traverse
st_walk_next() a symbol table, stopping at each variable or member.

st_lookup() This function is used to find a given identifier within a symbol table.

st_find_attrib() This function is used to retrieve the value of an attribute associated with a
symbol table or subset.

st_tostring() These two functions invoke the text st_from_string() conversion meth-
ods associated with a basetype.

userchange main()
This section covers the main() function piece-by-piece, starting with the declarations.
We need to declare main() in the traditional manner with argc and argv to have access
to the command-line parameters.

main(argc,argv)
int argc;
char *argv[]; /* or char **argv */
{

passwd_t options;
char command[256];
FILE *pipe;
FILE *rc_file;
st_show_opt_t st_show_options;

In the first block, we read a configuration file. In this case, the file will be named
./userchange.rc in the current directory. In a typical application, you might want to try
reading a couple different files, /etc/userchange.rc and $(HOME)/userchange.rc in
succession. We must open the file ourselves; the symbol table library does not do that for
us. In the event of failure, we will simply skip the remainder of this block of code.

Linux Programming

UNLEASHED
758

4772316072 App A 7/26/99 2:15 PM Page 758

The options symbol table, options_st, was previously defined to include a random
assortment of variables, including the hostname for remote operation, the operation to be
performed, the debugging level for the symbol table package, the passwd structure that
contains all the password fields we can change, and others.

A call to st_read_stream() does the actual work. We pass in three arguments: The
stream we already opened (from the config file); a smart pointer, constructed on the fly,
which contains a pointer to the options_st symbol table and NULL for the object
address, as is appropriate for a random collection of variables; and, lastly, we pass in the
default options for the st_read_stream() function.

/* read rc (configuration) file */
rc_file=fopen(“./userchange.rc”,”r”);
if(rc_file) {

st_read_stream(rc_file,
st_smart_pointer(options_st, NULL),
st_read_stream_defaults);

fclose(rc_file);
}

Now we will parse the command-line arguments using the same options_st symbol
table we used for reading the configuration file. The function st_parse_args() does all
the work. We pass a smart pointer with a pointer to the table and no additional address
information (NULL), just as we did in the preceding code. And we pass argc and argv,
the arguments passed to main() by the C runtime initialization module (“crt0” or equiva-
lent). argc is a count of how many arguments are being passed and argv is an array of
pointers to character strings, each of which is a single argument passed on the command
line. The name of the program is passed as the first argument, argv[0], so don’t be sur-
prised if argc is one greater than you expected.

/* parse command line arguments */
st_parse_args(st_smart_pointer(options_st, NULL),

argc, argv);

If you want to see the values of the options after initialization, reading the config file,
and parsing arguments, just pass the argument show_args=1, which will trigger the next
block of code. st_show() is one of the most commonly used functions. We do not need
any special function options right now, so we just use the defaults

/* show all the arguments, if appropriate */
if(show_args) {

st_show(stdout,
st_smart_pointer(options_st, NULL),
&st_show_defaults);

}

A Symbol Table Library

APPENDIX A
759

A

A
 S

Y
M

B
O

L
T

A
B

LE
L

IB
R

A
RY

4772316072 App A 7/26/99 2:15 PM Page 759

If the program was invoked with the option read_stdin=1, that will trigger this next
block of code to read additional options from stdin. This is typically used when a sec-
ond slave copy of the program is being run on a remote machine. It might also be used if
the program was being driven by a cgi-bin or GUI frontend.

The st_read_stream() function is conceptually the exact opposite of st_show() and
there is a direct correspondence between the arguments.

/* read options from stdin, if appropriate */
if(read_stdin) {

st_read_stream(stdin, st_smart_pointer(options_st, NULL),
st_read_stream_defaults);

}

At this point, we have used all the symbol table library functions we need for this pro-
gram. We will use them in slightly different ways below as we do application-specific
things. The first test is to see if hostname has been set, and if so, we will invoke a remote
slave.

/* Test if local operation is desired or if we should */
/* forward request to another machine*/
if(strlen(hostname)>0) {

The remote_command variable should contain a command that will invoke a remote pro-
gram; the substring %s will be used to substitute the name in using snprintf().
snprintf() is like printf() except it prints to a string and, unlike its more common
cousin sprintf(), allows you to pass in the size to protect against overflows. In this
case, we use remote_command as the format control string.

/* remote operation */
fprintf(stderr,”*** REMOTE OPERATION***\n”);
snprintf(command, sizeof(command),

remote_command, hostname);

If the remote slave is invoked with a hostname it would attempt to execute another copy
of itself. This would happen again and again. Reliably detecting if the hostname matches
the current host is a bit of a nuisance, since a typical networked host has at least three
names and may have more if it has multiple network interfaces, virtual hosts, or aliases
(DNS CNAME records). If your machine is named “gonzo.muppets.com” then the
names “gonzo.muppets.com,” “gonzo,” and “localhost” all refer to the local host. Since
we don’t need the hostname anymore, we will take the simple expedient of clobbering
the hostname.

/* quick kluge to make remote end consider it */
/* to be a local update */
hostname[0]=0;

Linux Programming

UNLEASHED
760

4772316072 App A 7/26/99 2:15 PM Page 760

Here will we use the popen() command to run the command with the stream pipe piped
to its standard input. The command itself will probably invoke a remote copy of
changeuser with the stdin and stdout streams forwarded across the network connec-
tion. In this case, it is sufficient to only have stdin connected to a pipe; stdout will sim-
ply be inherited. If we needed to parse the responses, we would need pipes for both
stdin and stdout, which would be more than popen() can handle; in that case, we
would need to use pipe(), fork(), either system() or exec(), and a bunch of glue code.
We would also need to be careful to avoid a deadlock where both programs were waiting
for input from each other, or one program could not write more output until the other
program read the output from the first, but the second program was waiting for the first
program to read its output.

pipe=popen(command, “w”);
assert(pipe);

Now we will use st_show to dump the options to the pipe we just created. We will termi-
nate that output using a line which reads END; if we just closed the pipe to produce an
end of file condition, the slave program might be terminated before it had a chance to
perform the operation and generate a response.

st_show(pipe, st_smart_pointer(options_st, NULL),
&st_show_defaults);

fprintf(pipe,”END\n”);

/* we don’t process output of child at all here */
/* the childs output will end up on stdout */

Now we need to close the pipe, which will have the side effect of waiting for the child
process to finish.

/* wait for child to exit */
pclose(pipe);

The remainder of the program is used for local operation (or the slave in a master-slave
relationship).

} else {
/* local operation */

The function pw_update(), which is not included in the listings for this chapter, reads the
passwd file and, optionally, writes a new copy with modifications. It take four parame-
ters. The first is a pointer to an error structure that will be updated with the results of the
operation. The second parameter is a pointer to a passwd structure that contains values
for all of the fields; this may be modified if we are retrieving information. The third is a
string giving the name of the file to operate on. The fourth is a string that specifies the

A Symbol Table Library

APPENDIX A
761

A

A
 S

Y
M

B
O

L
T

A
B

LE
L

IB
R

A
RY

4772316072 App A 7/26/99 2:15 PM Page 761

operation to be performed; this may have the values view, add, change, or modify. We
invoke the function once with the operation specified by the user and a second time just
to read back the data for verification.

pw_update(&error, &passwd, passwd_file, operation);

pw_update(&error, &passwd, passwd_file, “view”);

Now we are going to output a response message for the user or program that invoked
userchange. This will begin with the line RESPONSE followed by the error structure,
indented 3 spaces and prefixed with the name of the structure. Then we will output a line
which reads DATA, followed by the passwd structure, containing the values of all the
fields of the passwd file, indented 3 spaces. Finally, we will output a line which reads
END to terminate the response.

We set the indentation level or other prefix by changing the value of prefix in the func-
tion options we pass to st_show(). As mentioned previously, we will initialize the
options properly by copying a default option structure. st_show() will be invoked twice
and we will modify and reuse the function options structure, st_show_options, each
time.

/* set indentation level */
st_show_options = st_show_defaults;

fprintf(stdout, “RESPONSE\n”);

strncpy(st_show_options.prefix,
“ error.”,sizeof(st_show_options));

st_show(stdout, st_smart_pointer(error_t_st, &error),
&st_show_options);

fprintf(stdout, “DATA\n”);

strncpy(st_show_options.prefix,” “,
sizeof(st_show_options));

st_show(stdout, st_smart_pointer(passwd_t_st, &passwd),
&st_show_options);

fprintf(stdout, “END\n”);

}

exit(0);
}

Linux Programming

UNLEASHED
762

4772316072 App A 7/26/99 2:15 PM Page 762

Sample Execution
The code fragment below shows sample commands to test execution of userchange after
setting up a suitable environment. First, we create a blank password file (do not do this in
the real /etc directory). Then we initialize the configuration file, userchange.rc, to val-
ues suitable for testing; the blank dummy password file will be used instead of the real
one and the program will just call another copy of itself on the same machine instead of
trying to invoke a copy of itself on a remote system. Finally, we use the userchange pro-
gram to create a user named root with an encrypted password, a user id of 0, a group id
of 0, a comment (gecos) field value of root, a home directory of /root, and the shell
/bin/bash.

rm passwd
touch passwd
echo ‘passwd_file=”./passwd”’ >userchange.rc
echo ‘remote_command=”./userchange read_stdin=1” >>userchange.rc
./userchange operation=add username=root pwcrypt=WwXxYyZz uid=0 gid=0
➥gecos=”root” homedir=/root shell=/bin/bash

The symbol table library simplifies certain forms of user interaction, reading and writing
configuration and other data files, and communications with other processes. As the
library is enhanced, there may be a few changes that break existing programs in minor
ways; if you will be distributing your programs you might want to bind to a specific
version of the shared library (that is, link to libsymtab.so.0.55 instead of merely
libsymtab.so).

A Symbol Table Library

APPENDIX A
763

A

A
 S

Y
M

B
O

L
T

A
B

LE
L

IB
R

A
RY

4772316072 App A 7/26/99 2:15 PM Page 763

764

4772316072 App A 7/26/99 2:15 PM Page 764

B
A

PP
EN

D
IX

GNU GENERAL
PUBLIC LICENSE

4872316072 App B 7/26/99 2:40 PM Page 765

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not
the original, so that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

Linux Programming

UNLEASHED
766

4872316072 App B 7/26/99 2:40 PM Page 766

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is includ-
ed without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the Program). Whether that is
true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part con-
tains or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy

GNU General Public License

APPENDIX B
767

B

G
N

U
G

EN
ER

A
L

P
U

B
LIC

L
IC

EN
SE

4872316072 App B 7/26/99 2:40 PM Page 767

of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a com-
plete machine-readable copy of the corresponding source code, to be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for software inter-
change; or,

c) Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica-
tions to it. For an executable work, complete source code means all the source code for
all modules it contains, plus any associated interface definition files, plus the scripts used
to control compilation and installation of the executable. However, as a special excep-
tion, the source code distributed need not include anything that is normally distributed

Linux Programming

UNLEASHED
768

4872316072 App B 7/26/99 2:40 PM Page 768

(in either source or binary form) with the major components (compiler, kernel, and so
on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not com-
pelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or dis-
tribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you indi-
cate your acceptance of this License to do so, and all its terms and conditions for copy-
ing, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recip-
ient automatically receives a license from the original licensor to copy, distribute or mod-
ify the Program subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsi-
ble for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For exam-
ple, if a patent license would not permit royalty-free redistribution of the Program by all
those who receive copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from distribution of the
Program.

If any portion of this section is held invalid or unenforceable under any particular cir-
cumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

GNU General Public License

APPENDIX B
769

B

G
N

U
G

EN
ER

A
L

P
U

B
LIC

L
IC

EN
SE

4872316072 App B 7/26/99 2:40 PM Page 769

It is not the purpose of this section to induce you to infringe any patents or other proper-
ty right claims or to contest validity of any such claims; this section has the sole purpose
of protecting the integrity of the free software distribution system, which is implemented
by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute soft-
ware through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries not
thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the pre-
sent version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option
of following the terms and conditions either of that version or of any later version pub-
lished by the Free Software Foundation. If the Program does not specify a version num-
ber of this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free software and of pro-
moting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

Linux Programming

UNLEASHED
770

4872316072 App B 7/26/99 2:40 PM Page 770

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSS-
ES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

END OF TERMS AND CONDITIONS

Linux and the GNU system

The GNU project started 12 years ago with the goal of developing a complete free
UNIX-like operating system. “Free” refers to freedom, not price; it means you are free to
run, copy, distribute, study, change, and improve the software.

A UNIX-like system consists of many different programs. We found some components
already available as free software—for example, X Windows and TeX. We obtained other
components by helping to convince their developers to make them free—for example, the
Berkeley network utilities. Other components we wrote specifically for GNU—for exam-
ple, GNU Emacs, the GNU C compiler, the GNU C library, Bash, and Ghostscript. The
components in this last category are “GNU software”. The GNU system consists of all
three categories together.

The GNU project is not just about developing and distributing free software. The heart of
the GNU project is an idea: that software should be free, and that the users’ freedom is
worth defending. For if people have freedom but do not value it, they will not keep it for
long. In order to make freedom last, we have to teach people to value it.

The GNU project’s method is that free software and the idea of users’ freedom support
each other. We develop GNU software, and as people encounter GNU programs or the
GNU system and start to use them, they also think about the GNU idea. The software
shows that the idea can work in practice. People who come to agree with the idea are
likely to write additional free software. Thus, the software embodies the idea, spreads the
idea, and grows from the idea.

GNU General Public License

APPENDIX B
771

B

G
N

U
G

EN
ER

A
L

P
U

B
LIC

L
IC

EN
SE

4872316072 App B 7/26/99 2:40 PM Page 771

This method was working well—until someone combined the Linux kernel with the
GNU system (which still lacked a kernel), and called the combination a “Linux system.”

The Linux kernel is a free UNIX-compatible kernel written by Linus Torvalds. It was not
written specifically for the GNU project, but the Linux kernel and the GNU system work
together well. In fact, adding Linux to the GNU system brought the system to comple-
tion: it made a free UNIX-compatible operating system available for use.

But ironically, the practice of calling it a “Linux system” undermines our method of
communicating the GNU idea. At first impression, a “Linux system” sounds like some-
thing completely distinct from the “GNU system.” And that is what most users think it is.

Most introductions to the “Linux system” acknowledge the role played by the GNU soft-
ware components. But they don’t say that the system as a whole is more or less the same
GNU system that the GNU project has been compiling for a decade. They don’t say that
the idea of a free UNIX-like system originates from the GNU project. So most users
don’t know these things.

This leads many of those users to identify themselves as a separate community of “Linux
users”, distinct from the GNU user community. They use all of the GNU software; in
fact, they use almost all of the GNU system; but they don’t think of themselves as GNU
users, and they may not think about the GNU idea.

It leads to other problems as well—even hampering cooperation on software mainte-
nance. Normally when users change a GNU program to make it work better on a particu-
lar system, they send the change to the maintainer of that program; then they work with
the maintainer, explaining the change, arguing for it and sometimes rewriting it, to get it
installed.

But people who think of themselves as “Linux users” are more likely to release a forked
“Linux-only” version of the GNU program, and consider the job done. We want each and
every GNU program to work “out of the box” on Linux-based systems; but if the users
do not help, that goal becomes much harder to achieve.

So how should the GNU project respond? What should we do now to spread the idea that
freedom for computer users is important?

We should continue to talk about the freedom to share and change software—and to
teach other users to value these freedoms. If we enjoy having a free operating system, it
makes sense for us to think about preserving those freedoms for the long term. If we
enjoy having a variety of free software, it makes sense to think about encouraging others
to write additional free software, instead of additional proprietary software.

Linux Programming

UNLEASHED
772

4872316072 App B 7/26/99 2:40 PM Page 772

We should not accept the splitting of the community in two. Instead we should spread
the word that “Linux systems” are variant GNU systems—that users of these systems are
GNU users, and that they ought to consider the GNU philosophy which brought these
systems into existence.

This article is one way of doing that. Another way is to use the terms “Linux-based GNU
system” (or “GNU/Linux system” or “Lignux” for short) to refer to the combination of
the Linux kernel and the GNU system.

Copyright 1996 Richard Stallman

(Verbatim copying and redistribution is permitted without royalty as long as this notice is
preserved.)

The Linux kernel is Copyright © 1991, 1992, 1993, 1994 Linus Torvalds (others hold
copyrights on some of the drivers, file systems, and other parts of the kernel) and and is
licensed under the terms of the GNU General Public License.

The FreeBSD Copyright

All of the documentation and software included in the 4.4BSD and 4.4BSD-Lite
Releases is copyrighted by The Regents of the University of California.

Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of
the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1.Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.

3.All advertising materials mentioning features or use of this software must display the
following acknowledgement:

This product includes software developed by the University of California, Berkeley and
its contributors.

4.Neither the name of the University nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

GNU General Public License

APPENDIX B
773

B

G
N

U
G

EN
ER

A
L

P
U

B
LIC

L
IC

EN
SE

4872316072 App B 7/26/99 2:40 PM Page 773

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The Institute of Electrical and Electronics Engineers and the American National
Standards Committee X3, on Information Processing Systems have given us permission
to reprint portions of their documentation.

In the following statement, the phrase “this text” refers to portions of the system docu-
mentation.

Portions of this text are reprinted and reproduced in electronic form in the second BSD
Networking Software Release, from IEEE Std 1003.1-1988, IEEE Standard Portable
Operating System Interface for Computer Environments (POSIX), copyright C 1988 by
the Institute of Electrical and Electronics Engineers, Inc. In the event of any discrepancy
between these versions and the original IEEE Standard, the original IEEE Standard is the
referee document.

In the following statement, the phrase “This material” refers to portions of the system
documentation.

This material is reproduced with permission from American National Standards
Committee X3, on Information Processing Systems. Computer and Business Equipment
Manufacturers Association (CBEMA), 311 First St., NW, Suite 500, Washington, DC
20001-2178. The developmental work of Programming Language C was completed by
the X3J11 Technical Committee.

The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed or
implied, of the Regents of the University of California.

www@FreeBSD.ORG

Copyright © 1995-1997 FreeBSD Inc. All rights reserved.

$Date: 1997/07/01 03:52:05 $

Linux Programming

UNLEASHED
774

4872316072 App B 7/26/99 2:40 PM Page 774

INDEX

4972316072 Index 7/26/99 2:31 PM Page 775

SYMBOLS

< > (angle brackets),
629-630

* (asterisk), 610
$ (dollar sign)

$< variable, 59
$? variable, 59
$@ variable, 59
$^ variable, 59
$(@D) variable, 59
$(F) variable, 59
$Author$ keyword, 109
$Date$ keyword, 109
$EF_ALIGNMENT

variable, 263
$Header$ keyword, 109
Id keyword, 107-108
$Locker$ keyword, 109
Log keyword, 108
$Name$ keyword, 109
$RCSfile$ keyword, 109
$Revision$ keyword, 109
$Source$ keyword, 109
$State$ keyword, 109

(hash sign), 61
% (percent sign), 61
? (question mark), 610
3D graphics

Mesa, 596
OpenGL, 596-597. See

also orbits.c application
3D objects, 599-600

animation, 603-604

depth tests, 603

event handling, 603

material properties,

602-603

rotating objects, 601-602

Web site, 606

windows, 598-599

X-Y-Z coordinates,

600-601

<> (angle brackets)
776

A
abort function, 181, 235
Abstract Windowing

Toolkit. See AWT
Accelerated Graphics Port

(AGP), 21
access function, 662
accessing

semaphores, 290
system information, 216

general system informa-

tion, 221-227

process information,

217-221

AC_AIX macro, 75
AC_CANONICAL_HOST

macro, 78
AC_CHECK_FUNC macro,

77
AC_CHECK_HEADER

macro, 77
AC_CHECK_LIB macro, 71
AC_CHECK_PROG macro,

77
AC_CHECK_TYPE macro,

77
AC_C_BIGENDIAN macro,

73
AC_C_CHAR_UNSIGNED

macro, 74
AC_C_CHECK_SIZEOF

macro, 74
AC_C_CONST macro, 73
AC_C_INLINE macro, 74
AC_C_LONG_DOUBLE

macro, 74
AC_DECL_SYS_SIGLIST

macro, 72
AC_DYNIX_SEQ macro, 75
AC_EGREP_CPP macro, 76

AC_EGREP_HEADER
macro, 76

AC_FUNC_GETLOADAVG
macro, 71

AC_FUNC_GETPGRP
macro, 71

AC_FUNC_MEMCMP
macro, 71

AC_FUNC_MMAP macro,
71

AC_FUNC_SETPGRP
macro, 71

AC_FUNC_UTIME_NULL
macro, 71

AC_FUNC_VFORK macro,
71

AC_FUNC_VRPINTF macro,
71

AC_HEADER_DIRENT
macro, 72

AC_HEADER_STDC macro,
72

AC_HEADER_SYS_WAIT
macro, 72

AC_HEADER_TIME macro,
72

AC_INIT macro, 67
AC_IRIX_SUN macro, 75
AC_ISC_POSIX macro, 75
AC_MINIX macro, 75
AC_MSG_CHECKING

macro, 80
AC_OUTPUT macro, 67
AC_PATH_X macro, 74
AC_PROG_AWK macro, 70
AC_PROG_CC macro, 70
AC_PROG_CC_C_O macro,

70
AC_PROG_CPP macro, 70
AC_PROG_INSTALL macro,

70
AC_PROG_LEX macro, 70

4972316072 Index 7/26/99 2:31 PM Page 776

audio
777

AC_PROG_LN_S macro, 70
AC_PROG_RANLIB macro,

70
AC_PROG_YACC macro, 70
AC_SCO_INTL macro, 75
AC_STRUCT_ST_BLKSIZE

macro, 72
AC_STRUCT_ST_BLOCKS

macro, 72
AC_STRUCT_TIMEZONE

macro, 73
AC_SYS_INTERPRETER

macro, 74
AC_SYS_LONG_FILE_

NAMES macro, 74
AC_SYS_RESTARTABLE_

SYSCALLS macro, 74
AC_TRY_COMPILE macro,

76
AC_TRY_CPP macro, 76
AC_TRY_LINK macro, 76
AC_TRY_RUN macro, 76
AC_TYPE_GETGROUPS

macro, 73
AC_TYPE_MODE_T macro,

73
AC_TYPE_PID_T macro, 73
AC_TYPE_SIGNAL macro,

73
AC_TYPE_SIZE_T macro,

73
AC_TYPE_UID_T macro, 73
AC_XENIX_DIR macro, 75
add function, 582, 589
addch function, 443
addchnstr function, 446
addComponent function,

511
addMouseListener func-

tion, 582
AGP (Accelerated

Graphics Port), 21

alarm function, 182
alarms, 182-183
alloca function, 250-252
allocating memory

alloca function, 250-252
calloc function, 249
malloc function, 248
realloc function, 249
security, 676
shared memory, 283

alternative program tests
(autoconf), 69-70

animation, 603-604
annotated autoconf script

AC_CANONICAL_HOST
macro, 78

AC_MSG_CHECKING
macro, 80

custom commands, 78
header, 77
makefile, 81-83
multiple line arguments, 79

ANSI tapes, 155
-ansi option (gcc com-

mand), 43, 46
applications. See also

code listings; tools
Java, compiling, 564
security, 641-642
split programs, 672

ar command, 344-345
AR variable (makefiles),

59
ARFLAGS variable (make-

files), 60
Arnold, Ken, 434
arp file, 225
Artistic License, 738
AS variable (makefiles),

59
ASFLAGS variable (make-

files), 60

assert function, 181,
230-232

asterisk (*), 610
AT motherboards, 15
atexit function, 181,

236-237
Athena widgets, 480

C++ class library, 508-510
Button class, 514-515

Component class, 510-511

Label class, 513-514

PanedWindow class,

511-513

Text class, 515-517

C++ programs, 507-508
Command Button, 482-484
custom widgets, 498-499

fetch_url function,

499-501

implementing, 503-506

private header files,

502-503

public header files,

501-502

testing, 506-507

Label, 480-481
List, 484-486
Simple Menu, 489-491
Text, 486-489

attach command (gdb),
702

attribute keyword, 50
attributes

process attributes, 174-175
thread attributes, 186-188

attroff function, 457
attron function, 457
ATX motherboards, 16
audio, sound cards, 23,

159

4972316072 Index 7/26/99 2:31 PM Page 777

authentication
778

authentication
biometrics, 680
PAMs (pluggable authenti-

cation modules), 680-681
$Author$ keyword (RCS),

109
AUTHOR section (man

pages), 723
autoconf, 66

annotated autoconf script
AC_CANONICAL_HOST

macro, 78

AC_MSG_CHECKING

macro, 80

custom commands, 78

header, 77

makefile, 81-83

multiple line arguments,

79

configure scripts
AC_INIT macro, 67

AC_OUTPUT macro, 67

file structure, 68-69

generic macros, 76-77
predefined tests

alternative program tests,

69-70

compiler behavior tests,

73-74

header file tests, 71-72

library function tests,

70-71

structure tests, 72-73

system services tests, 74

typedef tests, 73

UNIX variant tests, 75

utilities, 69
automatic variables, 59
automating Emacs,

132-134

AWT (Abstract
Windowing Toolkit)

AWTsample.java sample
program, 581-582

ChatAWT.java sample
program, 583-586

classes, 580
-a|-text option (diff

command), 94

B
 tag (HTML), 528
backtrace command

(gdb), 691
basetypes, 747-748
bash (Bourne Again

Shell), 610
brace expansion, 611
command-line processing,

633-635
flow control

case statement, 625-626

for loops, 624

if statements, 619-623

select statement, 626-627

until loops, 625

while loops, 624-625

I/O (input/output)
redirectors, 629-630

string I/O, 631-633

integer tests, 623
operators

file test operators, 621-622

pattern-matching opera-

tors, 617-619

string operators, 615-617

shell functions, 628-629
shell signal-handling,

635-637

special characters, 612-613
string comparisons, 623
variables

positional parameters,

614-615

predefined, 614

syntax, 613

values, obtaining, 613

wildcards, 610-611
Basic Input/Output

System (BIOS), 18
baudrate function, 459
Ben-Halim, Zeyd, 434
bidirectional mode (paral-

lel ports), 367
bifurcation.c program

(Xlib program), 471-474
draw_bifurcation function,

474
event handling, 473
main function, 471-472

binaries, stripping, 236
-binary option (diff

command), 94
bind function, 297-298
binding sockets, 297-298
biometrics, 680
BIOS (Basic Input/Output

System), 18
bkgd function, 446
block devices, 362
BODY tag (HTML), 528
Bourne Again Shell. See

bash
box function, 446
brace expansion, 611
break command (gdb),

694
breakpoints, 694-695
BRKINT flag (termios

interface), 414

4972316072 Index 7/26/99 2:31 PM Page 778

class keyword
779

broadcast.c program (mul-
ticast broadcasts)

code listings, 320-321
output, 323-324

broadcasts, multicast
getsockopt function,

319-320
Linux configuration,

318-319
listening for, 321-323
sending, 320-321
setsockopt function,

319-320
broadcast_and_listen .c

(non-blocking sockets)
listening for broadcasts,

328-329
sample output, 329-330
socket creation, 327-328
variables, 326-327

BSD-style licenses,
737-738

buffer-string function,
133

buffers
buffer control functions,

170-171
erasing, 677
overflows

canary values, 646-647

example, 644-645

exploits, 645-646

preventing, 647-648

stack kernel patch, 646

BUGS section (man
pages), 723

build section (spec files),
715

buttons
Athena Command Button

widget, 482-484
Button class, 514-515

Byterunner Web site, 28
-B|-ignore-blank-lines

option (diff command),
94

-b|-ignore-space-change
option (diff command),
94

C
C extensions (GNU), 49-51
-c option

ar command, 344
gcc command, 43
tar command, 708

call command (gdb), 697
call stack, 699-701
calloc function, 249
cameras, digital, 32
canary values, 646-647
cancelling threads,

188-189
capnames, 423-424
Car class, 561-562
case statement, 625-626
case-fold-search com-

mand (Emacs), 130
CC variable (makefiles),

60
CD-ROM drives, 29-30
<cdx> tag (SGML), 732
cfgetispeed function, 415
cfgetospeed function, 416
CFLAGS variable (make-

files), 60
cfsetispeed function, 415
cfsetospeed function, 416
CGI (Common Gateway

Interface), 641
char *getText function,

516

char-after function, 133
char-to-string function,

133
character devices, 362
character echo feature,

disabling, 420-422
character routines

(ncurses)
addch, 443
echochar, 444
insch, 444
mvaddch, 443
sample program, 448-449
waddch, 443
winsch, 444

chat engine
ChatAWT.java, 583-586
ChatEngine.java, 576-579
ChatJFC.java, 590-593
ChatListener.java, 575
methods, 579

ChatEngine function, 579
checking in/out files

(RBS), 105-107
child library program

(process control exam-
ple), 191-192

child.c file, 194-204
child.h file, 192-194
child_demo1.c demon-

stration, 204-207
child_demo2.c demonstra-

tion, 207-213
child_demo3.c demon-

stration, 213-214
chroot() environments,

672
ci command (RCS),

105-107
Clark, James, 529
class keyword, 562

4972316072 Index 7/26/99 2:31 PM Page 779

classes
780

classes
Button, 514-515
Client

design, 332-333

implementing, 336-337

public/private interfaces,

333-334

testing, 339-340

Component, 510-511
DrawWidget

implementing, 547-549

testing, 549-550

Java
Car.java example, 561-562

defining, 562-564

FileIO, 566-567

JFC (Java Foundation

Classes), 586-593

Label, 513-514
PanedWindow, 511-513
QApplication, 547
QPainter, 547
QSize, 546
QWidget, 545-547
Server

design, 334

implementing, 337-339

public/private interfaces,

335

testing, 339

StateLCDWidget, 551-554
Text, 515-517
UpDownWidget, 554-556

clean section (spec files),
716

cleanup_module function,
401-404

cli function, 373
Client class

design, 332-333
implementing, 336-337

public/private interfaces,
333-334

testing, 339-340
clients

Client class
design, 332-333

implementing, 336-337

public/private interfaces,

333-334

testing, 339-340

client.c (TCP socket client)
code listings, 302-303

running, 303-304

security, 641
client/server program-

ming (TCP example)
client.c, 302-304
server.c, 301-304
web_client.c, 307-308
web_server.c, 305-309

CLOCAL flag (termios
interface), 414

clone function, 177
close function, 140
closing

files, 140
message queues, 278

clrtobot function, 448
clrtoeol function, 448
cmdline file, 217, 221
cmp command, 86-88
co command (RCS),

105-107
code listings

bash (Bourne Again Shell)
file test operators, 622

getopts.sh, 633-634

here-document to script

ftp, 630

pattern-matching opera-

tors, 618

positional parameters,

614-615

select statement, 626

showpass.sh, 632

trap command, 636

variable syntax, 613

buffer overflows, 644
canary values, 646
cat(1) implementation

(memory maps), 256-257
chat engine

ChatEngine.java, 576-579

ChatListener.java, 575

child library program
child.c, 194-204

child.h, 192-194

child_demo1.c, 204-207

child_demo2.c, 207-213

child_demo3.c, 213-214

Client.hxx, 333-334
cursutil.c application

(ncurses utility func-
tions), 459-461

device driver example
bottom half, 399-401

delay, 385

file operations structure,

398-399

ioctls, 393-395

loading, 406-407

main function, 405

makefile, 406

module initialization/

termination, 401-404

open/close operations,

396-398

prologue, 382-384

read/write operations,

390-393

ring.c, 378-382

ring.h, 378

4972316072 Index 7/26/99 2:31 PM Page 780

commands
781

seek operation, 390

status reporting, 385-386

stepper control, 386-389

stepper.h, 377

usermode driver, 374-375

verbose_outb, 384

diff command, 90
diff3 command, 95-97
dltest.c (dl interface), 357
dup2 function, 143-144
dynamic memory mange-

ment functions, 250-251
error handling

assert function, 231

atexit function, 236-237

errno variable, 235

errs.c, 238

filefcn.c, 233

filefcn.h, 232-233

logger.sh, 244

mask_log.c, 242-243

testmacs.c, 233-234

filedes_io.c file, 152-154
gcc demonstration, 40-41
gdb call chain, 699-700
gnu, debugme.c, 689
GTK (Gimp Tool Kit),

simple.c mail function,
525

I/O (input/output) func-
tions, 664-672

installation log, 35-37
Java

AWTsample.java, 581-582

Car.java class, 561-562

ChatAWT.java, 584-586

ChatJFC.java, 591-593

ExampleSockets class,

571-574

ExampleThreads.java, 570

FileIO.java, 566-567

JFCsample.java sample

application, 588-589

ReadFile.java, 569

WriteFile.java, 568

man page example,
723-725

memory bugs, 258-259
nb_broadcast_and_listen.c,

326
ncurses

color.c application,

456-457

cursbox.c application,

450-451

curschar.c sample

program, 448-449

cursinch.c application,

453-454

cursqstr.c application,

454-455

cursstr.c sample program,

449-450

initcurs.c application, 441

newterm.c application,

442

noecho.c, 418-419
non-ANSI/ISO source

code, 45-46
orbits.c application,

604-606
pu-install.sh, 712
RCS (Revision Control

System)
howdy.c example, 106

ident command, 109-110

Log keyword, 108

sample.el (Emacs), 133
select function, 146-149
semaphore.c program, 293
Server.hxx, 335

static libraries
errtest.c, 350-351

liberr.c, 348-349

liberr.h, 347

symbol tables
program options symbol

table, 751-753

userchange password

structure, 749-750

userchange_error_t,

754-755

tapecopy.c file, 156-158
terminal raw mode,

420-421
terminfo interface

getcaps.c application,

425-426

new_getcaps.c application,

428-430

test.xml sample file, 529
vprintf function, 167-168

code optimization, 47
color routines (ncurses),

455-457
color.c application

(ncurses color), 456-457
Command Button widget,

482-484
command-line processing

(bash), 633-635
commands

ar, 344-345
cmp, 86-88
diff

command-line options,

94-95

context output format,

89-92

normal output format,

88-89

4972316072 Index 7/26/99 2:31 PM Page 781

commands
782

side-by-side comparisons,

94

unified output format,

92-93

diff3, 95-97
echo, 631
emacs, 117, 130
eval, 643
find, 641
gcc, 43-48, 688
gdb (GNU Debugger)

attach, 702

backtrace, 691

break, 694

call, 697

delete, 695

detach, 703

file, 702

finish, 697

info breakpoints, 695

list, 692

next, 697

print, 692-693

ptype, 696

return value, 697

reverse-search, 701

run, 690

search, 701

shell, 701

step, 696

whatis, 693

where, 700

groff, 725-726
install, 711-713
ipcrm, 279, 286
ipcs, 279, 286
ldconfig, 346
ldd, 345
make

advantages, 54

command-line options,

61-62

comments, 61

debugging, 62

error messages, 63

explicit rules, 56-60

implicit rules, 60-61

makefiles, 54-56

pattern rules, 61

targets, 56-57, 63-64

mknod, 273
moc, 544, 550, 554
nm, 343-344
patch, 98-100
RCS (Revision Control

System)
ci, 105-107

co, 105-107

ident, 109-110

rcs, 114

rcsclean, 113

rcsdiff, 110-113

rcsmerge, 114

rlog, 113

rpm, 719
sdiff, 98
security, 641-642
tar, 708
trap, 635-637
xemacs, 117

comments
Emacs, 126-127
makefiles, 61

communication devices
IRDA (Infrared Data

Association), 28
ISA Plug and Play, 28
modems, 24-26
NICs (network interface

cards), 26
PCMCIA cards, 28
SCSI (small computer

interface) controllers, 27

serial cards, 27-28
USB support, 27

comparing
files

cmp command, 86-88

diff command, 88-95

diff3 command, 95-97

RCS (Revision Control
System) files, 110-113

compilers
behavior tests (autoconf),

73-74
gcc

code optimization, 47

command-line options,

table of, 43-44

debugging, 48-49

error checking/warnings,

45-46

GNU C extensions, 49-51

library/include files, 44-45

tutorial, 40-42

Java, 594
compiling applications

Emacs, 127-130
gdb (GNU Debugger)

requirements, 688
Java applications, 564
ncurses, 435

Component class, 510-511
conditional statements, if,

619-623
cones (OpenGL), 599
configure scripts

AC_INIT macro, 67
AC_OUTPUT macro, 67
file structure, 68-69

configure_event function,
540

4972316072 Index 7/26/99 2:31 PM Page 782

debugger
783

configuring
Emacs

.emacs file, 130-131

keyboard macros, 132

multicast IP (Internet
Protocol), 318-319

RPM (Red Hat Package
Manager), 714-715

self-configuring software,
creating, 66

annotated autoconf script,

77-83

configure scripts, 67-69

generic macros, 76-77

predefined tests, 69-75

utilities, 69

shared memory, 282-286
connect function,

298-299, 555, 579
container widgets (GTK)

Notebook
defined, 527

notebook.c sample

program, 537-542

Paned Window, 527
Tool Bar, 527

controlling processes. See
process control

Concurrent Version
System (CVS), 104

coordinates (OpenGL),
600-601

copyrights, GTK (Gimp
Tool Kit), 520-521

CPP variable (makefiles),
60

CPPFLAGS variable (make-
files), 60

cpuinfo file, 221
crashes. See trou-

bleshooting

cryptography, 681-682
algorithms, 682-683
encryption systems,

683-684
vulnerabilities, 684-685

cubes (OpenGL), 599
cursbox.c application,

450-451
curscr data structure, 436
cursechar.c application,

448-449
curses. See ncurses
cursestr.c application,

449-450
cursinch.c application,

453-454
cursors, 436
cursqstr.c application,

454-455
cursutil.c application,

459-461
Curtis, Pavel, 434
custom widgets (Athena),

498-499
fetch_url function, 499-501
implementing, 503-506
private header files,

502-503
public header files,

501-502
testing, 506-507

CVS (Concurrent Version
System), 104

cwd symbolic link, 220
-c|-C NUM|-context=NUM

option (diff command),
94

-c|-context option (patch
command), 99

D
d DIR|—directory=DIR

option (patch com-
mand), 99

-d option
ldd command, 345
make command, 62

daemons, 362
identd, 674-675
syslogd

facility names, 240

logger interface, 243-244

logging levels, 239

openlog() options, 241-242

priority masks, 242-243

dangling pointers, 250
data types

GtkWidget, 521-522
long long, 49

$Date$ keyword (RCS),
109

deadlocks, 288
debugger, gdb (GNU

Debugger)
breakpoints, 694-695
call stack, navigating,

699-701
code, examining/changing,

691-692, 695-697
commands

attach, 702

backtrace, 691

break, 694

call, 697

delete, 695

detach, 703

file, 702

finish, 697

info breakpoints, 695

list, 692

4972316072 Index 7/26/99 2:31 PM Page 783

debugger
784

next, 697

print, 692-693

ptype, 696

return value, 697

reverse-search, 701

run, 690

search, 701

shell, 701

step, 696

whatis, 693

where, 700

compiling for, 688
examining data, 692-694
processes, attaching to,

702-703
shell communication, 701
source files, finding, 701
starting, 689-691
variable scope/context,

698-699
debugging

device drivers, 375-376
gcc compiler, 48-49
make utility, 62
ncurses, 435

debugme.c application
(gdb example), 689

decrementing semaphore
values, 291

defining
Java classes, 562-564
makefile variables, 57
shell functions, 628
symbol tables

random collection of vari-

ables, 751-753

structure types, 748-750

delay function, 385
delete command (gdb),

695
delete-char function, 134

deleting
files, 171
semaphores, 291
windows, 468

delscreen function, 440
Denial of Service (DOS)

attacks, 656-657
depth tests (OpenGL), 603
derwin function, 458
DESCRIPTION section

(man pages), 722
descriptors. See file

descriptors
detach command (gdb),

703
detachstate attribute

(threads), 187
determinate loops, 624
dev file, 225
development history

Emacs, 116
ncurses, 434-435

development history of
Linux, 9

device drivers
block devices, 362
bottom half/top half, 376
character devices, 362
daemons, 362
debugging, 375-376
development configuration,

369
DMA (Direct Memory

Access), 373-374
interrupts, 372-373
loadable kernel modules,

360
online resources, 408
port I/O (input/output),

370-372
privileged usermode pro-

grams, 362

shared libraries, 361
source code

bottom half, 388-401

delay(), 385

file operations structure,

398-399

future improvements to,

407

header file, 377

ioctls, 393-395

loading, 406-407

main function, 405

makefile, 406

module initialization/ter-

mination, 401-404

open/close operations,

396-398

prologue, 382-384

read/write operations,

390-393

ring buffer header file,

377-382

seek operation, 390

status reporting, 385-386

stepper control, 386-389

verbose_outb(), 384-385

statically linked, 360
stepper motors

circuits, 364

electromagnetic coils, 363

heat sinks, 366

parallel port connections,

367-369

power supplies, 366

timing, 366

unprivileged usermode
programs, 361-362

usermode test driver,
374-375

devices file, 221
dev_stat file, 225

4972316072 Index 7/26/99 2:31 PM Page 784

Emacs
785

-DFOO option (gcc com-
mand), 43

diagnostic tools
Electric Fence

environment variables,

263-264

obtaining, 262

output, 262-263

LCLint, 264-265
mpr package

badmem.log file, 260

functions, 261-262

obtaining, 260

DIAGNOSTICS section
(man pages), 722

Dickey, Thomas, 434
diff command

command-line options,
94-95

context output format,
89-92

normal output format,
88-89

side-by-side comparisons,
94

unified output format,
92-93

diff3 command, 95-97
digital cameras, 32
digital signatures, 682
Direct Memory Access

(DMA), 373-374
dist targets (makefiles),

63
dl interface

dlclose function, 356
dlerror function, 356
dlopen function, 355-356
dlsym function, 356
example, 357-358

dlclose function, 356
dlerror function, 356

dlopen function, 355-356
dlsym function, 356
DMA (Direct Memory

Access), 373-374
dma file, 222
documentation

man pages
components, 722-723

conventions, 726-727

example, 723-725

groff command, 725-726

pipe resources, 273

symbol tables, 746-747
documents (SGML)

example, 730-731
formatting, 733
nested sections, 729
preamble sections, 728
special characters, 729-730

DOS (Denial of Service)
attacks, 656-657

do_delay function, 385
Draw widget (GTK),

539-542
drawing functions

ncurses, 446-447, 450-451
X Window systems,

470-471
DrawWidget class

implementing, 547-549
testing, 549-550

draw_brush function, 540
draw_widget.c applica-

tion (Draw widget),
539-542

drivers. See device drivers
drives

CD-ROM, 29-30
hard drives, 29
removable, 29
tape, 30, 155-158

dry loops, 25

dup function, 143-144
dup2 function, 143-144
dupwin function, 458
dynamic memory alloca-

tion, 676
dynamically loading

shared objects, 354-355
dlerror function, 356
dlopen function, 355-356
dlsym function, 356
example, 357-358

E
EBADF error code, 320
echo command, 631
ECHO flag (termios inter-

face), 414
echochar function, 444
ECHONL flag (termios

interface), 414
editors. See Emacs
$EF_ALIGNMENT variable,

263
EFAULT error code, 320
Electric Fence

environment variables,
263-264

obtaining, 262
output, 262-263

Elisp (Emacs Lisp),
132-134

Emacs, 116
automating, 132-134
comments, 126-127
compilation, 127-130
customizing, 130
.emacs file, 130-131
error handling, 128
files, opening/saving, 123
history of, 116

4972316072 Index 7/26/99 2:31 PM Page 785

Emacs
786

keyboard macros, 132
multiple windows,

124-125
navigation, 119
search/replace, 121, 123
starting, 117
stopping, 119
syntax highlighting, 126
text

deleting, 120-121

indenting, 125

inserting, 120

tutorial, 118
XEmacs (Lucid Emacs),

117
emacs command, 117
.emacs file, 130-131
Emacs Lisp (Elisp),

132-134
encryption systems,

683-684. See also
cryptography

endElement function, 531,
534

endwin function, 440
ENOPROTOOPT error

code, 320
ENOTSOCK error code,

320
<enum> tag (SGML), 732
ENV variable, 649
environ file, 217-220
ENVIRONMENT section

(man pages), 722
environment variables

Electric Fence, 263-264
libraries, 346
security, 648-650

erase function, 448
erasechar function, 459
eraseText function,

516-517

erasing buffers, 677
errno variable, 235
error codes, 320
error handling. See also

troubleshooting
C language

abort function, 235

assert function, 230-232

atexit function, 236-237

errno variable, 235

exit function, 236

perror function, 238

strerror function, 237

FILE macro, 232-234

LINE macro, 232-234

Emacs, 128
gcc compiler, 45-46
shared libraries, 356
symbol tables, 754-755
syslogd

facility names, 240

logger interface, 243-244

logging levels, 239

openlog() options, 241-242

priority masks, 242-243

error messages, 63
escape codes (SGML), 729
escape sequences, 631
/etc/lilo.config file, 282
eth_copy_and_sum func-

tion, 372
eth_io_copy_and_sum

function, 372
eval command, 643
event handling

GTK (Gimp Tool Kit),
522-523

OpenGL, 603
Qt library

QWidget class, 545-550

signals/slots, 550-557

Xlib API
XNextEvent function, 469

XSelectInput function,

468-469

ExampleSockets class,
571-575

exe symbolic link, 220
executing programs. See

running programs
execve function, 176, 662
exit function, 181, 236
exiting. See stopping
Expat parser, 529-530
explicit rules (makefiles)

automatic variables, 59
phony targets, 56-57
predefined variables, 59-60
user-defined variables,

57-59
expose_event function,

540
expressions, brace expan-

sion, 611
Extensible Markup

Language. See XML
-e|-ed option (patch com-

mand), 99

F
-F NUM|-fuzz=NUM

option (patch com-
mand), 99

-f option
ci command, 107
co command, 107
gcc command, 47
make command, 62
tar command, 708

faxes, 25
fchdir function, 151

4972316072 Index 7/26/99 2:31 PM Page 786

files
787

fchmod function, 150-151
fchown function, 149-150
fcntl function, 141-142
fd directory, 218
fdopen function, 164
feof function, 164
fetch_url function,

499-501
fetch_url.c file

(URLWidget), 499-501
-ffastmath option (gcc

command), 47
fflush function, 170
fgetpos function, 170
file command (gdb), 702
file descriptors, 253

defined, 138
file types, 152-154
functions, 138

close, 140

dup, 143-144

dup2, 143-144

fchdir, 151

fchmod, 150-151

fchown, 149-150

fcntl, 141-142

flock, 151-152

fstat, 149

fsync, 142

ftruncate, 142

ioctl, 141

lseek, 143

open, 139

pipe, 152

read, 140

select, 144-149

write, 140-141

FILE macro, 232-234
file pointer functions, 162

fdopen, 164
feof, 164
fflush, 170

fgetpos, 170
fileno, 165
fopen, 163
fread, 164
freopen, 163
fscanf, 168
fseek, 170
fsetpos, 170
ftell, 170
fwrite, 164
line-based input/output

functions, 169-170
mktemp, 172
printf, 165-166
remove, 171
rename, 171
scanf, 168
setvbuf, 170
snprintf, 165
sscanf, 168
tmpfile, 171
tmpnam, 171
vfprintf, 167
vprintf, 166-168
vsprintf, 167
xprintf, 167

file test operators (bash),
621-622

FileIO class, 566-567
filenames

extensions, 42
security, 659-660

fileno function, 165
files

buffer control, 170-171
chat engine

ChatEngine.java, 576-579

ChatListener.java, 575

child library
child.c, 194-204

child.h, 192-194

closing, 140

comparing
cmp command, 86-88

diff command, 88-95

diff3 command, 95-97

configure.in
AC_INIT macro, 67

AC_OUTPUT macro, 67

file structure, 68-69

deleting, 171
device driver example

prologue, 382-384

ring.c, 378-382

ring.h, 378

stepper.h, 377

emacs, 130-131
/etc/lilo.config, 282
formatted input, 168
formatted output

printf function, 165-166

snprintf function, 165

vfprintf function, 167

vprintf function, 166-168

vsprintf function, 167

xprintf function, 167

line-based input/output,
169-170

log files
installation logs, 34-37

syslogd, 239-244

makefiles
comments, 61

explicit rules, 56-60

implicit rules, 60-61

pattern rules, 61

writing, 54-56

memory mapped
advantages, 252

creating, 252-254

locking, 255

private, 253

protections, 254-255

resizing, 255

4972316072 Index 7/26/99 2:31 PM Page 787

files
788

sample implementation,

256-257

shared, 253

unmapping, 254

writing to disk, 254

merging, 98
modes, 150-151
opening

Emacs, 123

fdopen function, 164

fopen function, 163

freopen function, 163

modes, 163

open function, 139

ownership, 149-150
positioning, 170
/proc filesystem, 216

cmdline, 217, 221

cpuinfo, 221

cwd symbolic link, 220

devices, 221

dma, 222

environ, 217

exe symbolic link, 220

fd, 218

filesystems, 222

interrupts, 222

ioports, 222

kcore, 222

kmsg, 222

ksyms, 223

loadavg, 223

locks, 223

maps, 220

mdstat, 223

mem, 218

meminfo, 223

misc, 223

modules, 224

mounts, 224

net subdirectory, 225

pci, 224

root symbolic link, 221

rtc, 224

scsi subdirectory, 226

stat, 218-220, 224

statm, 221

status, 220

sys subdirectory, 226-227

uptime, 224

version, 225

RCS (Revision Control
System), 104-105

checking in/out, 105-107

comparing, 110-113

merging, 114

reading
fread function, 164

fwrite function, 164

Java, 566-569

read function, 140

renaming, 171
saving, 123
spec

build sections, 715

clean sections, 716

example, 716-719

file lists, 716

headers, 715

install sections, 716

install/uninstall scripts,

716

prep sections, 715

verify scripts, 716

status functions
feof, 164

fileno, 165

tar, 708
creating, 709-710

listing contents of, 710

updating, 710

temporary
creating, 171-172

opening, 171

truncating, 142
types, 152-154
unnamed_pipe.c, 271
URLWidget (custom

widget)
fetch_url.c, 499-501

URL.c, 503-506

URL.h, 501-502

URLP.h, 502-503

writing
Java, 566-569

write function, 140-141

files lists (spec files), 716
FILES section (man

pages), 722
filesystems file, 222
find command, 641
finish command (gdb),

697
-finline-functions option

(gcc command), 47
flock function, 151-152
flow control, bash

(Bourne Again Shell)
case statement, 625-626
for loops, 624
if statements, 619-623
select statement, 626-627
until loops, 625
while loops, 624-625

fopen function, 163
for loops, 624
fork function, 175-176,

271
formatted input, reading,

168
formatted output,

printing
printf function, 165-166
snprintf function, 165
vfprintf function, 167
vprintf function, 166-168

4972316072 Index 7/26/99 2:31 PM Page 788

functions
789

vsprintf function, 167
xprintf function, 167

forms, submitting, 677
forward-char function,

133
Fox, Brian, 610
Framebuffer HOWTO, 20
fread function, 164
free function, 250
freeing memory

free function, 250
shared memory, 284

freopen function, 163
fscanf function, 168
fseek function, 170
fsetpos function, 170
fstat function, 149
fsync function, 142
ftell function, 170
ftok function, 276
ftruncate function, 142
functions

abort, 181, 235
access, 662
add, 582, 589
addch, 443
addchnstr, 446
addComponent, 511
addMouseListener, 582
alarm, 182
alloca, 250-252
assert, 181, 230-232
atexit, 181, 236-237
attroff, 457
attron, 457
bash (Bourne Again Shell)

functions, 628-629
baudrate, 459
bind, 297-298
bkgd, 446
box, 446
buffer-string, 133

calloc, 249
cfgetispeed, 415
cfgetospeed, 416
cfsetispeed, 415
cfsetospeed, 416
char *getText, 516
char-after, 133
char-to-string, 133
ChatEngine, 579
cleanup_module, 401-404
cli, 373
clone, 177
close, 140
clrtobot, 448
clrtoeol, 448
configure_event, 540
connect, 298-299, 555, 579
delay, 385
delete-char, 134
delscreen, 440
derwin, 458
dlclose, 356
dlerror, 356
dlopen, 355-356
dlsym, 356
do_delay, 385
draw_brush, 540
dup, 143-144
dup2, 143-144
dupwin, 458
echochar, 444
endElement, 531, 534
endwin, 440
erase, 448
erasechar, 459
eraseText, 516-517
eth_copy_and_sum, 372
eth_io_copy_and_sum, 372
execve, 176, 662
exit, 181, 236
expose_event, 540
fchdir, 151

fchmod, 150-151
fchown, 149-150
fcntl, 141-142
fdopen, 164
feof, 164
fetch_url, 499-501
fflush, 170
fgetpos, 170
fileno, 165
flock, 151-152
fopen, 163
fork, 175-176, 271
forward-char, 133
fread, 164
free, 250
freopen, 163
fscanf, 168
fseek, 170
fsetpos, 170
fstat, 149
fsync, 142
ftell, 170
ftok, 276
ftruncate, 142
fwrite, 164
getbegyx, 459
getch, 452
getContentPane, 589
gethostbyname, 650
getmaxyz, 437
getnstr, 452
getparyx, 459
getpriority, 184
getResponseFromServer,

333
getsockopt, 319-320
getstr, 452
getwin, 458
getyx, 459
glClearColor, 602
glutCreateWindow, 598
glutInit, 598

4972316072 Index 7/26/99 2:31 PM Page 789

functions
790

glutInitDisplay, 599
glutInitDisplayMode, 598
glutInitWindowPosition,

598
glutInitWindowSize, 598
glutSolidSphere, 597
gtk_button_new_with

_label, 524
gtk_container_add, 524
gtk_container_border_

width, 524
gtk_init, 524
gtk_main, 524
gtk_signal_connect, 524
gtk_widget_show, 524
gtk_window_new, 524
handleElementData, 531
has_colors, 455
hline, 447
inb, 371
inb_p, 371
Initialize, 505
initscr, 439
init_module, 383-386
init_pair, 457
inline functions, 49
insb, 371
insch, 444
insert, 134
insl, 371
ioctl, 141
iopl, 370
item_signal_callback, 531
killchar, 459
length, 133
listen, 298
logout, 579
longname, 459
lseek, 143
main, 758-762

device driver example,

405

XMLviewer, 534

make_draw_widget, 539,
541

malloc, 248
mcheck, 261-262
mktemp, 172
mlock, 255
mlockall, 255
mmap, 252-254, 283-284
motion_notify_event, 540
mouseMoveEvent, 549
mousePressEvent, 549
move, 438
move_one_step, 386
mprlk, 261
mprotect, 254-255
mremap, 255
msgctl, 278
msgget, 276
msgrcv, 277
msgsnd, 277
msync, 254
munlock, 255
munlockall, 255
munmap, 254, 284
mvaddch, 443
mvaddchnstr, 446
mvwaddch, 443
mvwaddchnstr, 446
ncurses, 438-439
newterm, 439
newwin, 437, 458
nice, 184
open, 139, 283
openlog, 241-242
outb, 371
outb_p, 371
outs, 371
outsl, 371

perror, 238, 274
pipe, 152, 271
popen, 177
printf, 165-166
printk, 375
pthread_atfork, 188
pthread_attr_destroy, 186
pthread_attr_init, 186
pthread_cancel, 188-189
pthread_cleanup_pop, 189
pthread_cleanup_push, 189
pthread_cond_broadcast,

190
pthread_cond_init,

189-190
pthread_cond_int, 190
pthread_cond_signal, 190
pthread_cond_wait, 190
pthread_create, 185
pthread_equal, 190
pthread_exit, 185
pthread_getschedparam,

187
pthread_join, 186
pthread_mutex_destroy,

191
pthread_mutex_int, 191
pthread_mutex_lock, 191
pthread_mutex_trylock,

191
pthread_mutex_unlock,

191
pthread_setschedparam,

187
putp, 427
putwin, 458
qtk_container_border_

width, 535
qtk_drawing_area_size,

542
qtk_main, 522

4972316072 Index 7/26/99 2:31 PM Page 790

functions
791

qtk_main_quit, 535
qtk_signal_connect,

522-523
qtk_tree_new, 535
qtk_widget_draw, 540
qtk_widget_set_events,

542
qtk_widget_set_usize, 534
raise, 179
rand, 657-658
read, 140
readlink, 663
realloc, 249
realpath, 663
recv, 299-300
recvfrom, 315
ReDraw, 505
refresh, 436
registerChatListener, 579
remove, 171
rename, 171, 663
resizeEvent, 553
scanf, 168
scanw, 453
sched_setscheduler, 183
scr_dump, 458
scr_restore, 458
security issues, 647
select, 144-149, 178
semctl, 288, 290-291
semget, 288-289
semop, 288, 291
send, 300, 579
setBounds, 582, 589
setbuf, 171
setcancelstate, 189
setGeometry, 556
setLabel, 582, 589
setlogmask, 242
setpriority, 184
setrlimit, 653

setSize, 582, 589
setsockopt, 319-320, 327
setText, 582, 589
settimer, 182-183
setup, 515-516
setupterm, 424
setvbuf, 170
setVisible, 582, 589
sigaction, 180
siginterrupt, 652
signal, 179
sigpending, 180
sigprocmask, 180
sigreturn, 180
sigsuspend, 180
sleep, 182, 284
snprintf, 165
socket, 297, 327
sscanf, 168
startElement, 531, 533
start_color, 456
startListening, 579
statfs, 663
stepper_ioctl, 393-395
stepper_lseek, 390
stepper_open, 396-398
stepper_read, 390-393
stepper_release, 396-398
stepper_write, 391-393
sti, 373
strerror, 237
strsignal, 180
st_find-attribute, 758
st_lookup, 758
st_parse_args, 757
st_read_stream, 757
st_set, 758
st_show, 756-757
st_tostring, 758
st_walk, 758
subwin, 437

symlink, 663
system, 177, 642-644
tcdrain, 416
tcflow, 417
tcflush, 416
tcgetattr, 415
tcgetpgrp, 417
tcsetattr, 415
tcsetpgrp, 417
termname, 459
Text, 516
tigetflag, 424
tigetnum, 424
tigetstr, 424
tmpfile, 171
tmpnam, 171
tparm, 427
tputs, 427
usleep, 182
verbose_outb, 384-385
vfork, 176
vfprintf, 167
vline, 447
vprintf, 166-168
vsprintf, 167
vwscanw, 453
waddch, 443
waddchnstr, 446
wait, 178
wait3, 178
wait4, 178
waitdpid, 178
wborder, 446-447
winsch, 444
wmove, 438
write, 140-141
XCreateGC, 470
XcreateSimpleWindow,

466-467
XcreateWindow, 466-467

4972316072 Index 7/26/99 2:31 PM Page 791

functions
792

XDestroySubWindows,
468

XDestroyWindow, 468
XDrawLine, 470
XDrawRectangle, 470
XDrawString, 470
XLoadQueryFont, 469
XNextEvent, 469
XopenDisplay, 466
XParseColor, 470
xprintf, 167
XSelectInput, 468-469
XtAppInitialize, 483
XtAppMainLoop, 481
XtCreateManagedWidget,

488
XtDestroyApplication

Context, 487
XtGetValues, 477
XtInitialize, 475
XtRealizeWidget, 481
XtSetValues, 476
XtVaCreateManaged

Widget, 485
XtVaGetValues, 486

-funroll-loops option (gcc
command), 47

fwrite function, 164

G
-g option

gcc command, 43, 48, 688
install command, 711

gcc, 40
code optimization, 47
command-line options,

43-44, 688
debugging, 48-49
error checking/warnings,

45-46

GNU C extensions, 49-51
library/include files, 44-45
tutorial, 40-42

gdb (GNU Debugger)
breakpoints, 694-695
call stack, navigating,

699-701
code, examining/changing,

691-692, 695-697
commands

attach, 702

backtrace, 691

break, 694

call, 697

delete, 695

detach, 703

file, 702

finish, 697

info breakpoints, 695

list, 692

next, 697

print, 692-693

ptype, 696

return value, 697

reverse-search, 701

run, 690

search, 701

shell, 701

step, 696

whatis, 693

where, 700

compiling for, 688
examining data, 692-694
processes, attaching to,

702-703
shell communication, 701
source files, finding, 701
starting, 689-691
variable scope/context,

698-699
General Graphics

Interface (GGI), 20

General Public License
(GPL), 739-740

getbegyx function, 459
getcaps.c application

(terminfo interface),
425-426

getch function, 452
getContentPane function,

589
gethostbyname function,

650
getmaxyx function, 437
getnstr function, 452
getparyx function, 459
getpriority function, 184
getResponseFromServer

function, 333
getsockopt function,

319-320
getstr function, 452
getwin function, 458
getyx function, 459
-ggdb option (gcc com-

mand), 43, 48, 688
GGI (General Graphics

Interface), 20
Ghostscript package, 30
Gimp Tool Kit. See GTK

widgets
glClearColor function, 602
glutCreateWindow func-

tion, 598
glutInit function, 598
glutInitDisplay function,

599
glutInitDisplayMode func-

tion, 598
glutInitWindowPosition

function, 598
glutInitWindowSize func-

tion, 598

4972316072 Index 7/26/99 2:31 PM Page 792

GtkMisc structure
793

glutSolidSphere function,
597

Glut_DEPTH constant
(glutInitDisplay
function), 599

GLUT_DOUBLE constant
(glutInitDisplay func-
tion), 599

GLUT_RGB constant
(glutInitDisplay func-
tion), 599

GNU
autoconf, 66

annotated autoconf script,

77-83

configure scripts, 67-69

generic macros, 76-77

predefined tests, 69-75

utilities, 69

C extensions, 49-51
gcc, 40

code optimization, 47

command-line options,

43-44, 688

debugging, 48-49

error checking/warnings,

45-46

GNU C extensions, 49-51

library/include files, 44-45

tutorial, 40-42

gdb (Debugger)
breakpoints, 694-695

call stack, navigating,

699-701

code, examining/changing,

691-692, 695-697

commands, 692-702

compiling for, 688

examining data, 692-694

processes, attaching to,

702-703

shell communication, 701

source files, finding, 701

starting, 689-691

variable scope/context,

698-699

GPL (General Public
License), 739-740

LGPL (Library General
Public License), 740-741

make utility
advantages, 54

command-line options,

61-62

comments, 61

debugging, 62

error messages, 63

explicit rules, 56-60

implicit rules, 60-61

makefiles, 54-56

pattern rules, 61

targets, 56-57, 63-64

GPL (GNU General Public
License), 739-740

graphics
AGP (Accelerated

Graphics Port), 21
AWT (Abstract

Windowing Toolkit), 580
AWTsample.java sample

program, 581-582

ChatAWT.java sample

program, 583-586

classes, 580

GGI (General Graphics
Interface), 20

JFC (Java Foundation
Classes), 586-587

ChatJFC.java sample

application, 590-593

JFCsample.java sample

application, 588-590

Mesa, 596

OpenGL, 20, 596-597. See
also orbits.c application

3D objects, 599-600

animation, 603-604

depth tests, 603

event handling, 603

material properties,

602-603

rotating objects, 601-602

Web site, 606

windows, 598-599

X-Y-Z coordinates,

600-601

SVGAlib, 20
X Window systems,

469-471
Xfree86, 19

groff command, 725-726
groupids, 653-654
GTK widgets (Gimp Tool

Kit)
copyrights, 520-521
Draw, 539-542
event handling, 522-523
functions, 524
GtkMisc structure, 522
GtkWidget data type,

521-522
Notebook

defined, 527

notebook.c sample pro-

gram, 537-542

Paned Window, 527
simple.c sample applica-

tion
do_click function, 523

main function, 524-526

Tool Bar, 527
XMLviewer display pro-

gram, 530-537
GtkMisc structure, 522

4972316072 Index 7/26/99 2:31 PM Page 793

GtkWidget data type
794

GtkWidget data type,
521-522

gtk_button_new_with_
label function, 524

gtk_container_add func-
tion, 524

gtk_container_border_
width function, 524

gtk_init function, 524
gtk_main function, 524
gtk_signal_connect

function, 524
gtk_widget_show func-

tion, 524
gtk_window_new func-

tion, 524

H
handleElementData func-

tion, 531
handling errors. See error

handling
hard drives, 29
hard links, 664
hardware

CD-ROM drives, 29-30
choosing, 14-15
digital cameras, 32
hard drives, 29
Hardware Compatibility

HOWTO, 14
home automation, 33
IRDA (Infrared Data

Association), 28
ISA Plug and Play, 28
keyboards, 23-24
laptops, 34
modems, 24-26
monitors, 22-23

motherboards
AT, 15

ATX, 16

BIOS (Basic Input/Output

System), 18

enclosures, 18-19

memory, 18

onboard I/O (input/out-

put), 16

power supplies, 18-19

processors, 17-18

mouse devices, 23-24
NICs (network interface

cards), 26
PCMCIA cards, 28
preinstalled Linux systems,

33
printers, 30-31
removable disks, 29
scanners, 32
SCSI (small computer

systems interface)
controllers, 27

serial cards, 27-28
sound cards, 23, 159
tape drives, 30, 155-158
USB support, 27
video cards, 19-22

Hardware Compatibility
HOWTO, 14

hash functions, 682
hash sign (#), 61
has_colors function, 455
header file tests (auto-

conf), 71-72
header files

custom Athena widgets
private headers, 502-503

public headers, 501-502

kernel device driver
ring.c, 378-382

ring.h, 377-378

stepper.h, 377

spec files, 715
$Header$ keyword (RCS),

109
heap, 250
heat sinks, 366
hello.c program (gcc

demonstration), 40-41
help. See documentation
hijacking, 678
history of

Emacs, 116
Linux, 9
ncurses, 434-435

hline function, 447
home automation, 33
Horton, Mark, 434
HTML (Hypertext Markup

Language), 528
form submission, 677
server includes, 679

<htmlurl> tag (SGML),
732

HUPCL flag (termios
interface), 414

-H|-speed-large-files
option (diff command),
94

I
-i option (make com-

mand), 62
I/O (input/output)

bash (Bourne Again Shell)
redirectors, 629-630

string I/O, 631-633

BIOS (Basic Input/Output
System), 18

file descriptors, 253

4972316072 Index 7/26/99 2:31 PM Page 794

insl function
795

defined, 138

file types, 152-154

file types, 152-154
formatted input, 168
formatted output

printf function, 165-166

snprintf function, 165

vfprintf function, 167

vprintf function, 166-168

vsprintf function, 167

xprintf function, 167

functions, 138
close, 140

dup, 143-144

dup2, 143-144

fchdir, 151

fchmod, 150-151

fchown, 149-150

fcntl, 141-142

flock, 151-152

fstat, 149

fsync, 142

ftruncate, 142

ioctl, 141

lseek, 143

open, 139

pipe, 152

read, 140

select, 144-147, 149

write, 140-141

line-based, 169-170
low-level port I/O,

370-372
non-blocking socket I/O

listening for broadcasts,

328-329

program variables,

326-327

sample output, 329-330

socket creation, 327-328

printer ports, 158-159

serial ports, 158
sound cards, 159
tape drives, 155-158

ICANON flag (termios
interface), 414

ICRNL flag (termios inter-
face), 414

Id keyword (RCS),
107-108

ident command (RCS),
109-110

identd daemon, 674-675
identifiers, 653-654
-Idirname option

gcc command, 43
make command, 62

<idx> tag (SGML), 732
if statement, 619-623
igmp file, 225
IGNBRK flag (termios

interface), 414
IGNCR flag (termios

interface), 414
Illegal option error

message, 63
implicit rules (makefiles),

60-61
importing Java packages,

565
inb function, 371
inb_p function, 371
include files, 44-45
incrementing semaphore

values, 291
indenting text, 125
independent windows,

437
indeterminate loops

until, 625
while, 624-625

info breakpoints com-
mand (gdb), 695

Infrared Data Association
(IRDA), 28

inheritance, 174-175
inheritsched attribute

(threads), 187
inhibit-default-init com-

mand (Emacs), 130
initcurs.c application

(ncurses initialization),
441

Initialize function, 505
initializing

ncurses
initialization functions,

439

sample program, 441

terminfo interface, 424
initscr function, 439
init_module function,

401-404
init_pair function, 457
INLCR flag (termios inter-

face), 414
inline functions, 49
input routines (ncurses)

getch, 452
getnstr, 452
getstr, 452
sample programs

cursinch.c, 453-454

cursqstr.c, 454-455

scanw, 453
vwscanw, 453

input/output. See I/O
insb function, 371
insch function, 444
insert function, 134
insl function, 371

4972316072 Index 7/26/99 2:31 PM Page 795

install command
796

install command
examples, 711-713
options, 711

install scripts (spec files),
716

install section (spec files),
716

install targets (makefiles),
63

installing Red hat Linux,
34-38

interfaces, dl
dlclose function, 356
dlerror function, 356
dlopen function, 355-356
dlsym function, 356
example, 357-358

Interprocess
Communication. See IPC

interrupts
initiating, 372-373
interrupts file, 222

ioctl function, 141
iopl function, 370
ioports file, 222
IP (Internet Protocol) mul-

ticasts
getsockopt function,

319-320
Linux configuration,

318-319
listening for broadcasts,

321-323
sending broadcasts,

320-321
setsockopt function,

319-320
IPC (Interprocess

Communication),
270-271

message queues
closing, 278

creating, 276-277

reading from/writing to,

277-279

multicast sockets
getsockopt function,

319-320

Linux configuration,

318-319

listening for broadcasts,

321-323

sending broadcasts,

320-321

setsockopt function,

319-320

pipes
named, 273-274

unnamed, 271-272

security, 673-674
semaphores

accessing, 290

creating, 288-290

deadlock, 288

decrementing value of, 291

defined, 288

deleting, 291

incrementing value of, 291

printing values, 290

sample program, 293-294

shared memory. See also
shared_mem.c program

allocating, 283

configuring, 282-284

opening, 283

reading/writing, 284-286

releasing, 284

semaphores, 285

TCP (Transmission
Control Protocol)

advantages, 312

binding sockets, 297-298

client/server examples,

301-309

connecting sockets, 299

functions, 296-300

listening for messages, 298

receiving messages,

299-300

sending messages, 300

UDP (User Data Protocol),
312-316

receiving data, 314-315

sending data, 313-314

ipcrm utility, 279, 286
ipcs utility, 279, 286
IPC_CREAT flag (msgget

function), 276
IPC_NOWAIT flag (msgrcv

function), 277
IP_ADD_MEMBERSHIP

option (multicast IP),
320

IP_DROP_MEMBERSHIP
option (multicast IP),
320

ip_masquerade file, 225
ip_masq_app file, 225
IP_MULTICAST_LOOP

option (multicast IP),
320

IP_MULTICAST_TTL option
(multicast IP), 320

IRDA (Infrared Data
Association), 28

ISA Plug and Play, 28
ISIG flag (termios inter-

face), 414
<itemize> tag (SGML),

732
item_signal_callback func-

tion, 531
-i|-ignore-case option

(diff command), 94

4972316072 Index 7/26/99 2:31 PM Page 796

libraries
797

J
Java, 560-561

applications
compiling, 564

developing, 594

AWT (Abstract
Windowing Toolkit)

AWTsample.java sample

program, 581-582

ChatAWT.java sample

program, 583-586

classes, 580

chat engine application
ChatEngine.java, 576-579

ChatListener.java, 575

methods, 579

classes
Car.java example, 561-562

defining, 562-564

compilers, 594
files, reading/writing

FileIO class, 566-567

ReadFile.java, 569

WriteFile.java, 568

JFC (Java Foundation
Classes), 586-587

ChatJFC.java sample

application, 590-593

JFCsample.java sample

application, 588-590

multithreading, 569-571
packages, 564-566
socket programming,

571-575
Web site, 560

javac compiler, 564
Jbutton class, 587
JEditorPane class, 587
JFC (Java Foundation

Classes), 586-587

ChatJFC.java sample
application, 590-593

JFCsample.java sample
application, 588-590

JFrame class, 587
Jlabel class, 587
Jlistclass, 587
-jN option (make com-

mand), 62
joining broadcast groups,

322
JPanel class, 587
JScrollPane class, 587
JTabbedPane class, 587
JTextArea class, 587
JTextPane class, 587

K
-k option (make com-

mand), 62
kcore file, 222
kernel-level device dri-

vers. See device drivers
/kernel files, 226
keyboard macros. See

macros
keyboard shortcuts, 119
keyboards, 23-24
keywords (RCS)

$Author$, 109
$Date$, 109
$Header$, 109
Id, 107-108
$Locker$, 109
Log, 108
$Name$, 109
$RCSfile$, 109
$Revision$, 109
$Source$, 109
$State$, 109
locating, 109-110

Khattra, Taj, 260
killchar function, 459
kmsg file, 222
ksyms file, 223

L
-l option

ci command, 107
rcslean command, 113

-L option (gcc command),
44

Label class, 513-514
Label widgets

Athena, 480-481
Motif, 492-494

laptops, 34
LCLint, 264-265
ldconfig command, 346
ldd command, 345
LDFLAGS variable (make-

files), 60
-LDIRNAME option (gcc

command), 43
leased line modems, 24
length function, 133
LessTif Motif, 491. See

also Motif widgets
-lFOO option (gcc com-

mand), 43
LGPL (GNU Library

General Public License),
740-741

libc5, 342-343
libc6, 342-343
libproc library, 227
libraries

Athena widgets, encapsu-
lating, 508-510

Button class, 514-515

Component class, 510-511

4972316072 Index 7/26/99 2:31 PM Page 797

libraries
798

Label class, 513-514

PanedWindow class,

511-513

Text class, 515-517

configuration files, 346
environment variables, 346
gcc compiler, 44-45
libc5, 342-343
libc6, 342-343
libproc, 227
Qt, 544-545

QWidget class, 545-550

signals/slots, 550-557

security, 655
shared, 361

advantages, 352

compatibility issues, 353

creating, 353-354

loading dynamically at

runtime, 354-356

sonames, 352

unloading, 356

standard library, 234-238
static

creating, 350

referencing, 346-349

testing, 350-352

SVGAlib, 20
tools

ar command, 344-345

ldconfig command, 346

ldd command, 345

nm command, 343-344

X Toolkit
widget arguments,

476-477

widget initialization, 475

Xlib
display pointers, 466

drawing functions,

470-471

event handling, 468-469

graphics initialization,

469-470

online resources, 466

sample program, 471-474

window management,

466-468

library function tests
(autoconf), 70-71

Library General Public
License. See LGPL

licenses
Artistic License, 738
BSD style, 737-738
choosing, 744
GPL (GNU General Public

License), 739-740
LGPL (GNU Library

General Public License),
740-741

MIT/X style, 736-737
Open Source Definition,

741-743
line-based input/output,

169-170
LINE macro, 232-234
links

hard, 664
symbolic, 660-672

lint program (LCLint),
264-265

Lisp (Emacs Lisp), 132-134
list command (gdb), 692
List widgets

Athena, 484-486
Motif, 494-496

listen function, 298
listen.c program multicast

broadcasts), 321
code listings, 322-323
output, 323-324

listening for
broadcasts, 321-323
messages, 298

lists
Athena List widget,

484-486
Motif List widget, 494-496

-l|-ignore-white-space
option (patch com-
mand), 99

-l|-paginate option (diff
command), 94

loadable kernel modules,
360

loadavg file, 223
loading

device driver example,
406-407

shared objects, 354-355
dlerror function, 356

dlopen function, 355-356

dlsym function, 356

example, 357-358

locating keywords,
109-110

$Locker$ keyword (RCS),
109

locks
memory, 255
RCS (Revision Control

System), 105
locks file, 223
log files

syslogd
facility names, 240

logger interface, 243-244

logging levels, 239

openlog() options, 241-242

priority masks, 242-243

installation logs, 34, 36-37

4972316072 Index 7/26/99 2:31 PM Page 798

make_draw_widget function
799

Log keyword (RCS), 108
log messages (RCS), 113
logger interface, 243-244
logout function, 579
LOG_ALERT logging level,

239
LOG_AUTHPRIV facility,

240
LOG_CONS option (open-

log function), 241
LOG_CRIT logging level,

239
LOG_CRON facility, 240
LOG_DAEMON facility,

240
LOG_DEBUG logging

level, 239
LOG_EMERG logging

level, 239
LOG_ERR logging level,

239
LOG_INFO logging level,

239
LOG_KERN facility, 240
LOG_LOCAL facility, 240
LOG_LPR facility, 240
LOG_MAIL facility, 240
LOG_NDELAY option

(openlog function), 241
LOG_NEWS facility, 240
LOG_NOTICE logging

level, 239
LOG_PERROR option

(openlog function), 241
LOG_PID option (openlog

function), 241
LOG_SYSLOG facility, 240
LOG_USER facility, 240
LOG_UUCP facility, 240
LOG_WARNING logging

level, 239

long long data type, 49
longname function, 459
loops. See also state-

ments
for, 624
until, 625
while, 624-625

lseek function, 143
Lucid Emacs (XEmacs),

117

M
-m option (install com-

mand), 711
macros. See also func-

tions
autodef

AC_INIT, 67

AC_OUTPUT, 67

alternative program tests,

69-70

compiler behavior tests,

73-74

generic macros, 76-77

header file tests, 71-72

library function tests,

70-71

structure tests, 72-73

system services tests, 74

typedef tests, 73

UNIX variant tests, 75

Emacs, 132
FILE, 232-234
LINE, 232-234
SIGNAL, 555
ST_DESCRIPTION, 748
ST_IDENTIFIER, 748
ST_OFFSET, 748

ST_SIZEOF, 749
ST_TYPE, 749

Mail User Agents (MUAs),
641

main function, 758-762
device driver example,

405
XMLviewer, 534

make utility
advantages, 54
command-line options,

61-62
comments, 61
debugging, 62
error messages, 63
explicit rules

automatic variables, 59-60

phony targets, 56-57

user-defined variables,

57-59

implicit rules, 60-61
makefiles, 54-56
pattern rules, 61
targets, 63-64

dist, 63

install, 63

phony targets, 56-57

tags, 63

uninstall, 63

makefiles
comments, 61
device driver example,

406
rules

explicit, 56-60

implicit, 60-61

pattern, 61

writing, 54-56
make_draw_widget func-

tion, 539-541

4972316072 Index 7/26/99 2:31 PM Page 799

malloc function
800

malloc function, 248
“man in the middle”

attacks, 678
man (manual) pages

components, 722-723
conventions, 726-727
example, 723-725
groff command, 725-726
pipe resources, 273

mapping windows, 467
maps file, 220
Massachusetts Institute

of Technology (MIT)
licenses, 736-737

material properties
(OpenGL), 602-603

mcheck function, 261-262
mdstat file, 223
meminfo file, 223
memory, 18

allocating
alloca function, 250-252

calloc function, 249

malloc function, 248

realloc function, 249

security, 676

DMA (Direct Memory
Access), 373-374

heap, 250
memory mapped files

advantages, 252

creating, 252-254

locking, 255

private, 253

protections, 254-255

resizing, 255

sample implementation,

256-257

shared, 253

unmapping, 254

writing to disk, 254

pointers
dangling, 250

smart, 755

releasing, 250
shared. See also

shared_mem.c program
allocating, 283

configuring, 282-284

opening, 283

reading/writing, 284-286

releasing, 284

semaphores, 285

troubleshooting, 257
Electric Fence, 262-264

LCLint, 264-265

mpr package, 260-262

sample program, 258-259

menus
Menu Button widget, 489
Simple Menu widget,

489-491
merging files

RCS (Revision Control
System) files, 114

sdiff command, 98
Mesa, 20, 596
messages

queues
closing, 278

creating, 276-277

reading from/writing to,

277-279

receiving, 314-315
sending, 313-314

message_q.c program
(message queues)

data structures, 277
functions

ftok, 276

msgctl, 278

msgget, 276

msgrcv, 277

msgsnd, 277

running, 278-279
methods. See functions
Metro Link Motif. See

Motif widgets
misc file, 223
MIT/X-style licenses,

736-737
mknod utility, 273
mlock function, 255
mlockall function, 255
-MM option (gcc com-

mand), 44
mmap function, 252-254,

283-284
moc utility, 544, 550, 554
modems, 24-26
modes (file), 150-151, 163
modules file, 224
monitors, 22-23
motherboards

AT, 15
ATX, 16
BIOS (Basic Input/Output

System), 18
enclosures, 18-19
memory, 18
onboard I/O (input/output),

16
power supplies, 18-19
processors, 17-18

Motif widgets, 491-492
C++ programs, 507-508
Label, 492-494
List, 494-496
Text, 496-498

motion_notify_event
function, 540

mounts file, 224
mouse devices, 23-24

4972316072 Index 7/26/99 2:31 PM Page 800

ncurses
801

mouseMoveEvent func-
tion, 549

mousePressEvent func-
tion, 549

move function, 438
move_one_step function,

386
mpr package

badmem.log file, 260
functions

mcheck, 261-262

mprlk, 261

obtaining, 260
mprlk function, 261
mprotect function,

254-255
mremap function, 255
msgbuf structure, 277
msgctl function, 278
msgget function, 276
msgrcv function, 277
msgsnd function, 277
msync function, 254
MUAs (Mail User Agents),

641
multicast sockets

getsockopt function,
319-320

Linux configuration,
318-319

listening for broadcasts,
321-323

sending broadcasts,
320-321

setsockopt function,
319-320

multiport serial cards,
27-28

multithreading, 569-571
munlock function, 255
munlockall function, 255

munmap function, 254,
284

mutexes, 190-191
mvaddch function, 443
mvaddchnstr function,

446
mvwaddch function, 443
mvwaddchnstr function,

446

N
-n option (make com-

mand), 62
$Name$ keyword (RCS),

109
NAME section (man

pages), 722
named pipes, 273-274
names

capnames, 423-424
sonames, 352
filenames

renaming files, 171

security, 659-660

man pages, 726
ncurses functions, 438-439

navigating
call stack, 699-701
Emacs, 119

ncurses, 434
color routines, 455-457
compiling programs with,

435
curscr data structure, 436
cursors, 436
debugging, 435
functions

baudrate, 459

cursutil.c sample program,

459-461

erasechar, 459

getbegyx, 459

getparyx, 459

getwin, 458

getyx, 459

killchar, 459

longname, 459

naming conventions,

438-439

putwin, 458

scr_dump, 458

scr_restore, 458

termname, 459

history of, 434-435
initializing

initialization functions,

439

sample program, 441

input routines
getch, 452

getnstr, 452

getstr, 452

sample programs, 453-455

scanw, 453

vwcanw, 453

output routines
character functions,

443-445, 448-449

drawing functions,

446-447, 450-451

screen-clearing functions,

448

string functions, 445-446,

449-450

screens, 436
stdscr data structure, 436
terminating

sample program, 441-442

termination functions, 440

windows
defined, 436

design, 436-437

4972316072 Index 7/26/99 2:31 PM Page 801

ncurses
802

independent, 437

managing, 458

subwindows, 437

net subdirectory, 225
net/core/ files, 226
net/ipv4 files, 227
Netwinder systems, 33
network interface cards

(NICs), 26
newterm function, 439
newterm.c application

(ncurses termination),
442

newwin function, 437,
458

new_getcaps.c applica-
tion (terminfo interface),
428-430

next command (gdb), 697
nice function, 184
NICs (network interface

cards), 26
Nirvis Web site, 33
nm command, 343-344
No rule to make target

error message, 63
noecho.c application,

418-419
non-blocking socket I/O

(input/output)
listening for broadcasts,

328-329
program variables,

326-327
sample output, 329-330
socket creation, 327-328

Notebook widget
defined, 527
notebook.c sample

program
implementing, 537-539

running, 542

notebook.c application
(Notebook widget)

implementing, 537-539
running, 542

-n|-normal option (patch
command), 99

O
-o option

gcc command, 43, 47
install command, 711

objects. See also graphics;
widgets

semaphores
accessing, 290

creating, 288-290

deadlock, 288

decrementing value of, 291

defined, 288

deleting, 291

incrementing value of, 291

printing values, 290

sample program, 293-294

shared
loading dynamically,

354-356

unloading, 356

OCRNL flag (termios
interface), 414

-ON option (gcc com-
mand), 43

ONLCR flag (termios
interface), 414

ONLRET flag (termios
interface), 414

open function, 139, 283
Open Source Definition,

741-743
Open Source

Organization, 741

OpenGL, 20, 596-597. See
also orbits.c application

3D objects, 599-600
animation, 603-604
depth tests, 603
event handling, 603
material properties,

602-603
rotating objects, 601-602
Web site, 606
windows, 598-599
X-Y-Z coordinates,

600-601
opening

files
Emacs, 123

fdopen function, 164

fopen function, 163

freopen function, 163

modes, 163

open function, 139

temporary files, 171

shared memory, 283
OpenLinux, 9
openlog function, 241-242
operators

file test operators, 621-622
pattern-matching operators,

617-619
string operators, 615-617

optimizing code, 47
OPTIONS section (man

pages), 722
orbits.c application

(OpenGL), 597-598
3D objects, 599-600
animation, 603-604
code listing, 604-606
depth tests, 603
event handling, 603
material properties,

602-603

4972316072 Index 7/26/99 2:31 PM Page 802

print command (gdb)
803

rotating objects, 601-602
windows, 598-599
X-Y-Z coordinates,

600-601
outb function, 371
outb_p function, 371
output routines (ncurses)

character functions,
443-445, 448-449

drawing functions,
446-447, 450-451

screen-clearing functions,
448

string functions, 445-446,
449-450

outs function, 371
outsl function, 371
ownership of files,

149-150

P
-p option

gcc command, 48
ldconfig command, 346
rcsmerge command, 114

package management
Java packages, 564-566
install command, 711-713
RPM (Red Hat Package

Manager)
configuring, 714-715

mimimum requirements,

713-714

packages, building, 719

spec files, 715-719

tar files, 708
creating, 709-710

listing contents of, 710

updating, 710

Package Manager. See
RPM

PAMs (pluggable authen-
tication modules),
680-681

Paned Window widget,
527

PanedWindow class,
511-513

parallel ports
bidirectional mode, 367
hardware interfaces, 368
programming interfaces,

367
stepper motor driver con-

nections, 368-369
parameterized strings,

427
parsers, Expat, 529-530
passwords, 658-659
patch command, 98-100
patches, 98-100
pattern rules (makefiles),

61
pattern-matching opera-

tors, 617-619
Paul, Brian, 596
pci file, 224
PCMCIA cards, 28
-pedantic option (gcc

command), 43, 46
-pedantic-errors option

(gcc command), 43, 46
percent sign (%), 61
Perens, Bruce, 262
peripherals

keyboards, 23-24
mouse devices, 23-24

perror function, 238, 274
Pfeifer, Juergen, 434

-pg option (gcc com-
mand), 48

phony targets (makefiles),
56-57

pipe function, 152, 271
pipes

named, 273-274
unnamed, 271-272

Plug and Play, 28
pluggable authentication

modules (PAMs),
680-681

-pNUM|-strip=NUM option
(patch command), 99

pointers
dangling, 250
smart, 755

popen function, 177
ports, 349

AGP (Accelerated
Graphics Port), 21

bidirectional mode, 349
hardware interfaces, 350
printer ports, 158-159
programming interfaces,

349
serial ports, 158
stepper motor driver con-

nections, 350-351
positioning files, 170
POSIX, 677
power supplies, 18-19
predefined variables,

59-60
preforked servers, 679
prep section (spec files),

715
preprocessor, error han-

dling, 232-234
print command (gdb),

692-693

4972316072 Index 7/26/99 2:31 PM Page 803

printer ports
804

printer ports, 158-159
printers, 30-31
printf function, 165-166
printing

formatted output
printf function, 165-166

snprintf function, 165

vfprintf function, 167

vprintf function, 166-168

vsprintf function, 167

xprintf function, 167

RCS (Revision Control
System) log messages,
113

semaphore values, 290
printk function, 375
priority masks, 242-243
private mapping, 253
privileged usermode pro-

grams, 362
problems. See trou-

bleshooting
/proc files, 216

cmdline, 217, 221
cpuinfo, 221
cwd symbolic link, 220
devices, 221
dma, 222
environ, 217
exe symbolic link, 220
fd, 218
filesystems, 222
interrupts, 222
ioports, 222
kcore, 222
kmsg, 222
ksyms, 223
loadavg, 223
locks, 223
maps, 220
mdstat, 223
mem, 218

meminfo, 223
misc, 223
modules, 224
mounts, 224
net subdirectory, 225
pci, 224
root symbolic link, 221
rtc, 224
scsi subdirectory, 226
stat, 218-220, 224
statm, 221
status, 220
sys subdirectory, 226-227
uptime, 224
version, 225

process control
alarms/timers, 182-183
attributes, 174-175
child library sample pro-

gram, 191-192
child.c, 194-204

child.h, 192-194

child_demo1.c demon-

stration, 204-207

child_demo2.c demonstra-

tion, 207-213

child_demo3.c demonstra-

tion, 213-214

mutexes, 190-191
program termination, 181
scheduling parameters,

183-184
signals, 178-180
system calls/library fun-

tions, 175
clone, 177

execve, 176

fork, 175-176

popen, 177

select, 178

sigsuspend, 180

system, 177

vfork, 176

wait, 178

wait3, 178

wait4, 178

waitdpid, 178

threads, 184-185
attribute manipulation,

186-188

cancelling, 188-189

cleanup, 189

creating, 185

handlers, 188

suspending, 186, 189-190

terminating, 185

process information,
accessing

cmdline file, 217
cwd symbolic link, 220
environ file, 217
exe symbolic link, 220
fd directory, 218
maps file, 220
mem file, 218
root symbolic link, 221
stat file, 218-220
statm file, 221
status file, 220

processors, 17-18
programming libraries.

See libraries
programs. See applica-

tions; tools
prologue (kernel device

driver), 382-384
protocols

CGI (Common Gateway
Interface), 641

IP (Internet Protocol) mul-
ticasts

getsockopt function,

319-320

4972316072 Index 7/26/99 2:31 PM Page 804

qtk_widget_draw function
805

Linux configuration,

318-319

listening for broadcasts,

321-323

sending broadcasts,

320-321

setsockopt function,

319-320

TCP (Transmission
Control Protocol)
sockets, 296

advantages, 312

binding, 297-298

client/server examples,

301-309, 332-340

connecting, 299

functions, 296-300

listening for messages, 298

receiving messages,

299-300

security, 675

sending messages, 300

UDP (User Data Protocol),
312-316

receiving messages,

314-315

security, 675

sending messages,

313-314

pthreads. See threads
pthread_atfork function,

188
pthread_attr_destroy

function, 186
pthread_attr_init func-

tion, 186
pthread_cancel function,

188-189
pthread_cleanup_pop

function, 189

pthread_cleanup_push
function, 189

pthread_cond_broadcast
function, 190

pthread_cond_destroy
function, 190

pthread_cond_init
function, 189-190

pthread_cond_int func-
tion, 190

pthread_cond_signal
function, 190

pthread_cond_wait
function, 190

pthread_create function,
185

pthread_equal function,
190

pthread_exit function,
185

pthread_getschedparam
function, 187

pthread_join function,
186

pthread_mutex_destroy
function, 191

pthread_mutex_init func-
tion, 191

pthread_mutex_lock
function, 191

pthread_mutex_trylock
function, 191

pthread_mutex_unlock
function, 191

pthread_setschedparam
function, 187

ptype command (gdb),
696

public licenses. See
licenses

putp function, 427

putwin function, 458
-p|-show-c-function

option (diff command),
94

Q
-q option

ar command, 344
gdb command, 690

QApplication class, 547
QIC (Quarter Inch

Cartridge) drives, 155
QPainter class, 547
QSize class, 546
Qt library, 544-545

QWidget class
DrawWidget derived class,

547-550

event-handling methods,

545-547

signals/slots, 550-557
StateLCDWidget class

example, 551-554

UpDownWidget class

example, 554-556

qtk_container_border_
width function, 535

qtk_drawing_area_size
function, 542

qtk_main function, 522
qtk_main_quit function,

535
qtk_signal_connect

function, 522-523
qtk_tree_new function,

535
qtk_widget_draw func-

tion, 540

4972316072 Index 7/26/99 2:31 PM Page 805

qtk_widget_set_events function
806

qtk_widget_set_events
function, 542

qtk_widget_set_usize
function, 534

Quarter Inch Cartridge
(QIC) drives, 155

question mark (?), 610
queues

closing, 278
creating, 276-277
reading from/writing to,

277-279
QWidget class

DrawWidget derived class
implementing, 547-549

testing, 549-550

event-handling methods,
545-547

-q|-brief option (diff com-
mand), 94

R
-r option

ar command, 344
ci command, 107
co command, 107
ldd command, 345
make command, 62
tar command, 708

-R option (rcslean com-
mand), 113

raise function, 179
Ramey, Chet, 610
rand function, 657-658
random number genera-

tors, 657-658
raw file, 225
Raymond, Eric, 434

RCS (Revision Control
System)

commands
ci, 105-107

co, 105-107

ident, 109-110

rcs, 114

rcsclean, 113

rcsdiff, 110-113

rcsmerge, 114

rlog, 113

files
checking in/out, 105-107

comparing, 110-113

keywords, 107
$Author$, 109

$Date$, 109

$Header$, 109

Id, 107-108

$Locker$, 109

Log, 108

$Name$, 109

$RCSfile$, 109

$Revision$, 109

$Source$, 109

$State$, 109

locating, 109-110

log messages, printing, 113
merging revisions, 114
terminology, 104-105

rcs command (RCS), 114
rcsclean command (RCS),

113
rcsdiff command (RCS),

110-113
$RCSfile$ keyword (RCS),

109
rcsmerge command (RCS),

114
read function, 140
ReadFile.java file, 569

reading
files

fread function, 164

fwrite function, 164

Java, 566-569

read function, 140

formatted input, 168
message queues, 277-279
shared memory, 284-286

readlink function, 663
realloc function, 249
realpath function, 663
receive.c program (UDP),

314-315
receiving messages,

314-315
recursively-expanded

variables, 58
recv function, 299-300
recvfrom function, 315
Red Hat Package

Manager. See RPM
redirectors, 629-630
ReDraw function, 505
<ref> tag (SGML), 732
referencing static

libraries, 346
header files, 347
source code, 348-349

refresh function, 436
registerChatListener

function, 579
releasing memory

free function, 250
shared memory, 284

removable disks, 29
remove function, 171
rename function, 171, 663
renaming files, 171, 663
resizeEvent function, 553

4972316072 Index 7/26/99 2:31 PM Page 806

scr_restore function
807

resizing memory mapped
files, 255

return value command
(gdb), 697

reverse-search command
(gdb), 701

Revision Control System.
See RCS

$Revision$ keyword
(RCS), 109

ring.c file (device driver
example), 378-382

ring.h file (device driver
example), 377-378

rlog command (RCS), 113
RM variable (makefiles),

60
root symbolic link, 221
rotating objects, 601-602
route file, 225
RPM (Red Hat Package

Manager)
configuring, 714-715
minimum requirements,

713-714
packages, building, 719
spec files

build sections, 715

clean sections, 716

example, 716-719

file lists, 716

headers, 715

install sections, 716

install/uninstall scripts,

716

prep sections, 715

verify scripts, 716

rpm command, 719
rtc file, 224
rt_cache file, 225

rules (makefiles)
explicit

automatic variables, 59

phony targets, 56-57

predefined variables,

59-60

user-defined variables,

57-59

implicit, 60-61
pattern, 61

run command (gdb), 690
running programs

message_q.c program
(message queues),
278-279

notebook.c application
(Notebook widget), 542

receive.c program (UDP),
315

security, 655
semaphore.c program

(semaphores), 293-294
send.c program (UDP),

315
shared_mem.c program

(shared memory),
285-286

TCP (Transmission
Control Protocol) socket
client/server, 303-304

XMLviewer, 536-537
-R|-reverse option (patch

command), 99

S
-s option

ar command, 344
make command, 62

SANE package, 32
saving files, 123
scanf function, 168
scanners, 32
scanw function, 453
schedparam attribute

(threads), 187
schedpolicy attribute

(threads), 187
sched_getscheduler

function, 183
sched_setscheduler

function, 183
scope attribute (threads),

188
screen-clearing functions,

448
screen-handling. See

ncurses
screens, 436
scripts. See also applica-

tions; code listings
annotated autoconf script

AC_CANONICAL_HOST

macro, 78

AC_MSG_CHECKING

macro, 80

custom commands, 78

header, 77

makefile, 81-83

multiple line arguments,

79

configure.in
AC_INIT macro, 67

AC_OUTPUT macro, 67

file structure, 68-69

shell scripts, 642-644
spec files, 716
tracemunch, 435

scr_dump function, 458
scr_restore function, 458

4972316072 Index 7/26/99 2:31 PM Page 807

SCSI (small computer systems interface) controllers
808

SCSI (small computer
systems interface) con-
trollers, 27

scsi subdirectory, 226
sdiff command, 98
search command (gdb),

701
searching Emacs, 121-123
<sect> tag (SGML), 729
<sect1> tag (SGML), 729
<sect2> tag (SGML), 729
<sect4> tag (SGML), 729
security, 640

applications, 642
authentication

biometrics, 680

PAMs (pluggable authenti-

cation modules),

680-681

buffer erasure, 677
CGI (Common Gateway

Interface), 641
clients, 641
code issues

buffer overflows, 644-648

chroot() environments, 672

environment variables,

648-650

filenames, 659-660

gethostbyname function,

650

interprocess communica-

tion, 673-674

libraries, 655

POSIX.1e capabilities, 677

program execution, 655

random number genera-

tors, 657-658

security levels, 677

shell scripts, 642-644

signals, 650-652

split programs, 672

symbolic links, 660-672

/tmp races, 655-656

tokens, 658

user input, 644

userids/groupid, 653-654

cryptography, 681-682
algorithms, 682-683

encryption systems,

683-684

vulnerabilities, 684-685

DOS (Denial of Service)
attacks, 656-657

form submission, 677
hijacking, 678
identd daemon, 674-675
“man in the middle”

attacks, 678
memory allocation, 676
MUAs (Mail User Agents),

641
passwords, 658-659
servers, 641, 679
setuid program, 640
snooping, 678
TCP (Transmission

Control Protocol), 675
timeouts, 679
UDP (User Datagram

Protocol), 675
utilities, 641-642

SEE ALSO section (man
pages), 723

seek operations, 390
select function, 144-149,

178
select statement, 626-627
self-configuring software,

creating, 66
annotated autoconf script

AC_CANONICAL_HOST

macro, 78

AC_MSG_CHECKING

macro, 80

custom commands, 78

header, 77

makefile, 81-83

multiple line arguments,

79

configure scripts
AC_INIT macro, 67

AC_OUTPUT macro, 67

file structure, 68-69

generic macros, 76-77
predefined tests

alternative program tests,

69-70

compiler behavior tests,

73-74

header file tests, 71-72

library function tests,

70-71

structure tests, 72-73

system services tests, 74

typedef tests, 73

UNIX variant tests, 75

utilities, 69
semaphore.c program

(semaphores), 288
code listing, 293
functions

semctl, 290-291

semget, 289

semop, 291

output, 293-294
semaphores, 285-288

accessing, 290
creating, 288-290
deadlock, 288
decrementing value of, 291
defined, 288
deleting, 291
incrementing value of, 291
printing values, 290
sample program, 293-294

4972316072 Index 7/26/99 2:31 PM Page 808

shells, bash (Bourne Again Shell)
809

semctl function, 288,
290-291

semget function, 288-289
semop function, 288, 291
send function, 300, 579
send.c program (UDP),

313-315
sending

broadcasts, 320-321
messages

TCP (Transmission

Control Protocol) sock-

ets, 300

UDP(User Data Protocol),

313-314

signals, 179
serial cards, 27-28
serial ports, 158
Server class

design, 334
implementing, 337-339
public/private interfaces,

335
testing, 339

server.c (TCP socket
server), 301-302

browser clients, 304
running, 303-304
socket binding, 301
socket descriptor, 301

servers
security, 641, 679
TCP (Transmission

Control Protocol) socket
examples

server.c, 301-304

web_server.c, 305-309

setBounds function, 582,
589

setbuf function, 171
setcancelstate function,

189

setGeometry function,
556

setitimer function,
182-183

setLabel function, 582,
589

setlogmask function, 242
setpriority function, 184
setrlimit function, 653
setSize function, 582, 589
setsockopt function,

319-320, 327
setText function, 582, 589
setuid programs, 640
setup function, 515-516
setupterm function, 424
setvbuf function, 170
setVisible function, 582,

589
SGML (Standardized

General Markup
Language)

documents
example, 730-731

formatting, 733

nested sections, 729

preamble sections, 728

special characters,

729-730

tags, 731-732
shared libraries, 361

advantages, 352
compatibility issues, 353
creating, 353-354
loading dynamically at

runtime, 354-355
dlerror function, 356

dlopen function, 355-356

dlsym function, 356

example, 357-358

sonames, 352
unloading , 356

shared mapping, 253
shared memory. See also

shared_mem.c program
allocating, 283
configuring, 282-284
opening, 283
reading/writing, 284-286
releasing, 284
semaphores, 285

shared objects
loading dynamically,

354-355
dlerror function, 356

dlopen function, 355-356

dlsym function, 356

example, 357-358

unloading, 356
shared_mem.c program

(shared memory)
code listing, 283
functions

mmap, 283-284

munmap, 284

open, 283

sleep, 284

output, 285-286
shell command (gdb), 701
shells, bash (Bourne

Again Shell), 610
brace expansion, 611
command-line processing,

633-635
flow control

case statement, 625-626

for loops, 624

if statements, 619-623

select statement, 626-627

until loops, 625

while loops, 624-625

I/O (input/output)
redirectors, 629-630

string I/O, 631-633

4972316072 Index 7/26/99 2:31 PM Page 809

shells
810

integer tests, 623
operators

file test operators, 621-622

pattern-matching opera-

tors, 617-619

string operators, 615-617

shell functions, 628-629
shell signal-handling,

635-637
special characters, 612-613
string comparisons, 623
variables

positional parameters,

614-615

predefined, 614

syntax, 613

values, obtaining, 613

wildcards, 610-611
sifinterrupt function, 652
sigaction function, 180
signal function, 179
SIGNAL macro, 555
signals, 178-180

Qt, 550-557
StateLCDWidget class

example, 551-554

UpDownWidget class

example, 554-556

security, 650-652
sending, 179
trapping, 635-637

sigpending function, 180
sigprocmask function, 180
sigreturn function, 180
sigsuspend function, 180
Simple Menu widget

(Athena), 489-491
simple.c application (GTK

example)
do_click function, 523
main function, 524-526

sizing memory mapped
files, 255

sleep function, 182, 284
Slink-e, 33
slots (Qt), 550-557

StateLCDWidget class
example, 551-554

UpDownWidget class
example, 554-556

small computer systems
interface (SCSI) con-
trollers, 27

smart pointers, 755
sniffing, 678
snmp file, 225
snooping, 678
snprintf function, 165
socket function, 297, 327
sockets. See also UDP

(User Data Protocol)
binding, 297-298
Client class

design, 332-333

implementing, 336-337

public/private interfaces,

333-334

testing, 339-340

client/server examples
client.c, 302-304

server.c, 301-304

web_client.c, 307-308

web_server.c, 305-309

connecting, 299
functions, 296

bind, 297-298

connect, 298-299

listen, 298

recv, 299-300

send, 300

socket, 297

Java programming,
571-575

messages
listening for, 298

receiving, 299-300

sending, 300

multicast
getsockopt function,

319-320

Linux configuration,

318-319

listening for broadcasts,

321-323

sending broadcasts,

320-321

setsockopt function,

319-320

non-blocking socket I/O
(input/output)

listening for broadcasts,

328-329

program variables,

326-327

sample output, 329-330

socket creation, 327-328

Server class
design, 334

implementing, 337-339

public/private interfaces,

335

testing, 339

sockstat file, 225
SOCK_DGRAM sockets,

297
SOCK_RAW sockets, 297
SOCK_RDM sockets, 297
SOCK_SEQPACKET sock-

ets, 297
SOCK_STREAM sockets,

297
software licenses. See

licenses

4972316072 Index 7/26/99 2:31 PM Page 810

structure tests
811

software patches, 98-100
software. See tools
sonames, 352
sound cards, 23, 159
$Source$ keyword (RCS),

109
SO_BROADCAST option

(multicast IP), 320
SO_REUSEADDR option

(multicast IP), 320
spec files

build sections, 715
clean sections, 716
example, 716-719
file lists, 716
headers, 715
install sections, 716
install/uninstall scripts,

716
prep sections, 715
verify scripts, 716

spheres (OpenGL), 599
split programs, 672
sscanf function, 168
SSLeay, 683
Stallman, Richard, 116
standard library, error

handling, 234-235
abort function, 235
atexit function, 236-237
errno variable, 235
exit function, 236
perror function, 238
strerror function, 237

Standardized General
Markup Language. See
SGML

startElement function,
531, 533

starting
Emacs, 117
gdb (GNU Debugger),

689-691
start_color function, 456
stat file, 224
$State$ keyword (RCS),

109
StateLCDWidget class,

551-554
stateListening function,

579
statements. See also

loops
case, 625-626
if, 619-623
select, 626-627

statfs function, 663
static libraries

creating, 350
referencing, 346

header files, 347

source code, 348-349

testing, 350-352
static memory allocation,

676
-static option (gcc com-

mand), 43, 45
statically linked device

drivers, 360
statm file, 221
status functions

feof, 164
fileno, 165

status reporting, 385-386
stdscr data structure, 436
step command (gdb), 696
stepper control, 386-389
stepper motors

circuits, 364
electromagnetic coils, 363

heat sinks, 366
parallel port connections,

367-369
power supplies, 366
timing, 366

stepper.h file (device
driver program), 377

stepper_ioctl function,
393-395

stepper_lseek function,
390

stepper_open function,
396-398

stepper_read function,
390-393

stepper_release function,
396-398

stepper_write function,
391-393

sti function, 373
stopping

Emacs, 119
ncurses

sample program, 441-442

termination functions, 440

storage devices
CD-ROM drives, 29-30
hard drives, 29
removable disks, 29
tape drives, 30

strerror function, 237
strings

I/O (input/output), 631-633
ncurses routines, 445-450
operators, 615-617
parameterized, 427

stripping binaries, 236
strsignal function, 180
structure tests (autoconf),

72-73

4972316072 Index 7/26/99 2:31 PM Page 811

structures
812

structures
GtkMisc, 522
msgbuf, 277
XSetWindowAttributes,

467
ST_DESCRIPTION macro,

748
st_find_attribute func-

tion, 758
ST_IDENTIFER macro, 748
st_lookup function, 758
ST_OFFSET macro, 748
st_parse_args function,

757
st_read_stream function,

757
st_set function, 758
st_show function, 756-757
ST_SIZEOF macro, 749
st_tostring function, 758
ST_TYPE macro, 749
st_walk function, 758
submitting forms, 677
subwin function, 437
subwindows, 437
suspending threads, 186,

189-190
SVGAlib, 20
symbol tables. See also

userchange program
basetypes, 747-748
defining

random collection of

variables, 751-753

structure types, 748-750

documentation, 746-747
error reporting, 754-755
execution, 763
functions, 755-758

main, 758-762

st_find_attribute, 758

st_lookup, 758

st_parse_args, 757

st_read_stream, 757

st_set, 758

st_show, 756-757

st_tostring, 758

including in other symbol
tables, 753

smart pointers, 755
symbolic links, 660-672
symlink function, 663
symmetric cipher algo-

rithms, 682
SYNOPOSIS section (man

pages), 722
syntax highlighting, 126
sys subdirectory, 226-227
syslogd

facility names, 240
logger interface, 243-244
logging levels, 239
openlog() options, 241-242
priority masks, 242-243

system calls. See func-
tions

system function, 177,
642-644

system functions. See
functions

system information,
accessing, 216

general system information
cmdline file, 221

cpuinfo file, 221

devices file, 221

dma file, 222

filesystems file, 222

interrupts file, 222

ioports file, 222

kcore file, 222

kmsg file, 222

ksyms file, 223

loadavg file, 223

locks file, 223

mdstat file, 223

meminfo file, 223

misc file, 223

modules file, 224

mounts file, 224

net subdirectory, 225

pci file, 224

rtc file, 224

scsi subdirectory, 226

stat file, 224

sys subdirectory, 226-227

uptime file, 224

version file, 225

process information
cmdline file, 217

cwd symbolic link, 220

environ file, 217

exe symbolic link, 220

fd directory, 218

maps file, 220

mem file, 218

root symbolic link, 221

stat file, 218-220

statm file, 221

status file, 220

system services tests
(autoconf), 74

-s|-quiet option (patch
command), 99

T
-t option (tar command),

708
tables, symbol tables,

746. See also user-
change program

basetypes, 747-748
defining, 748-753
documentation, 746-747

4972316072 Index 7/26/99 2:31 PM Page 812

testing
813

error reporting, 754-755
execution, 763
functions, 755-762
including in other symbol

tables, 753
smart pointers, 755

tags
HTML (Hypertext Markup

Language), 528
SGML (Standard

Generalized Markup
Language), 731-732

tags targets (makefiles),
63

Tape Archiver files. See
tar files

tape drives, 30, 155-158
tar command, 708
tar (Tape Archiver) files,

708
creating, 709-710
listing contents of, 710
updating, 710

targets, 63-64
dist, 63
install, 63
phony targets, 56-57
tags, 63
uninstall, 63

tcdrain function, 416
tcflow function, 417
tcflush function, 416
tcgetattr function, 415
tcgetpgrp function, 417
TCP (Transmission Control

Protocol) sockets
advantages, 312
binding, 297-298
client/server examples,

301-309
Client class, 332-340

Server class, 334-339

connecting, 299
functions, 296-300
listening for messages, 298
receiving messages,

299-300
security, 675
sending messages, 300

tcp file, 225
tcsetattr function, 415
tcsetpgrp function, 417
temporary files

creating, 171-172
opening, 171

termcap database, 422
termcap variables, 649
terminals

character echo feature, dis-
abling, 418-420

modes, 420-422
terminfo interface, 422

capnames, 423-424

characters/arguments, 428

functions, 427

getcaps.c sample program,

425-426

implementing, 424

initializing, 424

new_getcaps.c sample

program, 428-430

parameterized strings, 427

termios interface, 413-414
attribute control functions,

415

flags, 414

line control functions,

416-417

process control functions,

417-418

speed control functions,

415-416

tty interface, 412-413
terminating. See stopping

terminfo interface, 422
capnames, 423-424
characters/arguments, 428
cnew_getcaps.c sample

program, 428-430
functions, 427
getcaps.c sample program,

425-426
implementing, 424
initializing, 424
parameterized strings, 427

termios interface, 413-414
attribute control functions,

415
character echo feature,

disabling, 418-420
flags, 414
line control functions,

416-417
process control functions,

417-418
speed control functions,

415-416
termname function, 459
testing

Athena widgets, 506-507
autodef predefined tests

alternative program tests,

69-70

compiler behavior tests,

73-74

header file tests, 71-72

library function tests,

70-71

structure tests, 72-73

system services tests, 74

typedef tests, 73

UNIX variant tests, 75

Client class, 339-340
DrawWidget class,

549-550

4972316072 Index 7/26/99 2:31 PM Page 813

testing
814

Server class, 339
static libraries, 350-352

text
deleting, 120-121
indenting, 125
inserting, 120
searching, 121, 123
syntax highlighting, 126
widgets

Athena Text widget,

486-489

Motif Text widget, 496-498

Text class, 515-517
Text function, 516
threads, 184-185

attribute manipulation,
186-188

cancelling, 188-189
cleanup, 189
creating, 185
handlers, 188
multithreading, 569-571
suspending, 186, 189-190
terminating, 185

tigetflag function, 424
tigetnum function, 424
tigetstr function, 424
timeouts, 679
timers, 182-183
TITLE tag (HTML), 528
/tmp races, 655-656
tmpfile function, 171
tmpnam function,

171-172
tokens, 658
Tool Bar widget, 527
tools

Electric Fence
environment variables,

263-264

obtaining, 262

output, 262-263

GTK (Gimp Tool Kit)
widgets

copyrights, 520-521

Draw, 539-542

event handling, 522-523

functions, 524

GtkMisc structure, 522

GtkWidget data type,

521-522

Notebook, 527, 537-542

Paned Window, 527

simple.c sample applica-

tion, 523-526

Tool Bar, 527

XMLviewer display

program, 530-537

LCLint, 264-265
mpr package

badmem.log file, 260

functions, 261-262

obtaining, 260

SGML-tools package,
727-728

documents, 728-733

tags, 731-732

Torvalds, Linus, 9
tparm function, 427
tputs function, 427
tracemunch script, 435
-traditional option (gcc

command), 43
trap command, 635-637
trapping signals, 635-637
Troll Tech Qt library. See

Qt library
troubleshooting memory

problems, 257. See also
error handling

Electric Fence, 262-264
LCLint, 264-265
mpr package, 260-262
sample program, 258-259

truncating files, 142
tty interface, 412-413
typedef tests (autoconf),

73
TZ variable, 648
-t|-batch option (patch

command), 99
-t|-expand-tabs option

(diff command), 94

U
-u option

ci command, 107
rcsclean command, 113
tar command, 708

UDP (User Data Protocol),
312-316

messages
receiving, 314-315

sending, 313-314

security, 675
udp file, 225
uninstall scripts (spec

files), 716
uninstall targets, 63
UNIX, 9
unix file, 225
UNIX variant tests (auto-

conf), 75
unloading shared objects,

356
unmapping windows, 467
unnamed pipes, 271-272
unnamed_pipe.c file, 271
until loops, 625
updating tar files, 710
UpDownWidget class,

554-556
uptime file, 224

4972316072 Index 7/26/99 2:31 PM Page 814

wborder function
815

URL.c file (URLWidget),
503-506

URL.h file (URLWidget),
501-502

URLP.h file (URLWidget),
502-503

URLWidget (custom
Athena widget), 498-499

fetch_url function, 499-501
implementing, 503-506
private header file,

502-503
public header file, 501-502
testing, 506-507

User Data Protocol. See
UDP

user-defined variables,
57-59

user-mail-address com-
mand (Emacs), 130

userchange program
(symbol table example),
747

error reporting, 754-755
password structure,

749-750
program options symbol

table, 751-753
userchange_mail function,

758-762
userids, 653-654
usermode test driver,

374-375
users

authentication
biometrics, 680

PAMs (pluggable authenti-

cation modules),

680-681

userids, 653-654
usleep function, 182

utilities. See commands
-u|-U NUM|unified=NUM

option (diff command),
95

-u|-unified option (patch
command), 99

V
-v option

gcc command, 44
ldconfig command, 346
tar command, 708

variables
bash (Bourne Again Shell)

positional parameters,

614-615

predefined variables, 614

syntax, 613

values, obtaining, 613

environment
Electric Fence, 263-264

libraries, 346

security, 648-650

errno, 235
makefiles

automatic, 59

predefined, 59-60

user-defined, 57-59

verbose_outb function,
384-385

verify scripts (spec files),
716

version control
CVS (Concurrent Version

System), 104
RCS (Revision Control

System)
commands, see commands

file comparisons, 110-113

files, checking in/out,

105-107

keywords, 107-110

log messages, printing,

113

merging revisions, 114

terminology, 104-105

version file, 225
-version option

diff command, 95
patch command, 99

vfork function, 176
vfprintf function, 167
video attributes (ncurses),

444
video cards, 19-22
viewers, XMLviewer

implementing, 530-536
running, 536-537

viewing tar files contents,
710

vline function, 447
/vm files, 227
vprintf function, 166-168
vsprintf function, 167
vwscanw function, 453

W
-w option (gcc command),

43
waddch function, 443
waddchnstr function, 446
wait function, 178
wait3 function, 178
wait4 function, 178
waitdpid function, 178
-Wall option (gcc com-

mand), 44
warnings (gcc compiler),

45-46
wborder function,

446-447

4972316072 Index 7/26/99 2:31 PM Page 815

Web sites
816

Web sites
Byterunner, 28
cryptography algorithms,

683
device driver resources,

408
Framebuffer HOWTO, 20
Ghostscript, 30
Hardware Compatibility

HOWTO, 14
LessTif Motif, 491
Mesa, 20, 606
Metro Link Motif, 491
Metrolink, 20
Nirvis, 33
Open Source Definition,

743
Open Source Organization,

741
OpenGL, 606
SANE package, 32
SSLeay, 683
Troll Tech, 544

web_client.c (Web client)
implementing, 307-308
testing, 308-309

web_server.c (Web server)
code listings, 305-307
running, 309
testing, 308-309

-werror option (gcc com-
mand), 44

-Wfile option (make com-
mand), 62

whatis command (gdb),
693

where command (gdb),
700

while loops, 624-625

widgets. See also Qt
library

arguments, 476-477
Athena

C++ class library,

508-517

Command Button, 482-484

custom widgets, 498-507

Label, 480-481

List, 484-486

Simple Menu, 489-491

Text, 486-489

C++ programs, 507-508
defined, 475
GTK (Gimp Tool Kit)

copyrights, 520-521

Draw, 539-542

event handling, 522-523

functions, 524

GtkMisc structure, 522

GtkWidget data type,

521-522

Notebook, 527, 537-542

Paned Window, 527

simple.c sample applica-

tion, 523-526

Tool Bar, 527

XMLviewer display

program, 530-537

initializing, 475
Motif, 491-492

Label, 492-494

List, 494-496

Text, 496-498

wildcards, 610-611
windows. See also

ncurses
defined, 436
design, 436-437
independent, 437

management, 458
subwindows, 437
X Window systems

creating, 466-467

destroying, 468

mapping/unmapping, 467

winsch function, 444
wmove function, 438
working files (RCS), 105
write function, 140-141
WriteFile.java file, 568
writing

files
Java, 566-569

makefiles, 54-56

memory mapped files, 254

write function, 140-141

message queues, 277-279
shared memory, 284-286

-w|-ignore-all-space
option (diff command),
94

X
X coordinates (OpenGL),

600-601
X Toolkit

widget arguments, 476-477
widget initialization, 475

X Window programming,
464-466

X Toolkit
widget arguments,

476-477

widget initialization, 475

Xlib
display pointers, 466

drawing functions,

470-471

4972316072 Index 7/26/99 2:31 PM Page 816

zero knowledge systems
817

event handling, 468-469

graphics initialization,

469-470

online resources, 466

sample program, 471-474

window management,

466-468

Xfree86, 19
X10 system, 33
XCreateGC function, 470
XcreateSimpleWindow

function, 466-467
XcreateWindow function,

466-467
XDestroySubWindows

function, 468
XDestroyWindow func-

tion, 468
XDrawLine function, 470
XDrawRectangle function,

470
XDrawString function,

470
XEmacs (Lucid Emacs),

117
xemacs command, 117
Xfree86, 19
Xlib

display pointers, 466
drawing functions,

470-471
event handling

XNextEvent function, 469

XSelectInput function,

468-469

graphics initialization,
469-470

online resources, 466
sample program

draw_bifurcation function,

474

event handling, 473

main function, 471-472

windows
creating, 466-467

destroying, 468

mapping/unmapping, 467

XLoadQueryFont func-
tion, 469

XML (Extensible Markup
Language), 528

Expat parser, 529-530
test.xml sample file, 529
XMLviewer display

program
implementing, 530-536

running, 536-537

XMLviewer
implementing, 530

endElement function, 531,

534

flow of execution, 536

handleElementData

function, 531

item_signal_callback

function, 531

main function, 534

qtk_container_border_

width function, 535

qtk_main_quit function,

535

qtk_tree_new function, 535

qtk_widget_set_usize func-

tion, 534

startElement function,

531-533

running, 536-537
XNextEvent function, 469
XopenDisplay function,

466
XParseColor function, 470
xprintf function, 167

XSelectInput function,
468-469

XSetWindowAttributes
structure, 467

XtAppInitialize function,
483

XtAppMainLoop function,
481

XtCreateManagedWidget
function, 488

XtDestroyApplicationCont
ext function, 487

XtGetValues function, 477
XtInitialize function, 475
XtRealizeWidget function,

481
XtSetValues function, 476
XtVaCreateManagedWidg

et function, 485
XtVaGetValues function,

486

Y-Z
Y coordinates (OpenGL),

600-601
-y|-side-by-side option

(diff command), 95

Z coordinates (OpenGL),
600-601

-z option (tar command),
708

zero knowledge systems,
683

4972316072 Index 7/26/99 2:31 PM Page 817

818

4972316072 Index 7/26/99 2:31 PM Page 818

When you’re looking for computing information, consult the authority.
The Authoritative Encyclopedia of Computing at mcp.com.

The Authoritative Encyclopedia of Computing

Get the best
information and
learn about latest
developments in:

� Design

� Graphics and
Multimedia

� Enterprise Computing
and DBMS

� General Internet
Information

� Operating Systems

� Networking and
Hardware

� PC and Video Gaming

� Productivity
Applications

� Programming

� Web Programming
and Administration

� Web Publishing

Resource Centers

Books & Software

Personal Bookshelf

WWW Yellow Pages

Online Learning

Special Offers

Site Search
Industry News

� Choose the online ebooks
that you can view from your
personal workspace on our site.

About MCP Site Map Product Support

Turn to the Authoritative
Encyclopedia of Computing

You'll find over 150 full text books online, hundreds of
shareware/freeware applications, online computing classes

and 10 computing resource centers full of expert advice
from the editors and publishers of:

• Adobe Press • Que
• BradyGAMES • Que Education & Training
• Cisco Press • Sams Publishing
• Hayden Books • Waite Group Press
• Lycos Press • Ziff-Davis Press
• New Riders

5072315483 mcp.com ad 7/26/99 2:29 PM Page 819

5072315483 mcp.com ad 7/26/99 2:29 PM Page 820

Maximum RPM
Edward Bailey

ISBN: 0-672-31105-4
$39.99 US /$56.95 CAN

Sams Teach Yourself
GIMP in 24 Hours
Joshua Pruitt and
Ramona Pruitt

ISBN: 0-672-31509-2
$24.99 US /$37.95 CAN

Sams Teach Yourself C
in 21 Days, Fourth Edition
Peter Aitken and
Bradley L. Jones

ISBN: 0-672-31069-4
$29.99 US /$42.95 CAN

Sams Teach Yourself
StarOffice 5 for Linux in
24 Hours
Nicholas Wells

ISBN: 0-672-31412-6
$19.99 US /$29.95 CAN

Sams Teach Yourself
C++ in 21 Days, Third
Edition
Jesse Liberty

ISBN: 0-672-31515-7
$29.99 US / $42.95 CAN

Sams Teach Yourself
TCP/IP Network
Administration in 21
Days
Brian Komar

ISBN: 0-672-31250-6
$29.99 US / $42.95 CAN

Bob Lewis’s IS Survival
Guide
Bob Lewis

ISBN: 0-672-31437-1
$24.99 USA/$37.95 CAN

Maximum Security,
Second Edition
Anonymous

ISBN: 0-672-31341-3
$49.99 US / $71.95 CAN

Sams Teach Yourself
Java 2 Platform in 21
Days, Professional
Reference Edition
Rogers Cadenhead

ISBN: 0-672-31438-X
$49.99 US / $71.95 CAN

www.samspublishing.com

Linux Complete
Command Reference
Red Hat

ISBN: 0-672-31104-6
$49.99 US /$70.95 CAN

Sams Teach Yourself
Samba in 24 Hours
Gerald Carter

ISBN: 0-672-31609-9
$24.99 US /$34.95 CAN

Other Related Titles

All prices are subject to change.

5172316072 othr rel titles 7/27/99 10:32 AM Page 821

Red Hat Linux 6
Unleashed
David Pitts; Bill Ball

ISBN: 0-672-31689-7
$39.99 USA/$59.95 CAN

Other Unleashed Titles

Unleashed

JAVA 1.2 Class Libraries
Unleashed
Krishna Sankar

0-7897-1292-X
$39.99 US/ $57.95 CAN

UNIX Unleashed, System
Administrator’s Edition
Robin Burk et al

0-672-30952-1
$59.99 US / $84.95 CAN

C++ Unleashed
Jesse Liberty

0-672-31239-5
$39.99 US/$57.95 CAN

JFC Unleashed
Michael Foley

0-7897-1466-3
$39.99 US/ $57.95 CAN

HTML 4 Unleashed,
Second Edition
Rick Darnell

0-672-31347-2
$39.99 US/$57.95 CAN

TCP/IP Unleashed
Tim Parker

0-672-30603-4
$55.00 US/ $74.95

COBOL Unleashed
Jon Wessler

0-672-31254-9
49.99 US/$71.95 CAN

Programming Windows
98/NT Unleashed
Viktor Toth

0-672-31353-7
$49.99 US/ $70.95 CAN

Unleashed takes you beyond the average
technology discussions. It’s the best resource
for practical advice from experts and the most
in-depth coverage of the latest information.
Unleashed—the necessary tool for serious users.

www.samspublishing.com

Linux Unleashed,
Third Edition
David Pitts
and Bill Ball

0-672-31372-3
$39.99 US /$57.95 CAN

UNIX Unleashed,
Third Edition
Robin Burk

0-672-31411-8
$49.99 US / $71.95 CAN

THE COMPREHENSIVE SOLUTION

All prices are subject to change.

5272316072 series ad 7/27/99 10:33 AM Page 822

Installing From a DOS Partition
It is possible to install Debian from an already installed DOS partition on the same
machine.

1. Copy the following files into a directory on your DOS partition: resc1440.bin,
drv1440.bin, base2_1.tgz, root.bin, linux, install.bat, and loadlin.exe.

2. Boot into DOS (not Windows) without any drivers being loaded. To do this, you
have to press F8 at exactly the right moment.

3. Execute install.bat from that directory in DOS.

Writing Disk Images From DOS, Windows, or
OS/2
You’ll find the rawrite2.exe program in the same directory as the floppy disk images.
There’s also a rawrite2.txt file containing instructions for using rawrite2.

To write the floppy disk image files to the floppy disks, first make sure that you are boot-
ed into DOS. Many problems have been reported when trying to use rawrite2 from
within a DOS box from within Windows. Double-clicking on rawrite2 from within the
Windows Explorer is also reported to not work. If you don’t know how to boot into
DOS, just hit F8 while booting.

1. Once you’ve booted into plain DOS, use the command rawrite2 -f file
-d drive where file is one of the floppy disk image files, and drive is either ‘a:’
or ‘b:’, depending on which floppy drive you are writing to. You will be using the
resc1440.bin and the root.bin images to set up your boot floppies.

2. Reboot your computer with the boot disk in the A: drive. The install program will
start automatically.

5372316072 Install 7/26/99 2:31 PM Page 823

Installing Debian GNU/Linux 2.1
For Intel x86
Booting the Debian installation system, the first step, can be accomplished with one of
the following media:

A bootable CD-ROM

A boot loader running in another operating system

A boot floppy

Once you’ve booted into Linux, the dbootstrap program will launch and guide you
through the second step, the initial system configuration.

Choosing Your Installation Media
First, choose the media to use to boot the installation system. Next, choose the method
you will use to install the base system.

Installing from a CD-ROM
If you have a CD that is bootable, and if your system supports booting from a CD-ROM,
you don’t need any floppies.

1. Reboot your system. When your system starts up, you should see a message which
indicates a setup program. Usually, you can access this by pressing the Delete or
F2 key. In your boot device options, you should be able to choose which device
should be booted from first.

2. Put Disc 1 into the drive, and exit the BIOS setup program. The install program
will start automatically.

If your hardware does not support bootable CD-ROMs, you should boot into DOS and
execute the boot.bat file, which is located in the \boot directory on Disc 1.

Even if you cannot boot from the CD-ROM, you can install the base Debian system
from the CD-ROM. Simply boot using one of the other installation techniques; when it is
time to install the base system and any additional packages, just point your installation
system at the CD-ROM drive.

5372316072 Install 7/26/99 2:31 PM Page 824

Kurt Wall, Mark Watson, and Mark Whitis

Linux
Programming

Unleashed
201 West 103rd Street, Indianapolis, Indiana 46290

0072316072 FM 7/26/99 1:40 PM Page i

Linux Programming
Unleashed
Copyright © 1999 by Sams

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent lia-
bility is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Neither is any liabili-
ty assumed for damages resulting from the use of the informa-
tion contained herein.

International Standard Book Number: 0-672-31607-2

Library of Congress Catalog Card Number: 98-89984

Printed in the United States of America

First Printing: August 1999

01 00 99 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized.
Sams cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The authors
and the publisher shall have neither liability or responsibility to
any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the
use of the CD or programs accompanying it.

EXECUTIVE EDITORS

Rosemarie Graham
Don Roche

ACQUISITIONS EDITOR

Angela Kozlowski

DEVELOPMENT EDITORS

Scott Warner
Heather Goodell

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Carol Bowers

COPY EDITOR

Kim Cofer

INDEXER

Erika Millen

PROOFREADER

Cindy Fields

TECHNICAL EDITORS

Richard Blum
Michael Hamilton
Jason R. Wright

SOFTWARE

DEVELOPMENT

SPECIALIST

Dan Scherf

INTERIOR DESIGN

Gary Adair

COVER DESIGN

Aren Howell

LAYOUT TECHNICIANS

Brandon Allen
Tim Osborn
Staci Somers

ASSOCIATE PUBLISHER

Michael Stephens

0072316072 FM 7/26/99 1:40 PM Page ii

Overview
Introduction 1

PART I THE LINUX PROGRAMMING TOOLKIT 5
1 Overview 7

2 Setting Up a Development System 13

3 Using GNU cc 39

4 Project Management Using GNU make 53

5 Creating Self-Configuring Software with autoconf 65

6 Comparing and Merging Source Files 85

7 Version Control with RCS 103

8 Creating Programs in Emacs 115

PART II SYSTEM PROGRAMMING 135
9 I/O Routines 137

10 File Manipulation 161

11 Process Control 173

12 Accessing System Information 215

13 Handling Errors 229

14 Memory Management 247

PART III INTERPROCESS COMMUNICATION AND NETWORK PROGRAMMING 267
15 Introduction to IPC: Using Pipes 269

16 Message Queues 275

17 Shared Memory 281

18 Semaphores 287

19 TCP/IP and Socket Programming 295

20 UDP: the User Data Protocol 311

21 Using Multicast Sockets 317

22 Non-blocking Socket I/O 325

23 A C++ Class Library for TCP Sockets 331

24 Using Libraries 341

25 Device Drivers 359

0072316072 FM 7/26/99 1:40 PM Page iii

PART IV PROGRAMMING THE USER INTERFACE 409
26 Terminal Control the Hard Way 411

27 Screen Manipulation with ncurses 433

28 X Window Programming 463

29 Athena and Motif Widgets 479

30 GUI Programming Using GTK 519

31 GUI Programming Using Qt 543

32 GUI Programming Using Java 559

33 OpenGL/Mesa Graphics Programming 595

PART V SPECIAL PROGRAMMING TECHNIQUES 607
34 Shell Programming with GNU bash 609

35 Secure Programming 639

36 Debugging: GNU gdb 687

PART VI FINISHING TOUCHES 705
37 Package Management 707

38 Documentation 721

39 Licensing 735

A A Symbol Table Library 745

B GNU General Public License 765

INDEX 775

0072316072 FM 7/26/99 1:40 PM Page iv

Contents
INTRODUCTION 1

PART I THE LINUX PROGRAMMING TOOLKIT 5

1 Overview 7
The Little OS That Did..8
The Little OS That Will ..8
A Brief History of Linux ..9
Linux and UNIX..9
Programming Linux ..10
Why Linux Programming? ..10
Summary ..11

2 Setting Up a Development System 13
Hardware Selection..14

Considerations for Selecting Hardware..14
Processor/Motherboard ..15

Onboard I/O..16
Processor ..17
BIOS ..18
Memory ..18
Enclosure and Power Supply..18

User Interaction Hardware: Video, Sound, Keyboard, and Mouse19
Video Card..19
Monitor ..22
Sound Cards..23

Keyboard and Mouse ..23
Communication Devices, Ports, and Buses ..24

Modems ..24
Network Interface Cards ..26
SCSI..27
USB and Firewire (IEEE 1394) ..27
Serial Cards (Including Multiport) ..27
IRDA ..28
PCMCIA Cards ..28
ISA Plug and Play ..28

Storage Devices ..29
Hard Disk..29
Removable Disks..29
CD-ROM/DVD ..29
Tape Backup ..30

0072316072 FM 7/26/99 1:40 PM Page v

External Peripherals ..30
Printer ..30
Scanners..32
Digital Cameras ..32
Home Automation ..33

Complete Systems..33
Laptops ..34
Installation..34
Summary ..38

3 Using GNU cc 39
Features of GNU cc ..40
A Short Tutorial ..40
Common Command-line Options..43

Library and Include Files ..44
Error Checking and Warnings ..45

Optimization Options ..47
Debugging Options ..48
GNU C Extensions ..49
Summary ..51

4 Project Management Using GNU make 53
Why make? ..54
Writing Makefiles ..54
More About Rules..56

Phony Targets ..56
Variables ..57
Environment, Automatic, and Predefined Variables59
Implicit Rules ..60
Pattern Rules ..61
Comments ..61

Additional make Command-line Options..61
Debugging make ..62
Common make Error Messages ..63
Useful Makefile Targets ..63
Summary ..64

5 Creating Self-Configuring Software with autoconf 65
Understanding autoconf..66

Building configure.in ..67
Structuring the File ..68
Helpful autoconf Utilities..69

Linux Programming

UNLEASHED
vi

0072316072 FM 7/26/99 1:40 PM Page vi

CONTENTS
vii

Built-In Macros..69
Tests for Alternative Programs ..69
Tests for Library Functions ..70
Tests for Header Files ..71
Tests for Structures ..72
Tests for typedefs..73
Tests of Compiler Behavior..73
Tests for System Services ..74
Tests for UNIX Variants ..75

Generic Macros..76
An Annotated autoconf Script ..77
Summary ..83

6 Comparing and Merging Source Files 85
Comparing Files ..86

Understanding the cmp Command ..86
Understanding the diff Command ..88
Understanding the diff3 Command ..95
Understanding the sdiff Command ..98

Preparing Source Code Patches ..98
patch Command-Line Options ..98
Creating a Patch ..100
Applying a Patch ..100

Summary ..101

7 Version Control with RCS 103
Terminology ..104
Basic RCS Usage ..105

ci and co..105
RCS Keywords ..107
The ident Command ..109

rcsdiff ..110
Other RCS Commands ..113

rcsclean ..113
rlog..113
rcs..114
rcsmerge ..114

Summary ..114

8 Creating Programs in Emacs 115
Introduction to Emacs..116

Starting and Stopping Emacs ..117
Moving Around ..119

0072316072 FM 7/26/99 1:40 PM Page vii

Inserting Text ..120
Deleting Text ..120
Search and Replace ..121
Saving and Opening Files ..123
Multiple Windows ..124

Features Supporting Programming ..125
Indenting Conveniences..125
Syntax Highlighting..126
Using Comments ..126
Compilation Using Emacs..127
Customization in Brief ..130

Automating Emacs with Emacs Lisp ..132
Summary ..134

PART II SYSTEM PROGRAMMING 135

9 I/O Routines 137
File Descriptors..138
Calls That Use File Descriptors ..138

The open() Call ..139
The close() Call ..140
The read() Call ..140
The write() Call ..140
The ioctl() Call ..141
The fcntl() Call ..141
The fsync() Call ..142
The ftruncate() Call..142
The lseek() Call ..143
The dup() and dup2() Calls ..143
The select() Call ..144
The fstat() Call ..149
The fchown() Call ..149
The fchmod() Call ..150
The fchdir() Call ..151
The flock() Call ..151
The pipe() Call ..152

Types of Files ..152
Regular Files ..152
Tape I/O ..155
Serial Port I/O ..158
Printer Port..158
Sound Card ..159

Summary ..159

Linux Programming

UNLEASHED
viii

0072316072 FM 7/26/99 1:40 PM Page viii

10 File Manipulation 161
The File Functions ..162

Opening and Closing Files ..163
Basic Reading and Writing ..164
Status Functions..164

Formatted Output ..165
Formatted Input ..168
Character and Line Based Input and Output..................................169
File Positioning ..170
Buffer Control ..170
Deletion and Renaming ..171
Temporary Files..171

Summary ..172

11 Process Control 173
Attributes..174
System Calls and Library Functions..175

The fork() System Call ..175
The exec() Family..176
The system() and popen() Functions..177
The clone() Function Call ..177
The wait(), waitpid(), wait3(), and wait4()
System Calls ..178
select() ..178
Signals ..178
Program Termination..181
Alarms and Timers ..182

Scheduling Parameters ..183
Threads ..184

The pthread_create() Function ..185
The pthread_exit() Function..185
The pthread_join() Function..186
Attribute Manipulation ..186
The pthread_atfork() Function ..188
Thread Cancellation..188
The pthread_cleanup_push() Macro189
pthread_cond_init()..189
The pthread_equal() Function ..190
Mutexes ..190

Sample Programs ..191
Child Library ..191
The child_demo1.c Program ..204
The child_demo2.c Program ..207
The child_demo3.c Program ..213

Summary ..214

CONTENTS
ix

0072316072 FM 7/26/99 1:40 PM Page ix

12 Accessing System Information 215
Process Info..217

The cmdline File ..217
The environ File ..217
The fd Directory ..218
The mem File ..218
stat..218
The status File ..220
The cwd Symbolic Link ..220
The exe Symbolic Link ..220
The maps File ..220
The root Symbolic Link ..221
The statm File ..221

General System Info ..221
The /proc/cmdline File..221
The /proc/cpuinfo File..221
The /proc/devices File..221
The /proc/dma File ..222
The /proc/filesystems File ..222
The /proc/interrupts File ..222
The /proc/ioports File..222
The /proc/kcore File ..222
The /proc/kmsg File ..222
The /proc/ksyms File ..223
The /proc/loadavg File..223
The /proc/locks File ..223
The /proc/mdstat File..223
The /proc/meminfo File..223
The /proc/misc File ..223
The /proc/modules File..224
The /proc/mounts File..224
The /proc/pci File ..224
The /proc/rtc File ..224
The /proc/stat File ..224
The /proc/uptime File..224
The /proc/version File..225
The /proc/net Subdirectory..225
The /proc/scsi Subdirectory..226
The /proc/sys Subdirectory..226

Libraries and Utilities ..227
Summary ..227

Linux Programming

UNLEASHED
x

0072316072 FM 7/26/99 1:40 PM Page x

13 Handling Errors 229
Please Pause for a Brief Editorial ..230
C-Language Facilities ..230

assert()Yourself ..230
Using the Preprocessor ..232
Standard Library Facilities ..234

The System Logging Facility ..239
User Programs ..243

Summary ..245

14 Memory Management 247
Reviewing C Memory Management..248

Using the malloc() Function ..248
Using the calloc() Function ..249
Using the realloc() Function ..249
Using the free() Function ..250
Using the alloca() Function ..250

Memory Mapping Files ..252
Using the mmap() Function ..252
Using the munmap() Function ..254
Using the msync() Function ..254
Using the mprotect() Function ..254
Locking Memory ..255
Using the mremap() Function ..255
Implementing cat(1) Using Memory Maps256

Finding and Fixing Memory Problems..257
A Problem Child ..258
Using mpr and check to Locate Memory Problems260
Electric Fence ..262
Use a Lint Brush ..264

Summary ..265

PART III Interprocess Communication and
Network Programming 267

15 Introduction to IPC: Using Pipes 269
Introduction to Using Pipes ..271

Unnamed Pipes ..271
Named Pipes ..273

Summary ..274

16 Message Queues 275
Creating a Sample Message Queue Program276
Running the Sample Message Queue Program278
Summary ..279

CONTENTS
xi

0072316072 FM 7/26/99 1:40 PM Page xi

17 Shared Memory 281
Configuring Linux to Use Shared Memory ..282
Sample Program Using Shared Memory ..283
Running the Shared Memory Program Example285
Summary ..286

18 Semaphores 287
An Example Program Using Semaphores ..288
Running the Semaphore Example Program ..293
Summary ..294

19 TCP/IP and Socket Programming 295
System Calls to Support Socket Programming296

socket ..297
bind..297
listen ..298
connect ..298
recv..299
send..300

Client/Server Examples Using Sockets ..301
Server Example ..301
Client Example ..302
Running the Client and Server Examples303
Running the Server Example Using a Web Browser as a Client ..304

A Simple Web Server and Sample Web Client304
Implementing a Simple Web Server ..305
Implementing a Simple Web Client ..307
Testing the Web Server and Web Client ..308
Running the Simple Web Server Using Netscape Navigator

as a Client ..309
Summary ..309

20 UDP: The User Data Protocol 311
An Example Program for Sending Data with UDP313
An Example Program for Receiving UDP Data..................................314
Running the UDP Example Programs ..315
Summary ..316

21 Using Multicast Sockets 317
Configuring Linux to Support Multicast IP ..318
Sample Programs for Multicast IP Broadcast319

Sample Program to Broadcast Data with Multicast IP320
Sample Program to Listen for Multicast IP Broadcasts321
Running the Sample Multicast IP Programs323

Summary ..324

Linux Programming

UNLEASHED
xii

0072316072 FM 7/26/99 1:40 PM Page xii

CONTENTS
xiii

22 Non-blocking Socket I/O 325
Sample Program for Non-blocking IO ..326
Running the Non-blocking Sample Program329
Summary ..330

23 A C++ Class Library for TCP Sockets 331
Design of C++ Client/Server Classes ..332

Understanding Client Design ..332
Understanding Server Design ..334

Implementation of C++ Client/Server Classes335
Implementing the Client ..336
Implementing the Server ..337

Testing the C++ Client/Server Classes ..339
Summary ..340

24 Using Libraries 341
Comparing libc5 and libc6 ..342
Library Tools ..343

Understanding the nm Command ..343
Understanding the ar Command ..344
Understanding the ldd Command ..345
Understanding ldconfig ..346
Environment Variables and Configuration Files346

Writing and Using Static Libraries..346
Writing and Using Shared Libraries..352
Using Dynamically Loaded Shared Objects..354

Understanding the dl Interface ..355
Using the dl Interface ..357

Summary ..358

25 DEVICE DRIVERS 359
Types of Drivers ..360

Statically Linked Kernel Device Drivers..360
Loadable Kernel Modules ..360
Shared Libraries..361
Unprivileged Usermode Program ..361
Privileged Usermode Programs..362
Daemons ..362
Character Devices Versus Block Devices362

The Demonstration Hardware..363
Understanding the Workings of a Stepper Motor363
Standard or Bidirectional Parallel Port ..367

Development Configuration ..369
Low Level Port I/O ..370
Initiating Interrupts to Utilize Device Drivers372

0072316072 FM 7/26/99 1:40 PM Page xiii

Linux Programming

UNLEASHED
xiv

Accessing Memory Using DMA ..373
Simple Usermode Test Driver..374
Debugging Kernel Level Drivers ..375
Bottom Half and Top Half ..376
Creating a Kernel Driver..376

Reviewing the Source Code ..377
Compiling the Driver..405
Using the Kernel Driver ..406
Future Directions ..407

Other Sources of Information ..408
Summary ..408

PART IV Programming the User Interface 409

26 Terminal Control the Hard Way 411
The Terminal Interface ..412
Controlling Terminals ..413

Attribute Control Functions..415
Speed Control Functions ..415
Line Control Functions ..416
Process Control Functions..417

Using the Terminal Interface ..418
Changing Terminal Modes ..420
Using terminfo..422

terminfo Capabilities ..423
Using terminfo ..424
Working with terminfo Capabilities..427

Summary ..431

27 Screen Manipulation with ncurses 433
A Short History of ncurses ..434
Compiling with ncurses ..435
Debugging ncurses Programs ..435
About Windows ..436

ncurses’ Window Design ..436
ncurses’ Function Naming Conventions ..438

Initialization and Termination..439
ncurses Initialization Structures ..439
ncurses Termination..440
Illustrating ncurses Initialization and Termination441

Input and Output ..443
Output Routines..443
Input Routines ..452

Color Routines ..455

0072316072 FM 7/26/99 1:40 PM Page xiv

CONTENTS
xv

Window Management ..458
Miscellaneous Utility Functions ..458
Summary ..461

28 X Window Programming 463
X Concepts ..464
The Xlib API..466

XopenDisplay ..466
XcreateSimpleWindow and XcreateWindow............................466
Mapping and Unmapping Windows ..467
Destroying Windows ..468
Event Handling ..468
Initializing Graphics Context and Fonts ..469
Drawing in an X Window ..470
A Sample Xlib Program ..471

The X Toolkit API ..475
Getting Started Using the X Toolkit ..475
Setting Widget Arguments Using the X Toolkit476

Summary ..477

29 Using Athena and Motif Widgets 479
Using Athena Widgets ..480

The Athena Label Widget ..480
The Athena Command Button Widget ..482
The Athena List Widget..484
The Athena Text Widget ..486
The Athena Simple Menu Widget ..489

Using Motif Widgets..491
The Motif Label Widget ..492
The Motif List Widget..494
The Motif Text Widget ..496

Writing a Custom Athena Widget..498
Using the fetch_url.c File ..499
Using the URL.h File..501
Using the URLP.h File ..502
Using the URL.c File..503
Testing the URLWidget ..506

Using Both Athena and Motif in C++ Programs507
Using a C++ Class Library for Athena Widgets..................................508

The Component Class..510
The PanedWindow Class..511
The Label Class ..513
The Button Class ..514
The Text Class ..515

Summary ..517

0072316072 FM 7/26/99 1:40 PM Page xv

Linux Programming

UNLEASHED
xvi

30 GUI Programming Using GTK 519
Introduction to GTK ..521

Handling Events in GTK..522
A Short Sample Program Using GTK..523
Miscellaneous GTK Widgets..526
GTK Container Widgets ..527

A GTK Program for Displaying XML Files528
A Short Introduction to XML ..528
Expat, James Clark’s XML Parser ..529
Implementing the GTK XML Display Program530
Running the GTK XML Display Program536

A GUI Program Using the Notebook Widget537
Implementation of the Notebook Widget Sample Program537
Implementing the Drawing Widget ..539
Running the GTK Notebook Widget Sample Program..................542

31 GUI Programming Using Qt 543
Event-Handling By Overriding QWidget Class Methods545

Overview of the QWidget Class ..545
Implementing the DrawWidget Class ..547
Testing the DrawWidget ..549

Event-Handling Using Qt Slots and Signals550
Deriving the StateLCDWidget Class ..551
Using Signals and Slots..554
Running the Signal/Slot Example Program556

Summary ..557

32 GUI Programming Using Java 559
A Brief Introduction to Java ..560

Java is an Object-Oriented Language ..561
Using Packages in Java ..564
Writing and Reading Files with Java ..566
Using Multiple Threads with Java..569
Socket Programming with Java ..571

Writing a Chat Engine Using Sockets ..575
Introduction to AWT..580
Writing a Chat Program Using AWT ..583
Introduction to JFC..586
Writing a Chat Program Using JFC ..590
Using Native Java Compilers ..594
Summary ..594

0072316072 FM 7/26/99 1:40 PM Page xvi

CONTENTS
xvii

33 OpenGL/Mesa Graphics Programming 595
OpenGL is a Software Interface to Graphics Hardware596
The Orbits Sample Program ..597

Creating a Window for OpenGL Graphics
and Initializing OpenGL ..598

Creating Simple 3D Objects Using GLUT599
Placing Objects in 3D Space Using X-Y-Z Coordinates600
Rotating an Object About Any or All of the

X-, Y-, and Z- Axes ..601
Enabling the Use of Material Properties602
Enabling Depth Tests..603
Handling Keyboard Events ..603
Updating OpenGL Graphics for Animation Effects........................603
Sample Program Listing ..604

PART V Special Programming Techniques 607

34 Shell Programming with GNU bash 609
Why bash? ..610
bash Basics ..610

Wilcards..610
Brace Expansion ..611
Special Characters ..612

Using bash Variables ..613
Using bash Operators ..615

String Operators..615
Pattern-Matching Operators ..617

Flow Control ..619
Conditional Execution: if..619
Determinate Loops: for ..624
Indeterminate Loops: while And until624
Selection Structures: case And select625

Shell Functions ..628
Input and Output ..629

I/O Redirectors ..629
String I/O..631

Command-line Processing ..633
Processes and Job Control ..635

Shell Signal-Handling ..635
Using trap ..636

Summary ..637

0072316072 FM 7/26/99 1:40 PM Page xvii

Linux Programming

UNLEASHED
xviii

35 Secure Programming 639
Types of Applications ..640

Setuid Programs..640
Network Servers (Daemons) ..641
Network Clients..641
Mail User Agents..641
CGI Programs ..641
Utilities ..641
Applications..642

Specific Code Issues ..642
Shell Scripts and system() Calls ..642
Input from Untrustworthy Users ..644
Buffer Overflows ..644
Environment Variables..648
The gethostbyname() Function ..650
Signals ..650
Userid and Groupid ..653
Library Vulnerabilities..655
Executing Other Programs ..655
/tmp Races ..655
Denial of Service Attacks ..656
Random Numbers ..657
Tokens ..658
Passwords ..658
Filenames..659
Symbolic Links ..660
chroot() Environments..672
Splitting Programs ..672
Interprocess Communication..673
The identd Daemon ..674
TCP Versus UDP ..675
Dynamic Versus Static Memory Allocation676
Security Levels ..677
POSIX.1e Capabilities..677

Erasing Buffers ..677
HTML Form Submissions Past Firewalls..677
Snooping, Hijacking, and Man in the Middle Attacks678
HTML Server Includes ..679
Preforked Server Issues ..679
Timeouts ..679
Three Factor Authentication ..680
Pluggable Authentication Modules..680
General Program Robustness ..681

0072316072 FM 7/26/99 1:40 PM Page xviii

CONTENTS
xix

Cryptography ..681
Types of Cryptographic Algorithms ..682
Encryption Systems ..683
Encryption Vulnerabilities ..684

Summary ..685

36 Debugging: GNU gdb 687
Compiling for gdb ..688
Using Basic gdb Commands ..689

Starting gdb ..689
Inspecting Code in the Debugger ..691
Examining Data ..692
Setting Breakpoints ..694
Examining and Changing Running Code695

Advanced gdb Concepts and Commands..698
Variable Scope and Context ..698
Traversing the Call Stack ..699
Working with Source Files ..701
Communicating with the Shell ..701
Attaching to a Running Program..702

Summary ..703

PART VI Finishing Touches 705

37 Package Management 707
Understanding tar Files ..708

Creating tar Files ..709
Updating tar Files ..710
Listing the Contents of tar Files ..710

Understanding the install Command ..711
Understanding the Red Hat Package Manager (RPM)........................713

Minimum Requirements ..713
Configuring RPM ..714
Controlling the Build: Using a spec File715
Analyzing a spec File..716
Building the Package..719

Summary ..720

38 Documentation 721
man Pages ..722

Components of a man Page..722
Sample man Page and Explanation ..723
Using the groff Command ..725
Linux Conventions..726

0072316072 FM 7/26/99 1:40 PM Page xix

Linux Programming

UNLEASHED
xx

Creating SGML Documents Using SGML-tools727
SGML-tools ..728
SGML-tools Tags ..731
Formatting SGML Documents ..733

Summary ..733

39 Licensing 735
The MIT/X-style License ..736
The BSD-style License ..737
The Artistic License ..738
The GNU General Public Licenses ..739

The GNU General Public License..739
The GNU Library General Public License740

The Open Source Definition..741
Choosing the Right License ..744

A A Symbol Table Library 745
Available Documentation ..746

Sample Program: userchange..747
basetypes ..747
Defining a Symbol Table to Describe a Structure Type748
Defining a Random Collection of Variables751
Including Another Symbol Table ..753
Error Reporting ..754
Smart Pointers ..755
Symbol Table Library Functions ..755
userchange main()..758
Sample Execution ..763

B GNU General Public License 765

INDEX 775

0072316072 FM 7/26/99 1:40 PM Page xx

About the Authors
Kurt Wall
Kurt Wall is a Linux author, consultant, and enthusiast in Salt Lake City, Utah. He has
used Linux since 1993. In addition to avoiding real work by writing books, he is Vice
President of the Salt Lake Linux Users Group and President of the International Informix
Users Group Linux SIG. When not sitting in front of a computer screen, he plays with
his children, Ashleigh Rae, 10, and Zane Thomas, 8, drinks gourmet coffee, and takes
afternoon naps everyday.

Mark Watson
Mark Watson is the author of 12 books on artificial intelligence, Java, and C++. He is a
senior AI software engineer at Intelligenesis. Mr. Watson lives in Sedona, Arizona with
his wife Carol and enjoys hiking with his dog, music, cooking, and playing chess and
Go.

Mark Whitis
Mark Whitis is a self-educated consulting computer engineer. He has his own company,
Free Electron Labs, and works for Digital By Design. He has worked at various research
and development labs in the academic, corporate, and military sectors doing hardware
and software development and has also done software development for the financial sec-
tor. He has been developing software for UNIX-compatible operating systems for more
than ten years, including about four years with Linux. He does not do Windows. His
work includes security consulting, system and network administration, and developing
scientific applications, device drivers, client/server applications, simulations, diagnostic
software, and online Web-based financial transaction systems. He is the author of a num-
ber of publicly available software packages. He currently lives in Charlottesville, VA.
His Web site is at http://www.freelabs.com/~whitis/unleashed/.

0072316072 FM 7/26/99 1:40 PM Page xxi

Dedication
Kurt Wall

To Ashleigh Rae and Zane Thomas.

Mark Watson

For Julie, Josh, and Calvin.

Mark Whitis

To Troy Sorbello (1963-1998)

Acknowledgments
Kurt Wall
Now I get to blame all of the people responsible for this book. Thanks to Nick Wells, who got me
involved in this through a seemingly innocuous post to a Caldera users’ mailing list. I appreciate
the folks on comp.os.linux.development.*, comp.lang.c, and comp.unix.programmer
who answered an endless stream of questions. Thomas Dickey graciously reviewed the chapter on
ncurses, catching silly errors.

My family, Dad, Rick, Amy, Morgan, Jennifer, Candy, Cindy, Chris, Marty, Ashleigh, Zane, and
Patsy, were terrifically supportive when my life flew apart while writing this book. For continued
cheerleading and moral support, I deeply appreciate Tricia, Joan, Steve, Allen, Tineke, Renee, and
Lora. I now understand why authors always thank their editors (I never knew how many editors
could be involved in a book!).

The folks at Macmillan made this thing succeed: Brian Gill and Ron Gallagher got me off to a
great start. Scott Warner kept me busy adding material and helped me write my first book. Angela
Kozlowski picked up a project in mid-stream and watched it age prematurely, so she deserves a
special award for her patience in the face of perpetually slipping deadlines—thanks, Angela! I owe
Gretchen Ganser dinner. Kim Cofer, Kelli Brooks, Katie Robinson, Jeff Riley, Heather Goodell,
and Carol Bowers made sure it all looked nice and gently reminded me to get my artwork submit-
ted. My technical editor, Robert Blum, caught many blunders; the rest of the warts and mistakes
are mine alone.

This wouldn’t have happened without Linus Torvalds and all of the other kernel hackers and the
unknown bazillions of people who contribute to Linux in one way or another.

Thanks, finally, to God and all of the friends of Bill Wilson.

If I’ve left anyone out, drop me a line at kwall@xmission.com and I’ll rectify the oversight.

Mark Whitis
Thanks to Keith Pomroy for proofreading one of the chapters.

0072316072 FM 7/26/99 1:40 PM Page xxii

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As a Publisher for Sams, I welcome your comments. You can fax, email, or write me
directly to let me know what you did or didn’t like about this book—as well as what we
can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: (317) 581-4770
Email: mstephens@mcp.com

Mail: Michael Stephens
Associate Publisher
Sams
201 West 103rd Street
Indianapolis, IN 46290 USA

0072316072 FM 7/26/99 1:40 PM Page xxiii

mailto:mstephens@mcp.com

	Linux Programming Unleashed
	Copyright © 1999 by Sams
	Overview
	Contents
	About the Authors
	Dedication
	Acknowledgments
	Tell Us What You Think!
	Introduction
	Part I The Linux Programming Toolkit
	Ch 01 Overview
	Ch 02 Setting Up a Development System
	Ch 03 Using GNU cc
	Ch 04 Project Management Using GNU make
	Ch 05 Creating Self-Configuring Software with autoconf
	Ch 06 Comparing and Merging Source Files
	Ch 07 Version Control with RCS
	Ch 08 Creating Programs in Emacs

	Part II System Programming
	Ch 09 I/O Routines
	Ch 10 File Manipulation
	Ch 11 Process Control
	Ch 12 Accessing System Information
	Ch 13 Handling Errors
	Ch 14 Memory Management

	Part III Interprocess Communication and Network Programming
	Ch 15 Introduction to IPC: Using OPipes
	Ch 16 Message Queues
	Ch 17 Shared Memory
	Ch 18 Semaphores
	Ch 19 TCP/IP and Socket Programming
	Ch 20 UDP: The User Data Protocol
	Ch 21 Using Multicast Sockets
	Ch 22 Non-blocking Socket I/O
	Ch 23 A C++ Class Library for TCP Sockets
	Ch 24 Using Libraries
	Ch 25 Device Drivers

	Part IV Programming the User Interface
	Ch 26 Terminal Control the Hard Way
	Ch 27 Screen Manipulation with ncurses
	Ch 28 X Window Programming
	Ch 29 Using Athena and Motif Widgets
	Ch 30 GUI Programming Using GTK
	Ch 31 GUI Programming Using Qt
	Ch 32 GUI Programming Using Java
	Ch 33 OpenGL/Mesa Graphics Programming

	Part V Special Programming Techniques
	Ch 34 Shell Programming with GNU bash
	Ch 35 Secure Programming
	Ch 36 Debugging: GNU gdb

	Part VI Finishing Touches
	Ch 37 Package Management
	Ch 38 Documentation
	Ch 39 Licensing

	A: A Symbol Table Libray
	B: GNU General Public License
	INDEX

	page:

